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Abstract

Much of evolutionary computation was inspired
by Mendelian genetics. But modern genetics has
since advanced considerably, revealing that genes
are not simply parameter settings, but interactive
cogs in a complex chemical machine. At the same
time, an increasing number of evolutionary com-
putation domains are evolving non-parameterized
mechanisms such as neural networks or symbolic
computer programs. As such, we think mod-
ern biological genetics offers much in helping us
understand how to evolve such things. In this
paper, we present a gene regulation model for
Drosophila melanogaster. We then apply gene
regulation to evolve deterministic finite-state au-
tomata, and show that our approach does well
compared to past examples from the literature.

1 EVOLUTIONARY COMPUTATION
AND BIOLOGY

Many areas of evolutionary computation, especially genetic
algorithms (GA), and genetic programming (GP), are heav-
ily influenced by genetics. This influence can be seen in the
adopted terminology of evolutionary computation: chro-
mosomes, genes and genomes, alleles, loci, recombination
and mutation, introns, haploidy and diploidy, genotypes and
phenotypes. While evolutionary computation has drawn
some inspiration from modern genetics, by and large the
inspiration for this field has been aging Mendelian ideas.
Even foundational concepts like schemata, deception, royal
roads, linkage, etc. are usually expressed in terms of a
genome as a tuple in a parameterized space of fitnesses influ-
enced by linkage. Even Melanie Mitchell’s highly-regarded
GA text [Mitchell 1996] introduces biological genes thus:

A chromosome can be conceptually divided into
genes—functional blocks of DNA, each of which
encodes a particular protein. Very roughly, one
can think of a gene as encoding a trait, such as
eye color. The different possible “settings” for a
trait (e.g., blue, brown, hazel) are called alleles.

This is not how it actually works. Mendelian genetics is cer-
tainly useful at the macro-level, modelling overall traits of
large organisms in stabilized populations with a correspond-
ingly large number of genes. But on the micro level, scien-
tific understanding of DNA has advanced to the point that
we know that genes bear relatively little resemblance to sim-
ple parameter settings. Genes form a complex network of
interrelationships and regulation which, when seeded with
initial chemical concentrations distributed throughout cells,
results in miniature chemical machines. This is not to say
that Mendel is inappropriate for traditional parameterized
GA domains — far from it. But a rapidly growing body of
evolutionary computation research, comprising many GA
and evolutionary programming (EP) domains, and practi-
cally all GP domains, is attempting to evolve something
quite different: mechanisms. Functional programs, neu-
ral networks, decision trees, cellular automata, L-systems,
finite state automata. For these domains, a micro-level
view of genetics seems more appropriate as an inspirational
model.

The real merits of GP and GA recombination (among other
things) have also recently been called into question (see
for example [Angeline 1997a], [Hinterding, Gielewski, and
Peachey 1995], [Luke and Spector 1998], [Tate and Smith
1993]) especially in these mechanism-building domains
where the interrelationships between “genes” are complex
and in extreme cases reduce recombination to little more
than randomization. Yet biological systems of similar com-
plexity appear to use recombination quite effectively. Why?
One possibility worth considering is that recombination and
other genetic-search concepts work especially well with the
biological genetic structures and dynamics for which they
have co-adapted for so long. As we drift further away from
anything resembling real genetics (much less real evolu-
tion), such mechanisms may have correspondingly less ap-
plicability.

Biology has advanced greatly since the founding inspira-
tions behind modern evolutionary computation. It may
well be high time we reexamined our biological roots.

In the rest of this paper, we begin by describing our work
in modelling an interesting area of developmental genet-
ics, gene regulation, which we think has particular utility
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Figure 1: Steps in Drosophila Embryonic Development.

to many new domains in evolutionary computation. We
then present a preliminary “first stab” at applying some of
these ideas to evolutionary computation itself, by evolv-
ing deterministic finite-state automata (DFA) which induce
the Tomita language set, a popular and nontrivial language
induction benchmark [Tomita 1982]. Despite their prelim-
inary nature, our results nonetheless hold their own against
past examples from the literature. We hope this will encour-
age further explorations into modern genetics as inspiration
for evolutionary computation.

