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Abstract

A cellular genetic programming approach to
data classification is proposed. The method
uses cellular automata as a framework to en-
able a fine-grained parallel implementation
of GP through the diffusion model. The
main advantages to employ the method for
classification problems consist in handling
large populations in reasonable times, en-
abling fast convergence by reducing the num-
ber of iterations and execution time, favour-
ing the cooperation in the search for good
solutions, thus improving the accuracy of the
method.

1 Introduction

Data classification is a learning process that identifies
common characteristics in a set of objects contained in
a database and categorises them into different groups
(classes). To build a classification a sample of the tu-
ples (also called examples) of the database is consid-
ered as the training set. Each tuple is composed of the
same set of attributes, or features, which are used to
distinguish them, and an additional known class at-
tribute that identifies the class that the tuple belongs
to.

The task of classification is to build a description or
a model for each class by using the features available
in the training data. The models of each class are
then applied to determine the class of the remain-
ing data (test set) in the database. Data classifica-
tion, originally considered a machine learning activ-
ity, plays an important role in the database field since
it is considered a major date mining task (Fayyad
1996), which consists in the extraction of interesting
and novel knowledge from real-world databases.
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Decision trees (Quinlan 1993) currently represent one
of the most highly developed techniques for the clas-
sification of databases. A decision tree is a tree where
the leaf nodes are labelled with the classes while the
non leaf nodes (decision nodes) with the attributes of
the training set. The branches living a node represent
a test on the values of the attribute. The path from the
root to a leaf represents a set of conditions attribute-
value (a rule) which describes the class labelling that
leaf. There is a rule for every leaf node, thus a class
is modelled by a set of rules. Decision trees are eval-
uated with respect to two parameters: accuracy and
size. Accuracy measures the rate of misclassification.
A totally accurate tree should correctly predict the
class of any example from the database. The size re-
gards the number of nodes of the tree. The simpler is
the tree, the more concise is the class description and
the information described can be easily understood.

C4.5 (Quinlan 1993) is the most famous decision tree
based classification method. It constructs a decision
tree by selecting an attribute as the root of the tree
and the branches are made of all the different values
this attribute can have. If all the examples at a par-
ticular node belong to the same class that node is a
leaf node and it is labelled with the class, otherwise
an attribute, that does not occur on the path up to
the root, is chosen and branches are created for all
its possible values. The algorithm terminates when all
the leaves are labelled with a class. The selection of
the attributes is made by using the information gain
criterion. This criterion chooses the attribute provid-
ing the highest information gain, which is the attribute
that minimises the information needed in the resulting
subtree to classify the examples. The construction of
simple and accurate decision trees is a demanding task.
In the last few years new alternative methods to reach
this objective have been proposed. Among them, ge-
netic programming seems particularly suitable because
of its underlying data structure.



Genetic programming (GP) (Koza 1992) had already
been demonstrated to be able to classify a database
by evolving decision trees. Koza, in fact, for a simple
database showed that, after few generations, a decision
tree had been generated which classified all the train-
ing cases in the right class. When applied to large
dataset, however, its performance drastically degrades
due to the necessity to deal with large populations of
trees where each tree is constituted by a high number
of nodes.

In this paper a new approach to data classification
based on cellular genetic programming is presented.
The method uses cellular automata as a framework to
enable a fine-grained parallel implementation of GP
through the diffusion model. The main advantages of
this approach are that it can handle large populations
in a reasonable time, it enables fast convergence by
reducing the number of iterations and the execution
time, 1t favours cooperation in the search for good so-
lutions thus improving the accuracy of the method.
Furthermore, it allows for the construction of a scal-
able genetic programming method for the classification
of large databases.

The paper is organised as follows. In section 2 the
standard approach to data classification through ge-
netic programming is showed along with a brief sur-
vey of the most recent proposals. In section 3 the
cellular genetic programming method is presented. In
section 4 we give preliminary results obtained by a
sequential 1implementation of the method which sim-
ulates the framework of cellular automata and shows
the applicability of the approach.

