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Abstract

Analog gradient-based recurrent neural nets
can learn complex prediction tasks. Most,
however, tend to fail in case of long minimal
time lags between relevant training events.
On the other hand, discrete methods such
as search in a space of event-memorizing
programs are not necessarily a�ected at all
by long time lags: we show that discrete
\Probabilistic Incremental Program Evolu-
tion" (PIPE) can solve several long time
lag tasks that have been successfully solved
by only one analog method (\Long Short-
Term Memory" | LSTM). In fact, some-
times PIPE even outperforms LSTM. Exist-
ing discrete methods, however, cannot easily
deal with problems whose solutions exhibit
comparatively high algorithmic complexity.
We overcome this drawback by introducing
�ltering, a novel, general, data-driven divide-
and-conquer technique for automatic task de-
composition that is not limited to a particu-
lar learning method. We compare PIPE plus
�ltering to various analog recurrent net meth-
ods.

1 INTRODUCTION

How can sequential behavior be learned from training
examples? If there are long time lags between relevant
events and later error signals, most analog gradient-
based recurrent net learning algorithms, such as BPTT
or RTRL (see overview by Pearlmutter, 1995) will not
work. Their main problem is that error signals \ow-
ing backwards in time" tend to decay exponentially. A
recent gradient-based method called Long Short-Term

Memory (LSTM { Hochreiter and Schmidhuber, 1997)
eliminates this problem and can solve complex long

time lag tasks involving distributed, high-precision,
continuous-valued representations. Even LSTM, how-
ever, does not fully eliminate dependence on the time
lag size. This motivates our interest in discrete search
methods that do not care about time lag size at all.
Discrete methods are of particular interest where the
algorithmic complexity (AC) of a solution is low (i.e.,
the solution can be implemented by a short program
in a given programming language representing initial
bias). Discrete methods searching incrementally for
better sequence-processing algorithms include Adap-
tive Levin Search (Schmidhuber et al., 1997), Genetic
Programming (Cramer, 1985) with memory cells (e.g.,
Teller, 1994), and Probabilistic Incremental Program
Evolution (PIPE) with memory cells (Sa lustowicz and
Schmidhuber, 1997).

We benchmark LSTM against PIPE and �nd that
PIPE performs better where there are \very long" (as
opposed to merely \long") time lags in all training ex-
emplars and there exist solutions with low AC. In case
of high AC and not too long time lags, however, LSTM
tends to be superior.

Filtering. To overcome AC-related drawbacks of dis-
crete methods we will introduce a technique called
�ltering, a novel, general divide-and-conquer method
for automatic task decomposition. Unlike with cer-
tain previous approaches, e.g., (Angeline and Pollack,
1992; Koza, 1992; Spector, 1996), the decomposition
is not \ad-hoc" but data-dependent. Algorithmically
complex tasks are separated into less complex subtasks
as follows. The �rst \expert" is taught to �t as many
training data points as possible. After a while the
training set is split into learned and yet unlearned
data. The next expert then tries to �t just the un-
learned data, etc. Once all data points have been �t by
various experts, each expert also needs to learn which
incoming (test) data to process and which to pass on to
the next expert. This possibly complex decision task
also is adaptively decomposed into subtasks learned by



sequences of \�lters", each passing the current data to
either its local expert or the next �lter of the local
expert or the �rst �lter of the next expert. Filtering
enables PIPE to achieve excellent generalization per-
formance on complex tasks unsolvable by PIPE itself.

Overview. Section 2 summarizes LSTM. Section
3 summarizes PIPE and mentions di�erent kinds of
memory and implementations of multiple outputs for
PIPE. Section 4 compares PIPE and LSTM on two
long time lag tasks with low AC. Section 5 introduces
�ltering. Section 6 compares PIPE, LSTM and var-
ious other recurrent neural net approaches on a task
with comparatively high AC. Section 7 concludes.