2 GENE REGULATION

Roughly speaking, the DNA sequence of a gene typically
consists of a promoter, a series of exons separated by in-
trons, and a terminator. The promoter is a series of DNA
codons to which RNA Polymerase binds, initiating the gene
transcription process. Exons are those parts of the gene
which are converted into RNA, while introns are those parts
of the gene that are “edited out”. When RNA Polymerase
reaches the terminator, it stops the transcription process.
But RNA Polymerase doesn’t just start transcribing all by
itself. It typically needs a push, which DNA provides in
the form of one or more activation or enhancer sites lo-
cated near the gene. Various proteins readily bind to these
sites: some proteins activate RNA Polymerase, giving it the
push it needs, while others inhibit the transcription of that
gene. Similar activation or inhibition may also occur later
in the process (when RNA forms protein, or when protein
is further edited). In this way, protein generated from spe-
cific genes regulates other genes’ protein-production abil-
ity. This process forms a complex graph of regulatory in-
terrelationships, including even mutual regulation and self-
regulation.

Among the best-understood regulatory genes are the high-
level regulatory genes responsible for the early develop-
mental process. The embryo of Drosophila melanogaster
(a fruit fly) is a very popular testbed for experiments on
these genes, mostly because it is easy to mutate them in

Figure 2: Drosophila Gene Regulation Simulation Sys-
tem. This screenshot shows seven high-level regulatory
proteins generated by seven respective DNA genes: the
main graph shows the stabilized protein concentration (the
y axis) along the long (horizontal) axis of the embryo. The
small embryo pictures depict varying resultant protein con-
centration as they would appear in typical cell-staining pic-
tures.

dramatic, highly visual ways, adding extra sets of wings,
replacing antenna with legs, etc. Further, Drosophila’s em-
bryo has special features that make obvious the basic inner
workings of gene regulation. Unlike in many organisms,
Drosophila’s embryo splits its nucleus into many nuclei
which migrate to different parts of the embryo. Only after
a great many nuclei have formed and migrated do cell walls
begin to appear, as shown in Figure 1. This means that for
much of the early embryonic development, proteins may
freely flow through the embryo unimpeded by cell walls.

During embryonic development, a suite of high-level genes
produce proteins which regulate the production of “down-
stream” genes responsible for producing the proteins which
form actual body parts. These regulatory genes also regulate
each other’s protein production, resulting in a complex web
of gene regulation. This gene regulation may be crudely
described with a set of if-then rules, for example: “if the
protein generated by gene A has a concentration of 0.4 or
greater, it inhibits the protein production of gene B with a
weight of 0.2”. In fact, genes can have a variety of complex
inhibitory or activating properties based on narrow ranges
of gene protein concentration. Proteins may also have dif-
ferent rates of diffusion within the cell, which adds a spatial
dimension to such gene regulation.

Initially, when a mother lays a Drosophila egg, she inserts
into each end different clumps of RNA, one coding for the
bicoid protein, and one coding for the nanos protein (see
Figure 1). bicoid and nanos inhibit each other’s protein
production; as a result, at one end of the embryo the bicoid
protein is prevalent, but at the other end nanos is preva-
lent. This sets up an initial state of protein concentration in



the embryo which “bootstraps” regulatory gene production
throughout the cell. After a while the system stabilizes with
a complex mosaic of regulatory protein concentrations in
different parts of the cell. When the cell walls finally form,
each cell thus has differing amounts of regulatory protein
concentrations; these form new initial conditions for gene
regulation within each new cell, causing different cells to
form different body parts.

We have developed a gene regulation simulator for the
Drosophila embryo, shown in Figure 2. As it turns out, our
model is very close to actual biological results. But more
interestingly, we can also model so-called “knock-out” mu-
tations, eliminating an entire regulatory gene in the DNA, or
adding new unusual ones. This changes the resultant final
mosaic of protein concentrations, which accurately predicts
changes in body part location and form.

3 A NEW GENE MODEL

Our work in modelling Drosophila embryonic develop-
ment, DNA coding, and gene regulation has suggested to
us a number of interesting approaches to evolutionary com-
putation which take advantage of modern genetics. As a
first experiment in this area, we have created a deterministic
finite-state automata (DFA) induction mechanism inspired
by ideas in gene regulation. While this is admittedly pre-
liminary work, we have been pleasantly surprised by the
results in comparison to the literature. To compare our
DFA-induction mechanism with other examples from the
literature, we have performed two separate experiments on
the Tomita language set, shown in Table 1.