2 Data Classification through Genetic
Programming

Genetic programming is a variation of genetic algo-
rithms in which the evolving individuals are them-
selves computer programs instead of fixed length
strings from a limited alphabet of symbols (Koza
1992). Programs are represented as trees with ordered
branches in which the internal nodes are functions and
the leaves are so-called terminals of the problem. The
search space in genetic programming is the space of
all computer programs composed of functions and ter-
minals appropriate to the problem domain. The GP
approach evolves a population of trees by using the
genetic operators of reproduction, recombination and
mutation. Fach tree represents a candidate solution to
a given problem and it is associated with a fitness value
that reflects how good it is, with respect to the other
solutions in the population. The reproduction oper-

ator copies individual trees of the current population
into the next generation with a probability propor-
tionate to their fitness. The recombination operator
generates two new individuals by crossing two trees at
randomly chosen nodes and exchanging the subtrees.
The two individuals participating in the crossover op-
eration are again selected proportionate to fitness. The
mutation operator replaces one of the nodes with a new
randomly generated subtree. There is also the possi-
bility for preventing trees to become too deep and for
simplifying them.

Genetic programming can be used to inductively gen-
erate decision trees for the task of data classification.
Decision trees can be interpreted as composition of
functions where the function set is the set of attribute
tests and the terminal set are the classes. The function
set can be obtained by converting each attribute into
an attribute-test function. Thus there are as many
functions as there are attributes. For each attribute
A, if Ay, ... A, are the possible values A can assume,
the corresponding attribute-test function f4 has arity
n and if the value of A is A; then fa(A41,...A,) = A;.
When a tuple has to be evaluated, the function at the
root of the tree tests the corresponding attribute and
then executes the argument outcoming from the test.
If the argument is a terminal, then the class name for
that tuple is returned, otherwise the new function is
executed. The fitness is the number of training exam-
ples classified in the correct class. Both crossover and
mutation must generate syntactically correct decision
trees. This means that an attribute can not be re-
peated more than once in any path from the root to a
leaf node. In order to balance the accuracy against the
size of tree, the fitness is augmented with an optional
parameter, the parsimony, which measures the com-
plexity of the individuals. Higher is the parsimony,
simpler is the tree, but accuracy diminishes.

Several methods to data classification based on genetic
programming have recently been proposed. Nikolaev
and Slavov (Nikolaev and Slavov 1997) present a study
which proves that different fitness functions for induc-
tive genetic programming with decision trees generate
fitness landscapes with different statistical character-
istics. A landscape consists of points and their fit-
nesses. They employ the fitness distance correlation
which measure if the known optima are easily acces-
sible from a given point on the landscape. Thus the
differences among the decision trees could precisely be
identified since a search point could have a small fit-
ness value, however far away from the global optima
and used for guiding the search.

Marmelstein and Lamont (Marmelstein and Lamont



1998) introduce a method for finding decision region
boundaries by evolving a hybrid GP-decision classi-
fier. A standard GP classifier (Tackett 1993) has the
terminal set consisting of the database attributes and
the function set of mathematical ( 4+, -, x, = ) and
comparison (<) operators. The method incorporates
a GP classifier into a decision tree and builds the tree
by using genetic programming for the implementation
of decision nodes. An m class problem i1s decomposed
into a two-class problem: the target class and the other
classes. Each node in the tree is evolved to categorise
data into two groups corresponding to the target class
and all the others. In this way each node classifies
a smaller subset of the data considered by its parent
node.

Rayan and Rayward-Smith (Ryan and Rayward-Smith
1998) present a hybrid genetic algorithm which allows
genetic programming to evolve decision trees. They
make use of the C4.5 algorithm to initialise the popula-
tion and, each time the crossover operator is executed,
leaf nodes of the generated offspring are substituted
by a subtree produced by C4.5. The C4.5 algorithm
is modified such that, instead of applying the informa-
tion gain heuristic, it randomly selects the attributes
to be tested in the functional nodes. Though the re-
sults obtained are good in terms of accuracy and size,
the hybrid genetic algorithm makes use of the Quin-
lan’s method too many times thus it fails to reduce the
running time.