2 LSTM

LSTM (Hochreiter and Schmidhuber, 1997) is a recent,
analog, gradient-based recurrent neural net approach
for supervised learning of sequential processes. Unlike
most alternative approaches it can learn from training
sequences that do not exhibit any short time lags be-
tween relevant events. It does so by enforcing constant
error ow through \constant error carrousels"(CEC)
within special units, and applying multiplicative gate
units that learn to open and close access to the con-
stant error ow. LSTM combines CEC and multiplica-
tive input and output gates to form memory cells that
can store information over arbitrary periods of time.
See (Hochreiter and Schmidhuber, 1997) for a detailed
description of net structure and learning algorithm.

3 PIPE

PIPE (Sa lustowicz and Schmidhuber, 1997) is a re-
cent discrete method for automatic program synthe-
sis. PIPE's functional programs consist of instructions
from a function set F and a terminal set T . Programs
are encoded in n-ary trees that are parsed depth �rst
from left to right, with n being the maximal number
of function arguments. PIPE generates programs ac-
cording to a probability distribution over all possible
programs composable from the instruction set (F [T ).
The probability distribution is stored in an underlying
probabilistic prototype tree (PPT). The PPT contains
at each node a probability for each instruction from
F [T . Programs are generated by traversing the PPT

depth �rst from left to right starting at the root node.
At each node an instruction is picked according to the
node's probability distribution. To adapt PPT's prob-
abilities PIPE generates successive populations of pro-
grams. It evaluates each program of a population and
adapts PPT's probabilities so that the probability of
creating the best program of the current population
increases (see Sa lustowicz and Schmidhuber, 1997).

3.1 MEMORY

Overview. We use two types of memory: recurrent
output links, and memorizing cells. We use two kinds
of memory access strategies: direct and indexed.

Recurrent Output Links (ROLs). We simply add
an instruction \o" to the terminal set. At each time
step t, o contains the output of the program at time
step t� 1. For t = 0, o is set to 0.

Memorizing Cells. There are two kinds of memoriz-
ing cells: output cells (OCs) and memory cells (MCs).
Their data structures are identical, their applications
di�erent. OCs store the output of a program. The
return value of the program is then ignored. MCs are
only used as internal memory. OCs and MCs can be
used simultaneously. There are nOC OCs and nMC

MCs, where nOC and nMC are positive integer con-
stants. OCs and MCs can be accessed and modi�ed
by programs during runtime. At any given time, OCj

and MCi denote the current real-valued contents of
the j-th and i-th output and memory cells, respec-
tively (j 2 f0::nOC � 1g, i 2 f0::nMC � 1g). All OCj

and MCi are initialized with 0. OCs and MCs are ac-
cessed by write and read functions that are added to
the instruction set (see below).

Direct Memory Access (DMA). With DMA each
OCj and MCi is associated with a distinct function
for setting and reading it. Functions set Oj(arg1)
(set Mi(arg1)) set the j-th (i-th) output (memory) cell
to arg1 and return arg1. Terminal instructions get Oj

(get Mi) return the contents of OCj (MCi). The dis-
advantage of DMA is that the number of instructions
in S (the instruction set) grows linearly with the num-
ber of output/memory cells. It is applicable only when
few memory cells are used.

Indexed Memory Access (IMA). IMA overcomes
DMA's problem. With IMA only two functions need
to be added to set and read arbitrary many out-
put and memory cells. Function set O(arg1; arg2)
(set M(arg1; arg2)) sets OC(jround(arg1)j mod nOC )

(MC(jround(arg1)j mod nMC)) := arg2 and returns
arg2. Function get O(arg1) (get M(arg1)) returns
OC(jround( arg1)j mod nOC ) (MC(jround(arg1)j mod nMC ))
(see, e.g., Teller, 1994).

3.2 MULTIPLE OUTPUTS

Overview. Two methods are used to allow for vector{
valued outputs: multiple output cells and multiple pro-
grams. Both can be used in combination with each
other, memory cells, and/or recurrent output links.

Multiple Output Cells. When output cells (OCs)
are used, their contents are treated as the output of a



program, while the program's return value is ignored.
A program can have multiple output cells (nOC > 1)
and in this way accommodate for multiple outputs.

Multiple Programs (MPs). Alternatively, if nO is
the number of outputs then a \full" program will con-
sist of nO independent programs generated according
to distinct probabilistic prototype trees. One program
is generated for each output and the return value of
each program is taken as an output value. In case MPs
are used in combination with multiple output cells,
MPs merely impose a priori structure, while OCs con-
tain the output.