There has been past work in evolving gene-regulation-like
mechanisms, but to our knowledge most of it has modelled
gene regulation for theoretical biology or artificial life (see
for example [Behera and Nanjundiah 1997], [Chiva and
Tarroux 1994]), as opposed to applying it to non-biological
evolutionary computation problems.

3.1 THE GENE MODEL

In our experiments, we used a traditional generational GA
approach, creating an initial population, assessing the fit-
ness of all its members, then repeatedly performing tour-
nament selection (size 7), followed by recombination and
mutation, to generate a new population to assess. How-
ever, in our model a genome is simply a multiset of one or
more genes, each tagged with a floating-point locus value
between 0.0 and 1.0 which defines its position on a (pre-
sumably large) linear chromosome.

The idea of a genome of arbitrary size is obviously not
new. There is a considerable body of work in genomes of
varying size or form. Much of this has grown out of the de-
sire to evolve arbitrary-sized neural networks, rule sets, or
symbolic computer programs. Evolutionary programming
attempted such things from its very inception (in [Fogel et
al 1966]); a noted recent example is GNARL, which used
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Figure 3: One-Point Crossover. On linear genomes with
an arbitrary number of genes with floating-point loci.

EP to evolve neural networks [Angeline 1994]. Nearly all
of GP (beginning with [Cramer 1985], [Koza 1992]) uses
arbitrary-length genomes, as its original impetus was to
evolve symbolic functions from LISP s-expressions. From
GP have grown a variety of genomes for computer pro-
gram evolution, including arbitrarily-long linear genomes
for stack machines [Spector and Stoffel 1996] or recurrent
graphs of symbolic functions [Teller 1996]. Other interest
in arbitrary-length genomes has sprung from attempts to
improve on GA’s fixed-length vector genotypes while still
evolving for a fixed number of parameter settings. Best
known in this area is the messy GA [Goldberg et al 1993],
later extended in [Kargupta 1996]. Lastly, some theoretical
work has dealt with genes as unordered sets of arbitrary
objects [Radcliffe and George 1993].

Perhaps more closely related to our work is a body of lit-
erature interested in applying a truly “DNA-like” genome
to GA problems. Genomes in such approaches have typ-
ically been long strands of DNA-like codons, often even
using a four-letter A,T,G,C alphabet. In these strands are
found genes delimited by start and stop codon sequences.
For example, [Fullmer and Miikkulainen 1991] used such
a genome to evolve neural networks. [Jakobi 1995] intro-
duced a similar encoding to attack problems in evolutionary
robotics. [Wu and Lindsay 1995] examined the dynamics
of non-coding segments (parts of the strands that did not
define genes) in similar genomes. [Burke et al 1998] con-
tinued this work, adding more ideas from biology, including
multiple reading frames (allowing genes to overlap) and ho-
mologous crossover (recombination at points where codons
are most similar). Unfortunately, most work in this area is
exploratory; few such papers have compared this approach
empirically to other EC work in nontrivial domains.

While our approach has similarities to past “DNA-like”
work, we have chosen to represent genomes expressly with-
out long strands of codons. There are good reasons for our
approach. First, large DNA-like strands are computation-
ally very expensive for recombination, mutation, and gene-
determination. Second, they impose arbitrary encoding
requirements (codon alphabets, and gene length predeter-
mined by start and stop codons) which are often problematic
for many problem domains.



Language Description
1 1*
2 (10)*
3 (0|11)*(1*|(100(00|1)*))

Any string without an odd number of consecutive 0’s after an odd number of consecutive 1’s
4 1*((0|00)11*)*(0|00|1*)

Any string without more than 3 consecutive 0’s
5 (((1|0)(1|0))*(1|0))|((11|00)*((01|10)(00|11)*(01|10)(00|11)*)*(11|00)*)

Any string of even length which, making pairs, has an even number of (01)’s or (10)’s
6 ((0(01)*(1|00))|(1(10)*(0|11)))*

Any string such that the difference between the number of 1’s and 0’s is a multiple of 3
7 0*1*0*1*

Table 1: The Seven Tomita Languages.

