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Abstract

In this paper we investigate the influence of
(a) the amount of variation generated in the
genotype and (b) the depth of application of
variation operators on the offspring fitness in
genetic programming. Simulation results on
three common test problems indicate that for
certain features of the fitness distribution the
location of the variation may play as impor-
tant a role as the choice of the applied oper-
ators.

1 INTRODUCTION

In genetic programming (GP), computer programs are
represented as parse trees whose structure and ele-
ments are to be evolved.

It is a common point of view that, on average, the
larger the amount of genotypic change produced by
a variation operator, the larger the associated change
in the phenotype, i.e., the behavior of the program.
It has also been hypothesized that the farther away
the genotypic change occurs from the root node, the
smaller is the corresponding change in the phenotype
(Rosca and Ballard, 1995).

In the current study, these two hypotheses are investi-
gated using a set of fitness distribution features. Five
different variation operators are analyzed based on the
depth of the node, to which they are applied, and the
amount of structural change.

The depth of a node n in a tree is defined as the
distance from the root node to n (Aho et al., 1983;
Banzhaf et al., 1998) and the height of a tree as the
maximum depth of its nodes (Aho et al., 1983). Let
the depth of a subtree be defined to be the depth of
its root node.

In most GP systems, the node for the application of
a variation operator is chosen independently of how
much genetic material (i.e., the number of nodes and
the complexity of the associated subtree) will be al-
tered from the tree or the depth of the node. The
node is chosen uniformly at random or with a bias to-
wards internal (function) nodes (Koza, 1992). Alter-
native operators, that take into account the position
of the variation point, have been successfully applied:
O’Reilly and Oppacher (1994) proposed a crossover
operator that selected the pivot points based on the
height of the subtrees and Harris and Smith (1997)
and Ito et. al. (1998) investigated various depth-based
crossover operators. In this investigation, we ana-
lyze the effect of the depth of the application point
of crossover and four different mutation operators.

In order to measure structural differences between two
parse trees a metric is needed. One such generic dis-
tance measure between trees is the tree edit distance
(Sankhoff and Kruskal, 1983), which provides a suit-
able measure on the GP search space (O’Reilly, 1997).
It is a well observed fact that changing even a single
instruction of a program can drastically change its fit-
ness. However, it seems intuitive that the more the
number of instructions that are modified, the higher
the probability of a large fitness change:

Hypothesis 1. On average, the larger the change in
the genotype (measured by a distance measure between
parent and offspring) the larger is the change in fit-
ness.

Such a relation between distances in genotype-space
and fitness-space is important for using a metric for
measuring structural differences between parse trees
as a means for analyzing GP algorithms. A distance
measure on the genotype space that is independent of
fitness looses much of its usefulness (Sendhoff, Kreutz,
and von Seelen, 1997; Igel, 1998).

The second hypothesis of what makes a structural



change a small one can be found in the work of Rosca
and Ballard (1995):
Hypothesis 2. The longer the path from a selected
subtree to the root node, the higher is the probability
that the subtree plays a less important role in the over-
all evaluation.

The size of a subtree is partially determined by its
depth. Consider a tree where all the leaves have the
same depth: In this case, subtrees with small depth
values contain more nodes than subtrees at larger
depths and both of the above hypotheses are equiv-
alent.

Of course, the validity of both statements depends not
only on the problem at hand but also on the function
and terminal sets used. As a result, it may not be pos-
sible to derive general results for all GP applications.
However, one can hope to identify principles that hold
for certain problem classes.

2 METHOD

2.1 FITNESS DISTRIBUTIONS

Fitness distributions have been proposed as tools for
understanding the effects of variation operators in evo-
lutionary computation (Grefenstette, 1995; Fogel and
Ghozeil, 1996). Recent efforts in trying to under-
stand GP through fitness distribution features include
Nordin and Banzhaf (1995) and Igel and Chellapilla
(1999).

The fitness distribution (FD) of a variation operator
v that produces one offspring o from a single parent p
can be defined as the conditional probability

FDv(F{p}) =def P (Fo|F{p}) , (1)

where the random variables Fo and F{p} denote the fit-
nesses of the offspring and parent, respectively. If mul-
tiple parents are involved in generating the offspring,
F{p} depends on the fitnesses of all parents used.

