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Abstract

Using a few nonlinear econometric tools, this
paper examines some time-series properties
of GP-based arti�cial markets. We �nd
that GP-based arti�cial markets are able to
replicate several stylized features well docu-
mented in �nancial econometrics. In partic-
ular, the time series generated by the GP-
based arti�cial markets are consistent with
the eÆcient market hypothesis in the lin-
ear sense. Furthermore, the emergence of
these stylized features may be caused by some
institutional factors, such as position limits
and transaction factors. By introducing the
complexity of evolved GP-trees, a bottom-up
analysis of the impact of transaction taxes on
GP-based arti�cial markets is also provided.

1 Motivation

One of the recent achievements made in �nancial
econometrics is to identify several salient features
shared by almost all �nancial markets. Features like
fat tails, volatility clusters, and nonlinear dependence
have been well documented in Pagan (1996). Fat tails
concern the fourth moment (kurtosis) of the empir-
ical distribution and refers to the presence of excess
kurtosis, which is an indicator that the time series un-
der study is not normally distributed. Volatility clus-
tering concerns the second moment (variance), more
precisely, the dynamics of conditional variance. As
Mandelbrot (1963) described, large changes tend to
be followed by large changes-of either sign-and small
changes by small changes. In �nancial econometrics,
this phenomenon is formalized as the GARCH process,
where \GARCH" stands for Generalized AutoRegres-
sive Conditional Heteroskedasticity. The last one, non-
linear dependence, indicates that, while �nancial time
series is not predictable in the linear sense, it may be
predictable in the nonlinear sense. Despite their sound

statistical basis, a satisfactory economic explanation
remains to be established for these stylized facts.

In this paper, a time-series econometric study of a
GP-based arti�cial market constructed by Chen and
Yeh (1997) is conducted. We attempt to test whether
GP-based arti�cial markets can actually replicate the
above-mentioned stylized features. If GP-based arti-
�cial markets can, in e�ect, replicate those patterns,
then the expressive power of GP-based markets may
help us further explore the possible institutional con-
nections for those stylized features. In particular, in
this paper, we would like to identify the signi�cance of
two institutional factors, namely, position limits and
transaction taxes.

2 The Analytical Model

Given the above-mentioned purpose, GP-based arti�-
cial markets are employed to generate arti�cial time
series of prices of an abstract commodity. The GP-
based arti�cial market used in this paper is based on
Chen and Yeh (1996, 1997), which is known as a cob-
web model in economics. Before proceeding further,
let's briey review this model.1 Consider a compet-
itive market composed of n �rms which produce the
same goods by employing the same technology and
which face the same cost function described in Equa-
tion (1):

ci;t = xqi;t +
1

2
ynq2i;t (1)

where qi;t is the quantity supplied by �rm i at time t,
and x and y are the parameters of the cost function.

Since at time t � 1, the price of the goods at time
t, Pt, is not available, the decision about optimal qi;t
must be based on the expectation (forecast) of Pt, i.e.,
P e
i;t. Given P

e
i;t and the cost function ci;t, the expected

1One can �nd details in Chen and Yeh (1996, 1997),
which can also be downloaded from the website:
http://econo.nccu.edu.tw/ai/sta�/csh/vitachen.htm



pro�t of �rm i at time t can be expressed as follows:

�ei;t = P e
i;tqi;t � ci;t (2)

Given P e
i;t, qi;t is chosen at the level such that �ei;t

can be maximized and, according to the �rst order
condition, is given by

qi;t =
1

yn
(P e

i;t � x) (3)

Once qi;t is decided, the aggregate supply of the goods
at time t is �xed and Pt, which sets demand equal to
supply, is determined by the demand function:

Pt = A�B
nX

i=1

qi;t; (4)

whereA andB are parameters of the demand function.