4 LOW-COMPLEXITY TASKS

Overview. In this section we compare PIPE and
LSTM on two problems involving both long minimal
time lags and low algorithmic complexity (AC). So far
both the \adding problem" and the \temporal order
problem" (Hochreiter and Schmidhuber, 1997) have
been solved by only one single analog method (LSTM).
The adding experiments show that LSTM's conver-
gence speed depends on time lag size, while PIPE's
does not. We will see that sometimes simple ROLs
su�ce. The temporal order experiments, however, will
require memorizing (output) cells.

4.1 ADDING PROBLEM

Task. The task is to identify two relevant, real-valued
input components occurring in a long sequence and to
output their sum at the end. The task's AC is low
because a single combination of only two (although
widely separated) past events is necessary for correct
prediction (of the sum).

Training and test sequences have random lengths vary-
ing from minimal sequence length T to T + T

10 . Each
element of each input sequence is a pair of components.
The �rst component is a real value randomly chosen
from the interval [�1; 1]; the second is either 1.0, 0.0,
or -1.0 for LSTM and 1.0, or 0.0 for PIPE. It is used as
a marker: at the end of each sequence, the task is to
output the sum of the �rst components of those pairs
that are marked by second components equal to 1.0.
In a given sequence exactly two pairs are marked as
follows: �rst randomly select and mark one of the �rst
ten pairs (whose �rst component is then called X1).
Then randomly select and mark one of the �rst T

2 � 1
still unmarked pairs (whose �rst component is then
called X2). The second components of all remaining
pairs are zero. Since LSTM needs \trigger inputs" to
mark the beginning and end of a sequence, the second
components of the �rst and �nal pair are set to -1.
(In Hochreiter and Schmidhuber's LSTM experiments

Table 1: Results for the adding problem. The minimal
time lag is T=2. \# wrong predictions" is the num-
ber of LSTM's incorrectly processed sequences from a
test set containing 2560 sequences (error > 0.04). For
LSTM the \success after" column gives the number of
training sequences required to achieve LSTM's stop-
ping criterion, and all values are means of 10 trials.
The \perfect solutions" column reports on how likely
PIPE is to �nd perfectly predicting, algorithmically
correct solutions. PIPE's \success after" column gives
the number of training sequences required on average
(means of 35, 33, 37, and 39 independent runs for T
= 50, 100, 500, and 1000 respectively) to achieve a
perfect solution (within the PE = 20,000 time limit).

LSTM PIPE
min. # wrong success perfect success
lag predictions after solutions after

25 n.a. n.a. 70% 786,000
50 1 out of 2560 74,000 66% 832,000
250 0 out of 2560 209,000 74% 689,000
500 1 out of 2560 853,000 78% 832,000

X1 is set to zero in the rare case where the �rst pair
of the sequence gets marked.) An error signal is gen-
erated only at sequence end: the target for LSTM is
0:5 + X1+X2

4:0 (the sum X1 +X2 scaled to [0; 1]) and for
PIPE X1 + X2. A sequence is processed correctly if
the absolute error at sequence end is below 0.04.

LSTM Setup. Architecture and parameter settings
are reported in (Hochreiter and Schmidhuber, 1997).

PIPE Setup. We use PIPE with ROLs. We set
F = f+;�; �; %; nop; sin; cos; exp; rlogg, where nop is
a single argument identity function (all other functions
are de�ned in Sa lustowicz and Schmidhuber, 1997),
and T = fx0; x1; og, where x0; x1 are input variables
and o is the ROL (o = 0 at sequence start). Each gen-
eration a new training data set is generated. It con-
tains 100 randomly generated sequences. The �tness of
a program is the averaged sum of absolute di�erences
between program outputs at sequence end and tar-
gets. We use the following parameters: PE = 20,000,
PT=0.9, " = 0:000001, Pel=0.0, PS=10, lr=0.01,
PM=0.1, mr=0.1, TR=0.3, TP=0.999999, FITs = 0.
See (Sa lustowicz and Schmidhuber, 1997) for a de-
tailed parameter description.