Freitas (Freitas 1997) proposes a genetic programming
framework for classification and generalised rule induc-
tion. In his approach an individual is a tree where the
terminal set consists of the attributes and their values,
whether the function set consists of the logical connec-
tives {AND OR, NOT} and the comparison operators
{>,>,<,<,#}. The tree is the representation of an
SQL query and he suggests a tight integration between
GP based classification and relational databases.

Genetic programming, thus, showed to be a particu-
larly suitable technique to deal with the task of data
classification by evolving decision trees. Interesting
results, however, have been obtained when it is ap-
plied to problems that evolve small decision trees. If
the database contains a high number of examples with
many features, large decision trees are requested to
accurately classify them. In data mining applications,
databases with several millions of examples are com-
mon. A decision tree generator based on genetic pro-
gramming should then cope with a population of large
sized trees. Furthermore, it has already been pointed
out (Ryan and Rayward-Smith 1998) that, in order
to obtain the same classification accuracy of a deci-

sion tree generated by C4.5, small population size is
inadequate. Processing large populations of trees that
contain many nodes considerably degrades the execu-
tion time and requires an enormous amount of mem-
ory. The utilisation of parallel strategies to increase
the performances of genetic programming and to re-
alise a really scalable data classification package based
on genetic programming, for data mining applications,
seems the favourable approach. Parallel algorithms
can deal with very large sized problems because they
decompose a problem into subproblems and use par-
allel machines to simultaneously process the different
subproblems. The exploitation of the inherent paral-
lelism present in many classification algorithms could
be the solution to obtain a scalable behaviour.

In the next section a cellular genetic programming ap-
proach for data classification is proposed. The method
uses cellular automata as a framework to enable a fine-
grained parallel implementation of GP through the
diffusion model. The main advantages of parallel ge-
netic programming for classification problems consist
in handling large populations in a reasonable time, en-
abling fast convergence by reducing the number of iter-
ations and execution time, favouring the cooperation
in the search for good solutions, thus improving the
accuracy of the method.

3 The Cellular Genetic Programming
Approach

Genetic programming is well suited to parallel imple-
mentation. Parallel implementations of GP involve
two main approaches. The island model (Martin &

al.1997) and the dif fusion model (Pettey 1997).

The island model uses a coarse grained approach. It
has been adopted by Gordon (Gordon & al. 1993)
to produce parallel implementations of genetic algo-
rithms and also by Koza (Koza & al. 1995) for ge-
netic programming. In such a model the population
is subdivided into smaller subpopulations. A stan-
dard genetic programming algorithm works on each
partition and is responsible for initialising, evaluating
and evolving its own subpopulation. The standard GP
algorithm is modified by the addition of a migration
operator. Each GP process, working on a partition,
is considered to be an island, detached from the other
processes. Every few generations, after the fitness eval-
uation phase, migration occurs, whereby certain indi-
viduals are moved between processes; thus distributing
the genetic material throughout the entire process ‘is-
lands’. Generally, the top 10% of individuals from each
island are migrated every 10 generations.



In the diffusion model each individual has a spatial lo-
cation on a low-dimensional grid and the individuals
interact locally within a small neighbourhood. This
model considers the population as a system of active
individuals that interact only with their direct neigh-
bours. Different neighbourhoods can be defined for the
cells. The most common neighbourhoods in the two-
dimensional case are the 4-neighbour (von Neumann
neighbourhood) consisting of the North, South, East,
West neighbours and 8-neighbour (Moore neighbour-
hood) consisting of the same neighbours augmented
with the diagonal neighbours. Fitness evaluation is
done simultaneously for all the individuals and se-
lection, reproduction and mating take place locally
within the neighbourhood. Information slowly diffuses
across the grid thus clusters of solutions are formed
around different optima. Recent researches proved
that such an approach shows no degrade of the solu-
tion quality (Gorges-Schleuter 1992) and an improved
performance.