Given Pt, the actual pro�t of �rm i at time t is :

�i;t = Ptqi;t � ci;t (5)

In a representative-agent model, it can be shown that
the rational expectations equilibrium price (P �) and
quantity (Q�) are (Chen and Yeh, 1996, p.449):

P �t =
Ay +Bx

B + y
; Q�

t =
A� x

B + y
: (6)

To extend the model (Equations (1)-(6)) with specu-
lation, the behavior of speculators has to be speci�ed
�rst. Suppose we let Ij;t represent the inventory of the
jth speculator at the end of the tth period, then the
pro�t to be realized at the next period t+ 1 is

�j;t = Ij;t(Pt+1 � Pt): (7)

Of course, the actual pro�t �j;t is unknown at the mo-
ment when the inventory plan is carried out; therefore,
like producers, speculators tend to set the inventory up
to the level where speculators' expected utility Euj;t
or expected pro�t E�j;t can be maximized. We shall
follow Muth (1961) to assume that the objective func-
tion for speculators is to maximize the expected util-
ity rather than the expected pro�t. Without assuming
any speci�c form of utility function, what Muth (1961)
did was to approximate the general utility function
uj;t(�t) by taking the second-order Taylor's series ex-
pansion about the origin:

uj;t(�t) � �(�t) = �(0) + �
0

(0)�j;t +
1

2
�

00

(0)�2jt (8)

Based on Equation (8), the approximate utility de-
pends on the moments of the probability distribution
of �t, i.e.,

Euj;t � �(0) + �
0

(0)E�j;t +
1

2
�

00

(0)E�2j;t (9)

Solving the �rst and the second moment of Equation
(9), we can rewrite the expected utility function as
follows.

Euj;t � �(0) + �
0

(0)Ij;t(P
e
j;t+1 � Pt)

+
1

2
�

00

(0)I2j;t[�
2
t;1 + (P e

j;t+1 � Pt)
2];(10)

where P e
j;t+1 is the conditional expectation E(Pt+1 j


t) and �
2
t;1 is the conditional variance var(Pt+1 j 
t)

and 
t is the �-algebra (the largest information set)
generated by Pt; Pt�1; :::. The optimal position of the
inventory can then be derived approximately by solv-
ing the �rst order condition and the optimal position
of the inventory I�j;t is given by

Ij;t = �(P e
j;t+1 � Pt); (11)

where � = � �
0

(0)

�
00 (0)�2

t;1

. Equation (11) explicitly shows

that speculators' optimal decision about the level of
inventory depends on their expectations of the price
in the next period, i.e., P e

j;t+1.

Now, if the market is composed of n producers and
m speculators, the equilibrium condition is given in
Equation (12),

A

B
�

1

B
Pt +

mX

j=1

�(P e
j;t+1 � Pt)

=

nX

i=1

1

yn
(P e

i;t � x) +

mX

j=1

�(P e
j;t � Pt�1): (12)

3 Experimental Designs

Chen and Yeh (1997) replaced the conditional expec-
tations appearing in Equations (12) by a GP-driven
learning processes, and simulated the price dynamics
under this new setup. While they showed how specu-
lators may have adverse impacts on market stability,
properties of these price dynamics were largely left un-
exploited. In this paper, we shall �rst resimulate the
price dynamics of this market and then conduct a rig-
orous econometric analysis of the price dynamics. In
particular, we would like to see whether our GP-based
markets posses the econometric properties widely ex-
isting in �nancial time series. If so, how the emer-
gence of these properties can be possibly accounted
for by institutional factors, such as transaction taxes
and position limits.

The cobweb markets are composed of two groups of
adaptive agents, producers and speculators. (At this
stage, consumption demand is given exogenouly; hence
the adaptive behavior of consumers is not explicitly
modeled at this moment.) The adaptive behavior ad-
dressed here is exclusively restricted to the forma-
tion process of expectations. At di�erent periods in



time, each agent's behavior is characterized by a model
on which the agent's forecast and decision-making is
based. For producer i, this model is a forecasting func-
tion employed to forecast the next period's price, i.e.,
P e
i;t in Equation (2). For speculator j, this model is

an position function, which is a function of price his-
tory, i.e., Ij;t in Equation (11). The evolving agents
can then be considered as the evolution of a collection
of models:

POP0 ! POP1 ! POP2 ! :::! POPt ! :::; (13)

where POPt denotes the population of models at time
period t. A natural approach to implement the evolu-
tionary process depicted above is genetic programming.