The FDv is generally quite complex and difficult to
compute. However, it is usually sufficient to focus on
estimating important features of the FD. In this in-
vestigation, two fitness distribution features are used.
Firstly, the expected absolute fitness change

ACop =def E(|Fo − F{p}|) , (2)

where E(.) denotes the expectation. Secondly, the
probability of silent variations, i.e., the fraction of ap-
plications of an operator that do not lead to a fitness
change

SVPop =def P (Fo = F{p}) . (3)

In this paper, AC and SVP are viewed as functions of
(a) the depth of the modified subtree and (b) the struc-
tural differences between parent and offspring. The
AC can be used to distinguish between local (or ex-
ploitative) and global (or explorative) search opera-
tors: Typically, small AC values indicate a more local
search while large AC values indicate a more global
search.

2.2 EDIT DISTANCE

The tree edit distance (Sankhoff and Kruskal, 1983)
has been proposed as a metric for program spaces
(O’Reilly, 1997). In view of its direct applicability
to tree spaces, the tree edit distance was adopted to
measure structural differences in the experiments for
testing Hypothesis 1.

Parse trees representing computer programs can be
uniquely defined by their preorder traversal. There-
fore, the distance between two GP trees may also be
computed as the Levenshtein distance between their
preorder traversals instead of using the “standard”
tree edit distance that is defined for general trees (Igel,
1998). The Levenshtein distance is a common distance
measure between strings (Sankhoff and Kruskal, 1983).
It is the minimum cost of a sequence of insertion, dele-
tion and substitution operations that transform one
string into the other. In this investigation, each of
these elemental operations was assigned a cost of one,
except the replacement of a numerical constant with
another numerical constant which was assigned a cost
of zero.

The Levenshtein distance measure was used, since
it can be computed faster1 (and is easier to imple-
ment) than the standard tree edit distance (Zhang and
Shasha, 1989). This definition of the distance between
parse trees coincides with the standard tree edit met-
ric in most cases and the rare differences were usually
very small (Igel, 1998).

3 EXPERIMENTS

3.1 TEST PROBLEMS

Three common GP test problems were used to test
the hypotheses. The first two were the artificial ant
problem on the Santa Fe trail, using the function set
{is-food-ahead, prog2, prog3} and the terminal set
{left, right, move}, and the 6-multiplexer problem

1The tree edit distance can be computed in time
complexity O(|T1| · |T2| · min{leaves(T1), depth(T1)} ·
min{leaves(T2), depth(T2)}) and the Levenshtein distance
in O(|T1| · |T2|) .



with the function set {and, or, not, if} (Koza, 1992).
The third task was the sunspot time series forecasting
problem (Angeline, 1997). The goal was to predict the
average number of sunspots observed in a year. Aver-
age sunspot data from the years 1700 to 1989 contain-
ing 290 samples was used as the training set. The func-
tion set was {+,−, ∗, %, sin} and the terminal set was
{xt−1, xt−2, xt−4, xt−8, numerical constants}. The
fitness of an individual was determined by the nor-
malized mean square error on the training set.

The artificial ant problem was chosen, because it is
one of the best investigated tasks in GP. The regres-
sion problems were chosen since they are instances of
two important GP problem classes, i.e., boolean and
symbolic regression problems. Results on the sunspot
problem may be expected to carry over to similar sym-
bolic regression tasks and the results for the multi-
plexer may also be expected to hold for other Boolean
regression problems2.

3.2 VARIATION OPERATORS & GP
ALGORITHM

An evolutionary programming procedure was used to
evolve computer programs (cf. Chellapilla 1997, 1998).

Instead of using a depth-based tree generation method
like ramped half-and-half an algorithm based on the
length of the trees was employed to create the ini-
tial population: The number of nodes of each program
was chosen at random from {3, 4, ..., 50} and a pro-
gram with approximately that length was generated
(Chellapilla, 1998).

Several different variation operators were employed to
generate offspring. The location at which an oper-
ator was applied to a tree T was chosen in a depth-
dependent manner (except for the OneC mutation, see
below):

1. First, the depth of application d was chosen uni-
formly at random in {0, 1, . . . , h} where h was the
height of the tree T .

2. Then a node of the tree T at depth d was selected
at random.

This was done in order to get a more uniform sampling
over all depths. In comparison, non depth-dependent
selection methods typically favor deeper nodes. The
employed variation operators were:

2We compared the 6-multiplexer with another, quite dif-
ferent Boolean regression task, the 3-parity problem (Koza,
1992), and the results of our analysis were qualitatively
similar.