Third, in most eukaryotes, especially higher-order ones,
DNA genes can be rather sparse. For example, the actual
amount of coding DNA in humans is about 3 percent (the
rest is roughly 27% intragenic noncoding DNA, such as
introns, and about 70% extragenic DNA — see [Strachan
1992]). For this reason, we felt a more appropriate model
was one which treated a genome as broad expanse on which
individual genes were occasionally found, but where the
actual makeup of non-coding DNA was immaterial.

We performed recombination with a simple (and simplistic)
form of one-point crossover, shown in Figure 3: we selected
two arbitrary genomes, picked a random value from 0.0 to
1.0, then swapped between the genomes all the genes with
loci greater than the random value. Our initial experiment
did not perform inversion, bulk transposition, etc. However,
genes were permitted to migrate by adding a small amount
of Gaussian noise (in our experiment, 0.1 std. dev.) to their
loci. Obviously there are many more sophisticated ways
of dealing with gene movement (including transposons or
actual gene duplication), which we hope to try in the future.

Gene migration brings up an interesting area of study, which
we hope to examine more closely in the future: genes clus-
tering together as protection from recombination. The ge-
netic literature is filled with theoretical analysis of gene
migration, including crossover “hot-spots”, supergene clus-
ters, and operons and statistical explanations for the unusual
ordering of homeobox genes [Brown 1992]. These ideas
are closely related to recent work in self-adaptive evolution-
ary computation, where the evolutionary system evolves its
recombinative mechanism during the run. See [Angeline
1995] for an excellent survey of this area.

During genome mutation, with a certain probability (0.1)
each gene in the genome was mutated as described in the
next section. Next, genes were deleted, then new genes
were added. Addition and deletion used a simple binomial
distribution — that is, random values from 0.0 to 1.0 were
chosen repeatedly until a number was chosen greater than
some probability (0.03 for adding genes, 0.05 for deleting
them). The number of random values chosen indicated
the number of genes to be deleted (which were picked at

random) or the number of new genes to be added. In the
future we hope to attempt a more sophisticated approach,
perhaps to test the utility of gene duplication, etc.

4 EVOLVING FINITE-STATE
AUTOMATA

A deterministic finite-state automata (DFA) is a directed
graph of one or more states connected with transition edges,
which determines whether or not a particular string of sym-
bols (in our case, 0’s and 1’s) is a member of some regular
language. One state in the DFA is labelled the starting
state, and zero or more states are labelled accepting states.
A state may be a starting state, an accepting state, both, or
neither. Transition edges are labelled with symbols in the
language (1 or 0), and every state must have exactly one
outgoing edge for each symbol in the language. The DFA
begins in the starting state, and as it reads each symbol in
turn along the string, it transitions along the appropriate
edges to a new states. When the string ends, if the DFA is
in an accepting state, then the string is in the language.

The mapping of genomes to DFAs is natural: genes are
states in the DFA, and a gene-regulation-like mechanism
determines state transitions. In our experiments, each gene
had boolean value indicating whether or not it was an ac-
cepting state: upon gene-mutation, this value flipped with
a 0.2 probability. Each gene also had a floating-point value
from 0.0 to 1.0 which determined its starting-state candi-
dacy: the gene with the lowest such value was the starting
state for the DFA. Upon gene mutation, this candidacy value
was randomized with a probability of 0.2.

4.1 CHEMICAL TEMPLATES

When modelling something like gene regulation, it is im-
portant to come up with a way to determine how well a
protein’s expression pattern fits with a gene’s activation
regions. The way this is done in biology is through ar-
bitrary and infinite chemical interrelationships. Obviously
this would be nontrivial to model tractably in a computer.