The end-user supplied control parameters for this
study is given in Table 1. Here, we consider a model
composed of 300 producers and 100 speculators. These
numbers are chosen to roughly mimic a real advanced
economy, i.e., 25% of GDP is from the �nancial in-
dustry and 75% of GDP is from the manufacturing
industry. The function set de�nes the set of possible
mappings, i.e., the set of all possible forms of P e

i;t and
Iej;t. As we may notice, the functions included in our
function set are very limited to only +;�; Sin; Cos.
This choice is based on our calibration described as
follows. According to Equation (6), the equilibrium
price is determined by four parameters A;B; x and y,
and is $1.12 given their values speci�ed in Table 2.
Therefore, a simple operation of Sin and Cos is good
enough to have a range covering this point, 1.12. In
other words, the function set chosen here is a minimal
set to satisfy the closure property.

The other reason that we have this limited choice is
due to position limits. For each speculator j, Ij;t can
be both positive (long position) and negative (short
position). However, these positions are restricted to
a limit s, i.e., �s � Ij;t � s;8t (See Table 2). So,
the inclusion of Exp, RLog, � and � can easily make
Ij;t beyond this boundary and result in a number be-
ing either s or �s. Therefore, while speculators can
be di�erent in the genotype, but is identical in phe-
notype, and hence identical in �tness. In this case,
the selection process may, in e�ect, proceed with an
almost uniform distribution, which is certainly not a
desirable feature.

The terminal set includes the ephemeral random
oating-point constant R ranging over the interval
[-9.99, 9.99] and the price lagged up to 10 periods
Pt�1; :::; Pt�10. While little guidance is available to de-
cide what horizon should speculators use to form their
expectations, based on a few pilot experiments, we be-
lieve that most of our results presented below would
not be sensitive to a longer horizon. The terminal set
and the function set together determine inputs of the
trees evolved by GP. The output is P e

i;t for producers
and Ij;t for speculators.

The selection scheme is an important operator in ge-

Table 1: Tableau of GP-Based Cobweb Model

Number of producers
(n)

300

Number of speculators
(m)

100

Number of trees cre-
ated by the full method

30 (P), 10 (S)

Number
of trees created by the
grow method

30 (P), 10 (S)

Function set f+;�; Sin; Cosg
Terminal set fPt�1; Pt�2; � � � ; Pt�10; Rg
Selection scheme Tournament selection
Tournament size 2
Number of trees cre-
ated by reproduction

30 (P), 10 (S)

Number of trees cre-
ated by crossover

210 (P), 70 (S)

Number of trees cre-
ated by mutation

60 (P), 20 (S)

Mutation Scheme Tree Mutation
Probability of mutation 0.2
Maximum depth of tree 17
Probability of leaf se-
lection under crossover

0.5

Number of generations
(GEN = t)

9000

Maximum number in
the domain of Exp

1700

Criterion of �tness Pro�t

\P" stands for the producers and \S" stands for the spec-

ulators. The number of trees created by the full method or

grow method is the number of trees initialized in Genera-

tion 0 with the depth of tree being 2, 3, 4, 5, and 6. For

details, see Koza (1992).

netic programming. When applying genetic program-
ming to optimization, the user must notice that di�er-
ent selection schemes may have di�erent implications
for the �tness value, selection intensity, selection vari-
ance, and loss of diversity. By the same token, when
genetic programming is applied to simulating the evo-
lution and learning of the economic system, we have
to keep in mind that di�erent schemes may have dif-
ferent economic implications. From the viewpoint of
matching processes, proportionate selection is prone to
a global network and tournament selection is prone to
a local network. Since local interaction among spec-
ulators plays an extremely important role in �nance
(Shiller, 1984), tournament selection is more appro-
priate than proportionate selection.