OneNode: The OneNode operator replaced the ran-
domly selected node with a different node of the
same arity. An application of OneNode corre-
sponds to a smallest structural change of the parse
tree. In the ant and multiplexer problem, OneN-
ode always produces an offspring with edit dis-
tance one from its parent. In the symbolic regres-
sion problem, a cost of zero was assigned to the
replacement of a numerical constant with another
numerical constant, so an application of OneNode
leads to either an edit distance of one or zero.

Trunc: The Trunc mutation randomly selected a func-
tion node using the depth-dependent selection
method described above (the method was sim-
ply repeated until a function node was found, i.e.,
d ∈ {1, . . . , h−1}), and replaced it with a random
terminal (Chellapilla, 1997).

Crossover : The crossover operator used in this inves-
tigation chose a mate uniformly at random from
the population and selected crossover points in the
parent and mate trees independently according to
the depth fair selection method described above.
It always returned the offspring that shared the
same root node as the parent before the crossover
operation.

RandomMateCrossover : A mate tree was chosen uni-
formly at random from the population. This
pattern tree was randomized by replacing every
function and terminal node by a randomly se-
lected node of the same arity. Crossover was ap-
plied between the selected parent and the content-
randomized tree. Once again, the offspring that
shared the same root node as the parent before
the crossover operation was returned. This muta-
tion operator was inspired by the strong headless
chicken crossover introduced by Angeline (1997).

OneC : The OneC operator was used only in the
sunspot problem. It performed a zero mean Gaus-
sian mutation with standard deviation 0.1 on a
randomly chosen (in a non-depth-dependent man-
ner) numerical constant.

In each generation, for every tree pi in the popula-
tion one of these operators was chosen at random with
equal probability and applied to pi to produce a single
offspring. This operation was repeated if the applica-
tion of the selected operator did not lead to an off-
spring with a genotype which was different from the
parent. In this paper, F{p} was set equal to Fpi for
the calculation of the fitness distribution features de-
scribed in Sec. 2.1. Previous investigations have shown



0 2 4 6 8 10 12 14 16 18 20 22 24 26

0

100000

200000

300000

400000

500000

600000

depth

samples

sunspot mux ant

Figure 1: Number of samples used in this study per
depth.

0 2 4 6 8 10 12 14 16 18 20 22 24 26

20

40

60

80

100

120

140

160

depth

mean generation

sunspot mux ant

Figure 2: The average generation at which a depth
was sampled. Smaller depths are sampled more often
in early generations.

that the fitness distribution features of the employed
five operators differ significantly from each other for
the three test problems (Igel and Chellapilla, 1999).

Evolutionary programming style tournament selection
with a tournament size of 50 was applied to form the
next generation (Chellapilla 1997, 1998). The popula-
tion size was 200 and the length of the individuals was
limited to 50 nodes in all the experiments. For each
test problem 50 independent trials were performed.
The trials were terminated either upon discovering an
optimal solution or when the number of generations
exceeded 200.

4 RESULTS & DISCUSSION

All multiplexer trials and all but three artificial ant
trials found an optimal solution before generation 200.

The results presented in the figures were averaged over
all generations and trials. Figure 1 shows the number

of samples obtained as a function of the depth of the
node selected during variation. Due to the size con-
straint of 50 nodes, nodes at depths larger than 15
were rarely selected. This led to lower accuracy of
the statistics at larger depths, i.e., to noisy curves at
larger depth in Figs. 3 to 12. As evolved programs
tend to grow with each generation during evolution
(an effect commonly known as bloat (Banzhaf et al.,
1998)), larger depths were sampled less often in the
early generations. This effect can be observed in Fig-
ure 2, which shows the mean generation at which a
depth was sampled.

On average, the multiplexer problems finished first,
followed by the artificial ant and sunspot trials (the
sunspot trials were not terminated until generation
200). This ranking explains the quantitative differ-
ences between the curves for the different operators in
Figs. 1 and 2.

4.1 DEPENDENCE ON LEVENSHTEIN
DISTANCE

Figures 3 through 5 show the AC curves as a function
of the Levenshtein distance of the corresponding vari-
ation generated by the operators for the artificial ant,
6-bit multiplexer, and sunspot problem.