Cellular automata (CAs) (Toffoli & al. 1986) can be
used as a framework to enable a fine-grained parallel
implementation of GP through the diffusion model. A
CA is composed of a set of cells in a regular spatial lat-
tice, either one-dimensional or multidimensional. Each
cell can have a finite number of states. The states of
all the cells are updated synchronously according to
a local rule, called a transition function. That is, the
state of a cell at a given time depends only on its own
state at the previous time step and the states of its
“nearby” neighbours (however defined) at that previ-
ous step. Thus the state of the entire automaton ad-
vances in discrete time steps. The global behaviour of
the system is determined by the evolution of the states
of all the cells as a result of multiple interactions.

A cellular genetic programming algorithm (CGP) can
be designed by associating with each cell of a CA
two substates: one contains an individual (tree) and
the other its fitness. At the beginning, for each cell,
a tree i1s randomly generated and its fitness is eval-
uated.
undergoes one of the genetic operators ( reproduc-
tion, crossover, mutation) depending on the proba-
bility test. If crossover is applied, the mate of the
current individual is selected as the neighbour having
the best fitness and the offspring is generated. The
current string is then replaced by one of the two off-
spring, the one having the best fitness. It is worth to
notice that this replacement strategy differs from the
standard approach of cellular genetic algorithms intro-
duced in (Whitley 1993) where only if one of the two
offspring has a better fitness than the current string,
it becomes the current string.

Then, at each generation, every individual

Let pe, pm, pr be the crossover, mutation
and reproduction probability
for each cell ¢in CA do in parallel
generate a random individual ¢;
evaluate the fitness of ¢;
end parallel for
while not MaxNumberOfGeneration do
for each cell iin CA do in parallel
generate a random probability p
if (p <p.) then
select the cell j, in the neighborhood of ¢,
such that ¢; has the best fitness
(u,v)=crossover(; t; )
t;= best_fitness(u,v)
else
if (p < pm + pc) then
mutate the individual
else
copy the current individual in the population
end if
end if
end parallel for
end while

Figure 1: Pseudo-code of the cellular genetic program-
ming algorithm.

Table 1: Databases description

DATABASE | ATTR. | TUPLES | CLASSES
Cancer 9 286 2
Crx 15 690 2
Hypo 29 3772 5
Iris 4 150 4
Vote 16 435 2

The cellular genetic algorithm on a 2-dimensional
toroidal grid can be described by the pseudo-code
shown in figure 1, that outlines the transition func-
tion of each cell.

This approach has the advantage of working with large
populations, by enabling fast convergence, and reduc-
ing the number of iterations and execution time. The
cellular model avoids the problem of premature conver-
gence in some GP applications, i.e. a rather good in-
dividual, with a fitness higher than the others, spreads
rapidly through the population. In the cellular imple-
mentation of GP the produced information flows and
spreads like a slow migration to the zones near the in-
terested neighbour. So good schemata discovered can
slowly diffuse through the whole population, leaving
time to discover other schemata at different portions.



Table 2: Results generated by Cellular GP

C4.5 Cellular GP
DB Size | Train set | Test set Size Train set Test set
Cancer 41 19.9 30.6 11 (18.60) | 21.99 (24.76) | 18.95 (22.42)
Crx 44 5.9 11.7 28 (17.70) | 10.61 (12.27) | 14.00 (16.25)
Hypo 21 0.2 0.9 16 (18.40) 1.31 (1.62) 1.35 (1.92)
Iris 7 1.0 6.3 9 (6.50) 2.00 (2.60) 4.00 (5.00)
Vote 7 4.3 6.9 7 (7.30) 4.33 (4.63) 2.96 (2.99)

Furthermore, this approach allows to keep a diversity
of the population as the search proceeds in the search
space because of the non greedy technique adopted in
the recombination process.