In the context of economics, pro�t seems to be a very
natural measure for �tness. Here, pro�t is de�ned in
Equation (5) for the producer and in Equation (7) for
the speculator.

Next, the GP-based adaptive agents are placed in ar-



Table 2: Institutional Designs

Scenario A B C D E F G H
Tax Rate
(�)

0 0.01

Position
Limit (s)

0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1

Parameter
A

2.296 3.36 2.296 3.36

Parameter
B

0.0168 0.032 0.0168 0.032

Parameter
x

0

Parameter
y

0.016

Cobweb
Ratio
(B=y)

1.05 2 1.05 2

For all cases, the time constraint for recovering the short

is set to be 20.

ti�cial markets with the following two particular in-
stitutional designs. One concerns trading restrictions.
In addition to the above-mentioned position limits s
and �s, for those speculators who hold a short posi-
tion (Ij;t < 0), there is a time limit d for recovering the
short. In this paper, d is set to be 20 for all simulations.
In other words, when the short position has remained
for 20 trading days, the speculator is forced to recover
the short on the next trading day. The other involves
the transaction tax. The transaction tax considered
in this paper is a proportionate tax and is denoted by
the tax rate � . The tax rate is imputed to speculators
only and is imposed on both directions of trading, to
buy and to sell. These institutional parameters are
summarized in Table 2.

Here, we consider two tax rates (0 and 1%) and two
position limits (0.01 and 0). Since transaction taxes
and position limits are two major components to a�ect
speculators' potential pro�ts, changing these two pa-
rameters will have an inuence on speculators' motives
and hence their adaptive behavior. It would then be
interesting to see how these changes may have further
impacts on price dynamics in terms of their economet-
ric properties. Apart from the tax rate and position
limit, we also include two di�erent cobweb ratios (1.05
and 2), which is de�ned as the ratio of the slope of the
demand curve to the slope of the supply curve, B=y.
While, by Equation (6), these two di�erent cobweb
ratios have the same rational expectations equilibrium
price ($1.12), a higher cobweb ratio tends to be more
inherently unstable. (Chen and Yeh, 1996)

Given the description of our adaptive speculators and
trading restrictions above, the exact equation to derive

Pt is:

A

B
�

1

B
Pt +

mX

j=1

Ij;t

=

nX

i=1

1

yn
(P e

i;t � x) +

mX

j=1

Ij;t�1; (14)

where �s � Ij;t � s for all j; t, and 0 � Ij;t � s if
Ij;t�k < 0 for k = 1; :::20.

Everything we have described is also well encapsulated
into Equation (13). The evolving targets are fP e

i;tg
300
i=1

and fIj;tg
100
j=1. At the end of each trading day, Pt is

announced, and �tness of i; j, f�i;tg
300
i=1 and f�j;tg

100
j=1,

can be calculated. Genetic operators are then ap-
plied to evolve these two populations separately with
the tournament selection scheme. The new generation
fP e

i;t+1g and fIj;t+1g is then generated, and the mar-
ket is open again. The cycle goes on and on until it
meets the termination condition, which is the number
of generations in this paper.

\Number of Generations" in set to be 9,000 in all simu-
lations. Notice that the number of generations is also
the time scale of the simulation, i.e., GEN = t. In
other words, we are simultaneously evolving the pop-
ulation while deriving the market-clearing price, Pt.