The AC curves presented in Figs. 3 and 4 show a
high correlation between the AC values and the as-
sociated Levenshtein distance between parent and off-
spring. On the sunspot problem the curves were very
noisy and Hypothesis 1 does not appear to hold. How-
ever, for small distances in the genotype-space (< 8)
the AC curves were increasing which supports Hypoth-
esis 1. In other words, the relation between distance
in genotype-space and fitness-space holds locally (in
a certain neighborhood in the genotype-space), which
has been identified as being a very important prop-
erty, (c.f. Rechenberg, 1994; Sendhoff et al., 1997; Igel,
1998).

The AC values for the OneNode operator (which al-
ways generates a change equivalent to producing a
Levenshtein distance of at most one between parent
and offspring) were larger than the corresponding AC
values for the other operators when they produced
structural changes with edit distance one. The other
operators generated edit distance one changes usually
only when applied near the leaf nodes, i.e., at larger
depths. For example, crossover between two trees will
lead to a structural change larger than one in most
cases except when leaf nodes were selected as crossover
points. Thus, of the operators used in the experi-
ments, only OneNode frequently generates modifica-
tions of edit distance one through the application to
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Figure 3: The average fitness change as a function of
the edit distance between parent and offspring on the
artificial ant problem. As the OneNode operator pro-
duces a maximal structural change of one, it is repre-
sented by a single square with an edit distance of one.
Because the arity of each function node was at least
two, the smallest edit distance Trunc generated was
two.

(non-terminal) nodes close to the root node. In view
of the fact that changes (using any variation opera-
tor) closer to the root generated larger AC values than
changes at deeper nodes (see below), changes of edit
distance one using OneNode produced larger AC val-
ues.

The OneNode results show that the fitness landscapes
determined by the Levenshtein distance of the three
test problems can be considered to be very rugged. As
the depth-dependent results described in the next sec-
tion show, an edit distance of one can result in small
and large fitness changes. However, on average the
AC increases with increasing edit distance for the dis-
crete problems (ant and mux). Hence for two of the
three problems Hypothesis 1 seems to hold. For the
continuous problem, it seems to hold only locally.

4.2 DEPTH-DEPENDENCE

The Figs. 6 to 11 show the results for the analysis of
the depth dependence. For each operator, only depths
that were sampled more than 100 times were consid-
ered in these plots.

The choice of the depth of application of a variation
operator has a large influence on the degree of fit-
ness change produced and the probability of gener-
ating silent variations. On average, variations closer
to the root generate larger fitness changes and fewer
silent mutations. For the two discrete problems, the
depth of application appears to be as important as
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Figure 4: The average fitness change as a function of
the edit distance between parent and offspring on the
6-multiplexer problem. The Trunc operation can only
generate an edit distance of one when it is applied to
a not operation with a terminal as argument. This
special case leads to the outlier in the curve of the
Trunc operator at depth zero.

the type of operator used. In other words, it is just as
important to know the depth at which an operator is
applied as the type of variation generated by the op-
erator. For the sunspot problem, these results do not
hold so clearly; the corresponding curves are rugged
and there are several outliers (Figs. 10 and 11). How-
ever, Hypothesis 2 can be regarded as valid for the
continuous domain problem, at least when the depths
under consideration are significantly apart.

The results show that it is possible to tune the search
behavior of an operator from local to global search by
controlling its application depth.

It is interesting to note that in Figs. 6, 8 and 10
the average fitness change for OneNode (and also for
Crossover and Trunc in the case of the sunspot prob-
lem) increased for the first few depth values before
decreasing. These results can be explained as follows
(Igel and Chellapilla, 1999): In early generations, the
average fitness change was smaller than in later gen-
erations. As better solutions were found, they became
progressively more brittle with most changes generat-
ing large deviations in behavior and resulting in large
AC values. Since the average tree size grew during
evolution, nodes with small depth values were sam-
pled more frequently in the early generations and less
frequently in later generations, see Fig. 2. This caused
the AC curve to increase for the first depth values.
In order to verify this theory, the samples from early
generations were omitted from the calculation of the
fitness distribution features. Upon omitting these sam-
ples, the effect could be removed or at least reduced
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Figure 5: The average fitness change as a function
of the edit distance between parent and offspring on
the sunspot problem. The values of AC samples were
limited to 100, i.e., AC = E(min{100, |Fo−F{p}|}). In
this problem a structural change of zero was possible,
namely the replacement of a numerical constant with
a different constant.
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Figure 6: Artificial ant, depth-dependent average fit-
ness change.
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Figure 7: Artificial ant, depth-dependent probability
of silent variations.
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Figure 8: 6-multiplexer, depth-dependent average fit-
ness change. The inline figure shows the AC for the
lowest depths when changes generated in the first ten
generations were omitted from the calculation.
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Figure 9: 6-multiplexer, depth-dependent probability
of silent variations.