In our model, genes are instead given special objects we
call chemical templates. One chemical template in a gene
represents the expression pattern of the protein generated by
that gene, and other chemical templates represent various
activation sites for the gene. A chemical template is an
array T of n tuples (Ts,0, Tp,0), . . . , (Ts,n−1, Tp,n−1). For
all 0≤i < n, Tp,i is a floating-point value from 0.0 to
1.0, and Ts,i is 0 or 1, indicating whether or not Tp,i is
“turned on”. T must be of at least some minimum size
m (in our experiments, m = 1), and Ts,i must be 1 for
all 0≤i < m. The function Match() returns the degree to
which a chemical templateA “matches” or “fits” with some
other chemical template (B), with 1.0 being the worst match
and 0.0 being the best match, using a normalized nearest-
neighbor function which ignored “turned off” areas:

Match(A,B) =

√√√√√√√√√√
min(|A|,|B|)−1∑

i=0

(Ap,i −Bp,i)2As,iBs,i

min(|A|,|B|)−1∑
i=0

As,iBs,i

The reason for using arbitrary-length arrays with “turned
off” areas within them is that it allows the template match-
ing between gene A and gene B to be independent of the
template matching between gene A and gene C. This permits
self-adaption such that two genes may “migrate” towards
or away from each other independent of their relationships
with other genes in the genome. In the future, we hope to
further study this and other plausible approaches.

In our model, genes had three chemical templates which
determined state transitions: an expression template, a
reading-0 template and a reading-1 template. For each state
in the DFA, the receiving state of the outgoing reading-0
edge or reading-1 edge was simply that gene whose expres-
sion template most closely matched the first gene’s reading-
0 template or reading-1 template, respectively.

5 THE FIRST EXPERIMENT

We performed two experiments in inducing the Tomita lan-
guage set. In our first experiment, we compared gene-
regulation with three examples from the literature which
used the Tomita language set as their domain.

The standard experimental methodology for most Tomita
language induction experiments in the literature is to at-
tempt to induce a mechanism which properly classifies all
positive and negative examples in a limited training set of
binary strings up to some length. Afterwards, this mecha-
nism is tested for generality on the full population of binary
strings of that length. We used the same accuracy measure-
ment which was used by the other experiments both as a
raw fitness metric and as the final generalization accuracy,
namely:

correct negative examples + correct positive examples

all negative examples + all positive examples

Tomita Positive Negative
Lang. Examples Examples
1 ε, 1, 11, 111, 1111,

11111, 111111,
1111111, 11111111

0, 10, 01, 00, 011,
110, 11111110,
10111111

2 ε, 10, 1010, 101010,
10101010,
10101010101010

1, 0, 11, 00, 01, 101,
100, 1001010, 10110,
110101010

3 ε, 1, 0, 01, 11, 00,
100, 110, 111, 000,
100100,
110000011100001,
111101100010011100

10, 101, 010, 1010,
1110, 10001, 111010,
1001000, 11111000,
0111001101, 1011,
11011100110

4 ε, 1, 0, 10, 01, 00,
100100,
001111110100,
0100100100, 11100,
010

000, 11000, 0001,
000000000, 00000,
11111000011,
1101010000010111,
1010010001, 0000

5 ε, 11, 00, 1001, 0101,
1010, 1000111101,
1001100001111010,
111111, 0000

1, 0, 111, 010,
000000000, 1000, 01,
10, 011, 1110010100,
010111111110, 0001

6 ε, 10, 01, 1100,
101010, 111, 000000,
10111, 0111101111,
100100100

1, 0, 11, 00, 101, 011,
00000000, 010111,
10111101111, 11001,
1001001001, 1111

7 ε, 1, 0, 10, 01, 11111,
000, 00110011, 0101,
0000100001111, 00,
00100,
011111011111

1010, 00110011000,
0101010101,
1011010, 10101,
010100, 101001,
100100110101

Table 2: Positive and Negative Training Examples. Used
in Experiment 1 and in [Angeline 1997b]. A very slightly
different training set was used in [Angeline 1994] and [Wal-
tros and Kuhn 1992].

We think this is an unfortunate metric, since the number
of negative examples is often far fewer than the number
of positive examples (or vice versa). For future work we
suggest using one of two metrics we think are better:

correct negative examples
all negative examples + correct positive examples

all positive examples

2

min(
correct negative examples

all negative examples
,

correct positive examples

all positive examples
)

Additionally, experiments typically report the number of
evaluations (presentations of the training set to the mecha-
nism) before it is able to properly classify the training set.
An assessment of a mechanism should consider both the
number of evaluations and the generalization accuracy.