Finally, the program to implement all simulations in
this paper is called Speculators, which is available
from the website:
http://econo.nccu.edu.tw/ai/sta�/csh/Software.htm

4 Time Series Analysis of Price Series

There are totally eight scenarios simulated in this
study. For each scenario, we conducted �ve indepen-
dent runs, with 9000 periods for each. These resulted
in 5 arti�cial time series for each scenario (40 time se-
ries in total). Figures 1.1-1.4 display the time series
fPtg for a typical run for some scenarios. Table 3 sum-
marizes the basic statistics of these simulations. Based
on these �gures and statistics, we can see that Pt basi-
cally uctuates around the rational equilibrium price
(P � = 1.12). However, the volatility of Pt (

p
V ar(P ))

depends on the institutional parameters, in particu-
lar, the cobweb ratio and the position limit. Generally
speaking, the higher the cobweb ratio and the position
limit, the more volatile the price. What seems a little
counter-intuitive is that 1 percent tax rate does not
stabilize the price movement to a signi�cant degree.

We then examined the econometric properties of these
arti�cial time series. The statistical properties un-
der examination are motivated by the list of styl-
ized features documented by Pagan (1996). To pre-
vent the statistics from being inuenced by the ini-
tialization process, the �rst 3000 observations are all



Table 3: Mean and Volatility of Prices

Scenario P

p
V ar(P ) Scenario P

p
V ar(P )

A 1.1189 0.0191 E 1.1291 0.0148

B 1.1181 0.0209 F 1.1181 0.0212

C 1.1183 0.0359 G 1.1184 0.0717

D 1.1190 0.0481 H 1.1197 0.0505

The P and
p
V ar(P ) reported here are the average of the

mean and the standard deviation of the �ve runs. For each

run, the mean and the standard deviation are calculated

from the last 6000 observations only, i.e., fPtg
9000
t=3001.

dropped from the original series. In other words, all
statistical properties are examined under the subseries
fPtg

9000
t=3001. The �rst property to examine is normal-

ity. A common statistic employed to test normality is
the Jarque-Bera statistics. Based on these statistics,
the null hypothesis that the price series is normally
distributed is rejected for all 40 series at the 5% signi�-
cance level. This result is consistent with a well-known
result in empirical �nance: most �nancial return series
are not normally distributed (the tails are too fat as
opposed to the normal distribution).

The next econometric property to examine is the IID-
ness of the series, i.e., are price series identically and
independently distributed over time?. The most fre-
quently used test in this area is the celebrated BDS
test (Brock, Dechert and Scheinkman, 1996). Due to
the page limit, we do not intend to give a full account
of the BDS test, the interested reader can �nd details
and a program to run this statistic in the following
website:
http://econo.nccu.edu.tw/ai/sta�/csh/course/�naecon/
lec4/lec4.htm
The BDS test is frequently applied to testing non-
linear dependence. Hence, the linear process of the
time series has to be �ltered out before implement-
ing the test. We applied Rissanen's predictive stochas-
tic complexity (PSC) to �lter out the linear process
of each fPtg

9000
t=3001. (Rissanen, 1986). A detailed

description of PSC with many illustrated examples
and a computer program can be found in the website:
http://econo.nccu.edu.tw/ai/sta�/csh/
course/�naecon/lect8/lect8.htm
One of the by-products of the PSC �lter is to inform
us of the linear AutoRegressive-MovingAverage pro-
cess, i.e., the ARMA(p; q) process, extracted from the
original series. Among the 40 series examined, 38 have
no linear process at all, i.e., they are all identi�ed as
ARMA(0; 0). The only two exceptions are the one run
under Scenario C (ARMA(0; 2)) and the one run un-
der Scenario E (ARMA(1; 0)). This result indicates
that the GP-based arti�cial market is so eÆcient that
there are hardly any linear signals left. To some ex-
tent, this can be considered as a match for the classical

version of the eÆcient market hypothesis.