Results. The minimal time lag between the most re-
cent occurrence of relevant information and the point
of prediction varies from 25 to 500 time steps. Table 1
summarizes all results. LSTM results are taken from
(Hochreiter and Schmidhuber, 1997). LSTM always
�nds perfect or almost perfect solutions. With a test



set consisting of 2560 randomly chosen sequences, in
all 10 independent trials LSTM's average test set error
is below 0.01, and there are never more than 3 incor-
rectly processed sequences. PIPE is able to �nd per-
fectly generalizing solutions (0 incorrectly processed
sequences) in 66%-78% of all independent runs (50 for
each time lag size). With an increasing minimal time
lag LSTM needs more and more sequence presenta-
tions to solve the task. PIPE, however, always needs
roughly the same number of sequence presentations re-
gardless of whether the minimal time lag is 25, 50, 250,
or 500 time steps. Although LSTM learns signi�cantly
faster than PIPE in case of smaller minimal time lags
(50 and 250), PIPE outperforms LSTM in case of very
long ones (500).

Discussion. LSTM's time lag dependence stems from
error signal interference that increases with sequence
length, just like it is harder for a feedforward net to dis-
cover 1 relevant input unit among 100 irrelevant ones,
than 1 among 10. Since the task's AC remained con-
stant, however, the competing discrete method (PIPE)
was not a�ected by the time lag increase.

4.2 TEMPORAL ORDER PROBLEM

The task has been solved by only one analog method
(LSTM). The goal is to classify sequences into four
classes depending on the temporal order of two sym-
bols in the sequence. Since there are only four relevant
symbol combinations the task has a relatively low AC.
It is su�cient, however, to prevent PIPE with ROLs
from working e�ciently. Memorizing cells are needed.

Task De�nition. Inputs and targets of a sequence
are represented locally (input vectors with only one
non-zero bit). The sequence starts with an E, ends
with a B (the \trigger symbol") and otherwise consists
of randomly chosen symbols from the set fa; b; c; dg ex-
cept for two elements at positions t1 and t2 that are ei-
ther X or Y . The sequence length is randomly chosen
between 100 and 110, t1 is randomly chosen between
10 and 20, and t2 is randomly chosen between 50 and
60. There are 4 sequence classes Q;R; S; U which de-
pend on the temporal order of X and Y . The rules are:
X;X ! Q; X;Y ! R; Y;X ! S; Y; Y ! U . There
are as many outputs as there are classes. Each class
is locally represented by a binary target vector with
one non-zero component. Error signals occur only at
sequence end. A sequence is classi�ed correctly if the
�nal absolute error of all outputs is below 0.3 (only rel-
evant to LSTM as PIPE uses Boolean instructions).

LSTM Setup. Architecture and parameter settings
are reported in (Hochreiter and Schmidhuber, 1997).

PIPE setup. We use 4 MPs and 4 Boolean OCs
with direct memory access. Since OCs are used,
the MPs merely impose an a priori structure on the
full program. At the beginning of each sequence
all OCs are set to false. Boolean values are repre-
sented by integers: 1 for true and 0 for false. We set
F = fif set O0 else; if reset O0 else; if set O1 else;
if reset O1 else; if set O2 else; if reset O2 else;
if set O3 else; if reset O3 elseg, where the two ar-
gument function if set Oi else(arg1; arg2) (if reset -
Oi else(arg1; arg2)) (0 � i � 3) sets the i-th out-
put cell to true (false) and returns true if arg1 eval-
uates to true. Otherwise arg2 is returned. We set
T = fE;B; a; b; c; d;X; Y g, where E;B; a; b; c; d;X; Y
are input variables. Each generation a new training
data set is generated. It contains 100 randomly gener-
ated sequences. The �tness of a program is the number
of training sequences the program misclassi�es. In case
the best program of a generation classi�es 100% of the
training data correctly, we test its performance on 5000
randomly created test sequences. We stop when a pro-
gram classi�es all training and test sequences correctly
or the time constraint of PE = 500,000 is exceeded. We
used the following parameters: PT=0.8, " = 0:000001,
Pel=0.0, PS=10, lr=0.1, PM=0.2, mr=0.2, TR=0.3,
TP=0.99, FITs = 0.