The three examples in the literature were:

• [Waltros and Kuhn 1992] developed a finite state ma-
chine using a trainable recurrent neural network. They
report the average of five runs per language with strings
of length ten or less.

• [Angeline 1994] introduced GNARL, a recurrent neu-
ral network developed using evolutionary program-
ming. The paper reports the results of a single run per
language, using a population of 50 networks and at
most 1000 generations. [Angeline 1994] used strings
of length ten or less.

• [Angeline 1997b] revisited the Tomita language set
with an inventive GP-like mechanism called a MIPs
Net, evaluated over strings of length fifteen or less.
A MIPs Net is a GP program consisting of a main
tree and zero or more subtrees forming automatically
defined functions (ADFs) [Koza 1994]. Each tree in
Angeline’s MIPs Nets could call any other trees; thus
the program had a recurrent call-graph. Angeline re-
stricted the trees to five maximum, and reported the
results of two experiments. [Angeline 1997b] per-
formed a single run per language consisting of five
subruns of 250 generations each, with a population
size of 100. In the first subrun, MIPs Nets in the popu-
lation used a single tree. If no solution was found, for
the next subrun (250 generations later) the population
was reinitialized with two trees each, then three, etc.,
until all five subruns were completed or a solution had
been found for the training examples.

• We also include a second experiment in [Angeline
1997b] which hard-set the size of the MIPs nets to
between 0 and 4 subtrees beyond the main tree. 55
runs were performed on Tomita language 7 for each of
the five settings of MIPs net size, again using strings
of length fifteen or less.

In comparison, we performed 50 runs per language, and
averaged the results. Each run had a population of 500, and
ran for 100 generations or until a solution was found which
correctly classified all its training examples. The training
set we and [Angeline 1997b] used is shown in Table 2.
Other experiments differed slightly from this training set
(by one or two examples per language). [Waltros and Kuhn
1992] and [Angeline 1994] used strings of size 10 or less
as their training and generalization strings, while [Angeline
1997b] and our experiment used strings of size 15 or less.
Shorter strings are slightly easier to generalize to.

Table 3 compares the results of our experiment with the
others in the literature. We think that our approach, unop-
timized as it is, works well. In many cases we achieved
generalization that was as good as or better than others
for the same language, using many fewer evaluations. In
those cases where our generalization was not as good, we
had fewer evaluations (or vice versa). In no case were
we lower both in generalization accuracy and number of

Tomita Gen. Avg. Gen. Accuracy
Lang. 100% Evals Avg. Var. Best
First Experiment
50 runs per language, strings size 15 or less.
1 31 30 88.39 0.0391 100.00
2 7 1010 84.00 0.0232 100.00
3 1 12450 66.28 0.0174 100.00
4 3 7870 65.25 0.0324 100.00
5 0 13670 68.65 0.0147 82.94
6 47 2580 95.94 0.0269 100.00
7 1 11320 67.69 0.0221 100.00
[Angeline 1997b]
Number of ADFs increases until solution found.
1 run per language, strings size 15 or less.
1 2200 100.00
2 6600 80.04
3 80400 73.70
4 32200 64.08
5 85200 68.97
6 35100 100.00
7 71300 53.08
[Angeline 1997b]
Just language 7, with fixed (0–4) numbers of ADFs.
55 runs for each ADF size, strings size 15 or less.
7/0 46285 50.98 0.0328
7/1 43134 54.60 0.0339
7/2 40215 52.06 0.0298
7/3 35529 52.74 0.0202
7/4 35187 54.91 0.0232
[Angeline 1994]
1 run per language, strings size 10 or less.
1 3975 100.00
2 5400 96.34
3 25050 58.87
4 15775 92.57
5 2050 49.39
6 21475 55.59
7 12200 71.37
[Waltros and Kuhn 1992]
5 runs per language, strings size 10 or less.
1 3034 88.98 100.00
2 4523 91.18 100.00
3 12329 64.87 78.31
4 4393 52.50 60.92
5 1587 44.94 66.83
6 2138 23.19 46.21
7 2969 36.97 55.74

Table 3: Results of the First Experiment. Shown with
four similar experiments from the literature. Gen 100% is
the number of runs with a fully general solution (up to the
max string length). Avg. Evals is the average number of
evaluations per run before a solution to the training set was
found. Gen. Accuracy is the percentage of all strings (up
to the max string length) correctly classified.