We then applied the BDS test to the �ltered residuals.
The parameter \�" in the BDS test is equal to one stan-
dard deviation. (In fact, we also tried other epsilons,
but the result is not sensitive to the choice of epsilon.)
The embedding dimensions considered are from 2 to
5. Following Barnett et al. (1997), if the absolute
value of all BDS statistics under various embedding
dimensions are greater than 1.96, the null hypothesis
of IIDness is rejected. In this case, nonlinear depen-
dence is detected. If all of them are less than 1.96,
then one fails to reject the null hypothesis of IIDness.
However, if some are greater than 1.96, and some are
less than 1.96, then the result is ambiguous. (Actually,
in Barnett's paper, they used the word \strongly re-
ject" and \weakly reject". We do not intend to make
such a distinction here.)

Based on this criterion, the null hypothesis of IIDness
is rejected 18 times out of 20 when transaction taxes
are imposed. However, it is rejected only 14 times
out of 20 when there is no transaction tax. Further-
more, when the position limit is relaxed from 0.01 to
0.1, the number of rejection increases from 14 to 18
times. Therefore, imposing transaction taxes and re-
laxing position limits may weaken the degree of sta-
tistical independence of the data. The �rst half of the
result is nothing surprising as transaction cost reduces
the chance of arbitraging and hence make the use of
information less eÆcient in terms of statistical inde-
pendence. What is surprising is the second half of the
result, for the relaxation of the position limit should
make it more rewarding for speculators to extract in-
formation from the price series. The resultant time
series is anticipated to be more eÆcient and is more
likely to be IID.2

So far, we have examined our simulated time series
with a test for non-linear dependence. However, it is
well known that most of the non-linearity in �nancial
data seems to be contained in their second comments.
The voluminous (G)ARCH (Generalized AutoRegres-
sive Conditional Heteroskedasticity) literature is the
outcome of the attempt to capture by appropriate time
series models the regularities in the behavior of volatil-
ity. In order to proceed further, we carry out the La-
grange multiplier test for the presence of ARCH ef-
fects. A detailed description of ARCH and GARCH
and an associated SAS program to run the test is avail-
able from the website:
http://econo.nccu.edu.tw/ai/sta�/csh/course/�naecon/
lec6/lec6.htm
If the ARCH e�ect is rejected, we will further iden-
tify the GARCH structure of the series by using the
Akaike Information Criterion (AIC). The results are
exhibited in Table 4.

2However, as we shall see later, relaxing position lim-
its also result in a higher probability of having a GARCH
process.



Table 4: GARCH Modeling of Arti�cial Time Series

Scenario A B C D E F G H

Run

1 (2,1) (1,1) � (1,1) (2,1) (2,2) (1,2) (1,1)

2 (2,2) (2,2) (1,1) (2,1) (1,1) (2,1) (2,2) (1,1)

3 (2,1) (1,1) � (1,1) � (1,1) (2,1) (1,1)

4 (1,1) (1,1) (2,1) (2,1) � (1,1) (2,1) (2,2)

5 (2,1) � (2,1) (1,1) (1,1) (2,1) (2,2) (1,1)

The (p,q) within each bracket refers to the model

GARCH(p,q), while � means that there is no ARCH ef-

fect.

There are couple of points worth noting. First, we
can �nd that volatility clustering characterized as the
ARCH e�ect is quite ubiquitous. Out of the 40 se-
ries, there are only 5 series without the ARCH e�ect.
Not surprisingly, all these �ve series fail to reject the
null hypothesis of the BDS test. However, a few time
series which fail to reject the BDS test still have the
ARCH e�ect. Second, transaction taxes seem to play
no role in accounting for the emergence of the ARCH
e�ect. For example, 17 out of the 20 runs without
transaction taxes exhibit the ARCH e�ect, while 18
out of the 20 runs with transaction taxes have the ef-
fect. Nevertheless, position limits may have certain
e�ects. In our simulations, the scenarios with low po-
sition limits fail to reject the ARCH e�ect in 4 out of
20 runs, while the ones with high position limits only
fail once. Therefore, one may hypothesize that position
limits may have some connection to the ARCH e�ect,
and relaxing position limits can increase the likelihood
of the emergence of the ARCH e�ect.