Results. Table 2 summarizes all results. LSTM �nds

Table 2: Results for the temporal order problem. \#
wrong predictions" is the number of sequences incor-
rectly classi�ed by LSTM (error > 0.3 for at least
one output unit) from a test set containing 2560 se-
quences. For LSTM the \success after" column pro-
vides the number of training sequences required to
achieve LSTM's stopping criterion. The results are
means of 20 trials. PIPE's \solved" column reports
how often PIPE was able to �nd solutions that cor-
rectly classify all sequences of the training data set
(containing 100 sequences) and the test data set (con-
taining 5000 sequences). PIPE's \success after" col-
umn displays how many sequence presentations were
necessary on average (means of 46 runs).

LSTM PIPE
# wrong success success

predictions after solved after

1 out of 2560 31,390 92% 6,048,000

almost perfect or perfect solutions after on average just
31,390 sequence presentations. PIPE is able to solve
the problem in 92% of the time, but needs signi�cantly
more presentations.

Conclusion. A discrete method (PIPE) can employ
memorizing cells to successfully solve a task that so



far has been solved only by LSTM. LSTM, however, is
faster because the time lags are not extremely long.

5 FILTERING

We have seen how long time lag tasks with low AC can
be solved by PIPE in conjunction with either ROLs
or memorizing cells. Although memorizing cells of-
fer advantages over ROLs (which only work for prob-
lems with extremely low AC), discrete methods such as
PIPE fail to learn programs that memorize a vast num-
ber of independent relevant event combinations within
acceptable time. For instance, when we tried PIPE on
a high AC task (see Section 6) we obtained only partial
solutions. Varying the number of memorizing cells did
not help much: the problem is not the memory limi-
tation but PIPE's limited ability to integrate complex
information into a single program. To enable discrete
methods such as PIPE to deal with high AC tasks we
need to split them into subtasks that can be solved
independently and then be assembled into an overall
solution. This is what �ltering does. Filtering learns
\experts" and \gates" (�lters) to decompose a task.
Experts learn target values of data points, while �lters
learn which data points to assign to which experts.

Filtering facilitates the task of the learning algorithm.
Still, the discovery of algorithmic regularities allowing
for good generalization on test data remains the bur-
den of the learning algorithm. If it does not discover
any then �ltering will essentially yield a lookup table.

Filtering's basic idea is independent of a particular ap-
proach such as PIPE. It can be used in combination
with PIPE, genetic programming, neural networks and
many other learning algorithms. An important aspect
of �ltering is that it does not merely shift the problem
without reducing its complexity: no single component
(�lter or expert) needs to be particularly powerful or
signi�cantly more potent than others.

5.1 FILTERING NON-TEMPORAL DATA

For clarity we will �rst show how �ltering can help
in learning static input patterns. It comprises two
phases: (1) task decomposition (TD), and (2) task
assembly (TA). During TD a task is automatically de-
composed into subtasks that are solved independently.
During TA partial solutions are assembled into a �nal
one. Either one learning algorithm, or several di�erent
ones (hybrid system) can be used to perform TD and
TA. We use a single algorithm (PIPE).

5.1.1 Task Decomposition

Given a learning algorithm ALG and a training set
SET with nSET data points, we want ALG to output

a desired target value for each data point in SET. We
treat data points in a discrete way: ALG is said to
have learned a data point if the absolute di�erence be-
tween its target value and ALG's output falls below
�d. We train ALG on all data points in SET until
either the task is solved (according to ALG's termi-
nation criterion), or until ALG has not been able to
improve (learn more data points) for some prespeci�ed
interval Elsmax. We insist, however, on ALG learning
at least Edmin � 1 data points. If ALG stops and
the task is not �nished yet, we (1) save the learned
partial solution (the �rst expert { E1), (2) split SET

into SETE1 containing the data correctly learned by
expert E1 and into SETrest, a set containing remain-
ing data. We then apply ALG to SETrest and repeat
the procedure of saving experts and splitting the data
set until all data points have been learned. This de-
composes the task into subtasks in a way depending
only on learning algorithm and data set. Note that Ei

learns from a smaller data set than Ej for i > j.