(the inline graphic in Fig. 8 shows an example). The
early decrease in the silent variation curves in the case
of the multiplexer problem can be explained in the
same way.

The AC values were determined in part by the SVP: a
high silent variation rate lead, on average, to small
changes in the fitness space, whereas low SVP val-
ues typically resulted in larger AC values. Most of
the silent variations were generated through changes
applied to deeper nodes, wherein the likelihood of
producing changes to intron subtrees (Banzhaf et al.,
1998) increased. Since it is of interest to know whether
there was a cause and effect relationship between the
AC and SVP values, new AC curves were generated
with the samples corresponding to the silent variations
omitted. Upon removing the silent variation samples,
the multiplexer problem AC curves qualitatively re-
mained the same, whereas the artificial ant problem’s
AC curve became nearly constant (see Fig. 12) indi-
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Figure 10: Sunspot prediction, log plot of depth-
dependent average fitness change. The values of AC
samples were limited to 100.
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Figure 11: Sunspot prediction, depth-dependent prob-
ability of silent variations.

cating that the AC decrease in Fig. 6 was mostly de-
termined by the silent variations shown in Fig. 7. The
corresponding plot for the sunspot problem looks very
much like Fig. 10 because of the low rate of silent vari-
ations.

On the sunspot time series forecasting task, the fit-
ness changes induced by Trunc mutations at the root
node were surprisingly small. Subsequent investiga-
tion showed that when the root node was replaced by
a non-numerical terminal, the predicted values for the
number of sunspots, xt, was the same as the number
of sunspots observed in previous years, i.e., xt−1, xt−2,
xt−4, or xt−8. These one node predictors turned out to
be moderately good predictors with the smaller time
lag terminals performing better.

Not surprisingly, the OneC variation, which is the only
non structure changing operator, shows a slightly dif-
ferent behavior from the other operators in Figs. 10
and 11. An application depth of zero is a special case:
The parent tree consisted only of a single numerical
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Figure 12: Artificial ant, depth-dependent average fit-
ness change without silent mutations.

constant that predicted the time series. Such constant
solutions lead to rather large errors and therefore are
not frequent at later generations. Not surprisingly,
adding a zero mean Gaussian random number to such
a constant predictor leads on average to a small fitness
change.

Ito et al. (1998) concluded that depth-dependent
crossover is better than traditional crossover because
it works as “protection against destructive XO” and
“accumulates building blocks”. Our results show that
making any operator depth-dependent changes the
search behavior of the operator in question drastically,
e.g. when nodes near the root are sampled more often
the operator becomes more explorative. If a more ex-
plorative search is better suited for a problem this may
be an alternative explanation why depth-dependent
crossover works better.

A size constraint for the trees in the population was
a principal parameter of the program evolution trials
conducted in this study. In most algorithms, the max-
imum height is limited (Koza, 1992) and the height
limit is chosen ad hoc. The analysis of the depth-
dependency of AC for a problem class may provide
better insight for picking a sensible depth limit.

This investigation contributes to the question, to
which extent the principle of strong causality, which
states that small changes in the genotype space should
lead to small changes in the fitness space (Rechen-
berg, 1994), holds for controlled steps in the GP search
space. The importance of this principle for evolution-
ary search is discussed e.g. in the work of Rechenberg
(1994) and Sendhoff et al. (1997).



5 CONCLUSION

Hypothesis 2 which states “the longer the path to the
root node the less the influence on the fitness” was
found to be valid for all the three test problems. The
differences between the depth of the application of a
variation operator appears to be just as important as
the choice of the operator in the case of the three test
problems studied.

The rule of thumb “the larger the difference between
parent and offspring the larger the fitness change”
clearly holds for the ant and multiplexer problems, but
for the sunspot problem only locally.
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