5 The Complexity of Evolved

Strategies

In addition to the macro-phenomenon, i.e., the price
series, an equally important thing is the micro-
phenomenon, i.e., what happens for the individuals
who collectively generate such a complex nonlinear dy-
namics. Certainly, one may ask whether the com-
plex macro-phenomenon is coupled with the complex
micro-phenomenon; in other words, agents with so-
phisticated strategies collectively generated complex
macro-phenomenon.

To give an analysis of the connection between bottom
and up, we give two de�nitions of the complexity of a
GP-tree. The �rst de�nition is based on the number
of nodes appearing in the tree, while the second one
is based on the depth of the tree. At the end of each
run, we have a pro�le of the evolved GP-trees for 300
producers and 100 speculators. The complexity of each
GP-tree is computed. We then average the complexity
of evolved GP-trees by producers and by speculators.
Tables 5 and 6 give the results.

Table 5: Complexity of Evolved Strategies: Number
of Nodes

Average over 300 Producers
Scenario A B C D E F G H
Run
1 1.05 1.21 1.01 1.01 1.00 1.01 1.02 1.02
2 1.02 1.01 1.01 1.03 1.02 1.05 1.01 1.00
3 1.10 1.01 1.03 1.05 1.02 1.02 1.06 1.03
4 1.03 1.06 1.02 1.01 1.01 1.06 1.06 1.05
5 1.02 1.03 1.02 1.05 1.03 1.01 1.02 1.09
mean 1.04 1.06 1.02 1.03 1.02 1.03 1.03 1.04
mean 1.03 1.03

Average over 100 Speculators
Scenario A B C D E F G H
Run
1 1.88 4.47 1.45 3.38 1.26 2.46 3.13 5.59
2 2.51 2.71 4.42 4.20 1.93 1.93 2.16 3.36
3 4.46 3.86 4.32 2.21 2.87 1.26 3.17 4.01
4 1.99 1.59 1.49 1.93 2.02 1.53 2.48 3.07
5 1.23 1.82 23.19 8.96 2.86 1.55 2.97 1.23
mean 2.41 2.89 6.97 4.14 2.19 1.75 2.78 3.45
mean 4.10 2.54

At �rst sight, it seems to be very remarkable that pro-
ducers are so simple: many evolved GP-trees consist
of only one node. This seems to indicate that GP is
not \at work" at all or the problem is not interest-
ing. A careful examination, however, informs us that
this is not the case. In fact, in each stage of evolu-
tion, very often the �ttest tree belonged to the class
of complex nonlinear models. However, this group did
not successfully propagate.

The reason is that for producers their pro�ts depend
on only the ow of the quantity supplied, which is a
function of the �rst moment of prices, E(Pt). On the
average, this number is constantly around 1.12 (Fig-
ures 1.1-1.4 and Table 3). Furthermore, from the pre-
vious PSC-�ltering results, there is not much linear
signal left in the �rst moment of the price series. As a
result, statisticians who study our markets may con-
clude with the following model:

Pt = 1:12 + �t; (15)

where E(�t) = 0. Given this model, the forecast

P e
i;t = 1:12: (16)

seems to be very competitive, and this is the most com-
mon type of the one-node trees. Although there are
other nonlinear models which can outperform Equa-
tion (15), but they are only suitable for certain types
of nonlinearity and are not robust to the general non-
linear properties of �t. Hence, while complex models
can frequently have the championship, they have dif-
�culties to keep it and be prosperous. Eventually, the
majority belongs to the robust simple models, such as
taking the simple average.