Tomita Gen. Accuracy Train. Gen.
Lang. Avg. Var. Best 100% 100%
Second Experiment
20 runs per language, strings size 15 or less.
1 94.98 0.0500 100.00 20 14
2 94.77 0.0498 100.00 20 3
3 90.52 0.0504 100.00 15 10
4 94.69 0.0499 100.00 20 18
5 76.69 0.0564 100.00 1 1
6 83.09 0.0654 100.00 13 12
7 90.76 0.0510 100.00 14 6

Table 4: Results of the Second Experiment. Gen. Ac-
curacy is the percentage of all strings (length 15 or less)
correctly classified. Train 100% is the number of runs in
which a solution was found which correctly classified all
200 training cases. Gen 100% is the number of runs in
which the solution was fully general to the language (for
strings length 15 or less).

evaluations.1 For the one experiment which provided vari-
ances (the second experiment in [Angeline 1997b]), our
results were statistically significantly better (using a two-
sample, two-tailed t-test at 95%), with fewer evaluations.

6 THE SECOND EXPERIMENT

Our second experiment compared our gene-regulation-
inspired approach with [Brave 1996], again using language
induction over the Tomita Language set.

Brave evolved deterministic finite-state automata for lan-
guage induction using cellular encoding [Gruau 1992], a
novel mechanism for automated graph-generation. Cellular
encoding evolves GP-like trees containing graph-grammar
rules which define how a graph “grows” out of an initial
“embryonic” node through a series of node splits and la-
belling procedures. Brave used a restricted form of cellular
encoding to define the graph structure of DFAs induced for
a given language. In his paper, Brave evolved DFAs in-
ducing the Tomita language set, using 500 positive and 500
negative cases. The paper does not specify the the selection
procedures for these cases, nor their maximal length. The
population size was 10,000, with a maximum of 100 gen-
erations, and the fitness metric was simply the number of
incorrectly classified sentences (0 being the ideal).

1Missing statistics can make it hard to compare these figures.
One crude metric to use is to consider how often in our fifty first-
experiment runs a 100% general solution was found. This suggests
the expected number of runs necessary to achieve a near-perfect
score. An example: for the Tomita language 1, we achieved on av-
erage an 88.39% generalization, while [Angeline 1997b] achieved
a 100% generalization. But we achieved 100% generalization in
31 runs out of 50, suggesting that only two runs (60 evaluations)
on average would be needed to find a 100% generalized result,
versus 2200 evaluations in [Angeline 1997b].

Brave reports that for all languages except for language 6,
the cellular encoding system found 100% correct solutions
within the 100 generations, and that all six solutions were
fully generalizable. The experiment was repeated ten times
for language 6, but no solution was found, presumably
because of a lack of generality in the particular cellular
encoding mechanism chosen.

To compare our approach with Brave’s findings, we ran-
domly generated 100 positive and 100 negative cases (se-
lected from the corpus of strings length 15 or less). This is
one fifth the number of cases used in [Brave 1996]. Using
this as a training set, twenty runs were performed using
a population size of 500, for 100 generations each, so the
maximal number of evaluations for all twenty runs com-
bined equalled the maximal number of evaluations for one
run in [Brave 1996]. The results are summarized in Table
4. For each language, anywhere from one to eighteen of
our twenty runs resulted in a fully generalizable solution.

7 CONCLUSION

Our experiments attempted to apply gene regulation and
other modern genetics ideas to evolutionary computation in
evolving an inductive mechanism for the Tomita language
set. In the future we hope to also include gene duplica-
tion, circular or multiple linear chromosomes, recombina-
tive hot-spots, and a host of other interesting issues that
were ignored in our first experiments. Still, we think that
these preliminary experiments performed well compared to
other language induction examples from the literature.

We think that this area is wide open for experimentation,
and that our results demonstrate that such experiments need
not be mere proofs of concept. Discoveries in genetics
have come rapidly in the last decade or so, changing our
understanding of genes and genomes and their dynamics.
We think modern genetics holds much promise in furthering
the field evolutionary computation, and hope that this work
encourages more exploration in this interesting area.
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