4 TImplementation and Experimental
Results

In this section we present the experiments and re-
sults obtained by a preliminary implementation of the
method on a sequential machine. The software archi-
tecture of the environment used for the experimen-
tation consists of three principal components: a user
interface (UI), the CGP classifier, a viewer to visu-
alise the trees. By the UI, the user can define the
size of the population, the probability with which to
perform reproduction, crossover and mutation and the
features to be discretized. The CPG classifier has been
implemented in C by modifying the sgpcl.l standard
tool for genetic programming (Tacket and Carmi) to
meet the requirements of classification. In order to
simulate the cellular automata framework, the popu-
lation has been mapped into a two-dimensional array
of fixed dimensions. The proportionate selection pro-
cedure has been replaced with a selection that works
locally within a Moore neighbourhood. Furthermore,
a procedure that does not allow the generation of trees
with repeated attributes on the branches, after the ap-
plication of crossover and mutation operators has been
added. CGP accepts discretized data sets (training
and test set) as input. If a data set contains continuos
features it must first be dicretized. After the execution
CGP provides a report that contains the main para-
meters of the simulation and, for each generation, in-
formation about the best tree, with respect to the test
errors, and the standardised, average, raw and valida-
tion fitness. Furthermore, it reports the best tree with
the training and test error and the size. To improve
the readability of the results a viewer that visualise
the best tree found has been added. It is based on the
dotty tool available with the MLC++ library (Kohavi
& al. 1994). The environment runs on a Sun Ultra-

spark workstation with two 200-Mhz processors and
256 Mbytes of memory.

Experiments have been executed on five standard
databases contained in the UCI Machine Learning
Repository (Merz and Murphy 1996). Table 1 con-
tains the description of these databases. They present
different characteristics in the number and type (nu-
merical and nominal) of attributes, two-classes versus
multiple classes and number of examples. In particu-
lar C'rz and Hypo have both nominal and numerical
features. In order to deal with numeric features, they
have been discretized by using the Discretize utility
of MLC++ Machine Learning Library (Kohavi & al.
1994) before running the CGP algorithm. A popula-
tion of 400 elements has been used with a probability of
0.095 for reproduction, 0.890 for crossover and 0.01 for
mutation. The maximum depth of the new generated
subtrees is 4 for the step of population initialisation, 5
for crossover and 2 for mutation. The algorithm stops
after 200 generations. In table 2 the results generated
by C4.5 with pruning and those of the CGP method,
with a value of 0.05 for the parsimony, are presented.
As already pointed out, higher values of parsimony bi-
ases the method towards smaller trees but with lower
accuracy. The results have been obtained by running
the algorithm 10 times and the best result with re-
spect to the misclassification error on the test set is
shown along with the average result in parenthesis.
It is clear from the table that the trees generated by
the CGP algorithm with respect to C4.5 are smaller,
for almost all the dataset, they have a misclassification
error on the training set comparable, but, more impor-
tant, they generalise better than C4.5. In particular,
for the cancer dataset, the results are very good. The
tree contains 11 nodes with respect to 41 of C4.5 and
the error test 1s 18.95 instead of 30.6. The quality of
the outcome is encouraging, bearing also in mind that
no optimisation on the size of the trees, such as editing
operators or pruning, has been implemented. Future
work will actually realise the parallel implementation
of the method.



5 Conclusions

A new approach to data classification based on a cel-
lular genetic programming framework has been pre-
sented. The approach showed good performance with
respect to Quinlan’s C4.5 method by generating both
smaller and more accurate trees for almost all the data-
bases. It has successfully been applied to standard ma-
chine learning problems. However, in order to apply
the method to real data mining applications, a number
of problems have to be resolved. It is known that the
most expensive step of decision tree based classifiers
is the fitness evaluation. The major computational ef-
fort is in fact consumed by its calculation. Though
we suggested the cellular approach to be able of to
cope with large populations containing big trees, we
did not address the measurement of the fitness. The
parallel implementation of our approach must take into
account this problem if a real scalable algorithm must
be realised.
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