While evolving simple strategies may sound strange
for GPers, it is a quite popular idea in economics. In
economics, simple strategies known as rules of thumbs



Table 6: Complexity of Evolved Strategies: Depth of
Trees

Average over 300 Producers
Scenario A B C D E F G H
Run
1 1.03 1.10 1.01 1.01 1.00 1.01 1.02 1.01
2 1.01 1.01 1.01 1.02 1.02 1.04 1.01 1.00
3 1.05 1.01 1.02 1.03 1.01 1.01 1.03 1.02
4 1.02 1.02 1.01 1.00 1.01 1.02 1.03 1.03
5 1.01 1.02 1.01 1.02 1.02 1.01 1.01 1.05
mean 1.02 1.03 1.01 1.01 1.01 1.02 1.02 1.02
mean 1.02 1.02

Average over 100 Speculators
Scenario A B C D E F G H
Run
1 1.54 3.16 1.37 2.69 1.21 1.77 2.46 3.89
2 1.86 2.05 2.61 2.63 1.59 1.59 1.68 2.50
3 2.72 2.18 2.61 1.86 2.53 1.26 2.35 2.67
4 1.56 1.34 1.33 1.71 1.65 1.37 1.85 2.00
5 1.15 1.44 8.40 3.92 1.86 1.52 2.03 1.20
mean 1.77 2.03 3.26 2.56 1.77 1.50 2.07 2.45
mean 2.39 1.95

are not best (optimal) at very point in time, but are
very robust for di�erent environments and become the
most popular rules on which people rely. One famous
example is that 65 to 70 percent of all mutual and
pension fund managers fail to beat the simple rule,
the market indices over the long run (Malkiel, 1996).
Sophisticated strategies can be optimal, but they are
not robust and have to be updated quickly. When they
are not properly updated, they can perform extremely
poor in a very dynamic environment.

On the other hand, speculators have evolved more
complex strategies than producers, and this is true
for all scenarios. For speculators, their pro�ts depend
on both the ow and stock of the quantity supplied,
which is a function of both the �rst moment and high-
order moments. From the previous volatility analysis
(GARCH analysis), most series have linear structure
in the second moment; consequently, it requires spec-
ulators to evolve more complex strategies to extract
these signals. We plan to put all evolved strategies on
the website so that interested reader can have their
own analysis.

The other interesting result is the e�ect of the transac-
tion tax on the complexity of evolved strategies. From
Table 5, it can been seen that imposing the transac-
tion tax tends to evolve simpler strategies for specu-
lators. This result is consistent with the one found in
the BDS test. In the BDS test, imposing the transac-
tion tax increases the probability of rejecting IIDness,
i.e., increase the chance of leaving nonlinear signals
unexploited. As we conjectured earlier, this is due to
a weaker incentive to extract information, as impos-
ing the transaction tax reduce the chance of arbitrage.
Here, from the bottom part, we actually see that spec-
ulators indeed become \more lazy" when transaction
taxes are imposed.

6 Concluding Remarks

This paper provides a thorough time-series analysis of
prices generated from genetic-programming arti�cial
markets. Many stylized features well documented in
�nancial econometrics can in principle be replicated
from the GP-based arti�cial markets, which includ-
ing leptokutosis, non-IIDness and volatility clustering.
Moreover, the GP-based arti�cial markets allow us to
search for the behavioral foundation of these stylized
features. The two institutional factors, transaction
taxes and position limits, may both contribute to the
emergence of those stylized features.

As one may expect that transaction taxes can have ad-
verse e�ects on speculative trades. Our analysis of GP-
based markets partially supports this viewpoint. From
the bottom part, transaction taxes reduce the chance
of arbitrage; hence, speculators have less incentive to
search. In particular, the GP-trees evolved get sim-
pler when the transaction tax is imposed. Correspond-
ing to the bottom part, what we have experienced on
the upper part is a less unexploited or a more nonlin-
ear dependent series. Nevertheless, the emergence of
volatility clustering may be a consequence of relaxing
position limits and have little to do with transaction
taxes.

The empirical evidences accumulated from GP-based
markets' simulations are quite limited. At this mo-
ment, they can be only useful for the purpose of mo-
tivating hypotheses. However, the point of this paper
is mainly to show what GP-based markets can poten-
tially serve for the advancement of the economic the-
ory. In the future, it is expected that a larger scale of
simulation will be conducted for getting more fruitful
results.
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