Task decomposition by itself, however, is insu�cient.
After a task has been decomposed, the partial expert
solutions need to be assembled in a way that allows for
sensibly classifying new, previously unseen test data.
The next subsection will address the question: which
data points should be assigned to which expert?

5.1.2 Task Assembly

Filters. The task of assigning data to experts may be
almost as di�cult as the data �tting process itself, and
may require similar decomposition. For this purpose
we use chains of \�lters" (sequentially invoked gates)
associated with each expert. Let F j

Ei
denote the jth

�lter of the ith expert. See Figure 1 for an example ar-
chitecture with experts E1; E2; E3 and corresponding
�lter chains F 1

E1
, F 2

E1
, F 3

E1
, F 4

E1
, and F 1

E2
, F 2

E2
, F 3

E2

respectively. Each incoming data point �rst moves to

E1 E2

F 1
E 1

E3

+ - + + +- -

F E 1
F E 1

F E 1
F 1

E F E F E
2 3 4 2 3

2 2 2

data in

Figure 1: Three experts and their associated �lters.
Arrows indicate possible data ow.

the �rst expert's �rst �lter. Filters are either posi-
tive or negative: positive �lters take a data point and
decide whether to pass it on to their expert or not.
Negative �lters decide whether the data should de�-
nitely not be passed to their expert. In this case it is
passed to the �rst �lter of the next expert or directly



to the next expert if it is the �nal one. Data points
that cannot be decided upon are simply passed on to
the next �lter in the chain.

Filter learning. Filters are learned sequentially in
order of expert and �lter numbers by dynamically re-
labelling the data in SET. To train F i

Ej
, all data points

of SET that have not been learned by any previous �l-
ter F y

Ex
, for all x < j and all y < i, if x = j, are

labeled as belonging to class I if they are in SETEj

and to class II otherwise. If there are more class I
than class II data points then we will learn a positive
�lter, otherwise a negative one. A positive �lter F i

Ej

will learn to assign class I data points to Ej . A nega-
tive �lter F i

Ej
will learn to pass class II data points to

the �rst �lter of the next expert F 1
Ej+1

, or to the next
expert Ej+1 in case Ej+1 is the �nal one. No posi-
tive F i

Ej
may pass any class II data points on to Ej

and no negative F i
Ej

may pass any class I data points

on to F 1
Ej+1

or Ej+1. If a single �lter has separated
at least Fdmin � 1 data points, but not all of them,
and was not able to improve its performance (by sep-
arating additional data points) for some prespeci�ed
interval Flsmax, we (1) preserve the �lter (F i

Ej
), (2)

eliminate the data learned by F i
Ej

from class I or II,

depending on �lter type, and (3) train the next �lter
F i+1
Ej

to separate the remaining data points. In this
way we incrementally add �lters until all class I and
class II data points have been correctly classi�ed. We
then start learning �lters F i

Ej+1
for the next expert,

and repeat the entire procedure until all �lters for all
experts (except for the �nal one) have been learned.
Note that the number of data points to be separated
decreases with each learned �lter.

5.2 FILTERING TEMPORAL DATA

Because each training sequence may involve several in-
termediate target signals (e.g., each time step may re-
quire a new prediction), sets of training sequences are
split and grouped into learned/unlearned and class I/II
sets in a slightly di�erent way. Since temporal de-
pendencies can occur among unlearned and already
learned points, we cannot simply exclude the learned
points from the training data set of an expert/�lter:
all experts and �lters need to see all inputs of the
entire data set SET. Data set splits during task de-
composition and assembly are achieved by measuring
an experts'/�lter's performance only on data points
that have not been already learned by a previous ex-
pert/�lter.

Also during later processing of (previously unseen) test
data, each data point is given to each �lter and expert.
Filter outputs are then processed sequentially (starting

with F 1
E1

) to determine which expert's output is valid.

Filtering facilitates the decomposition of temporal
tasks with many independent relevant event combi-
nations. Detecting the relevant dependencies within a
single event combination, however, remains the duty
of the learning algorithm.

We use PIPE with memory cells for training both ex-
perts and �lters. In Section 6 we will see that PIPE
plus �ltering can extract the algorithmic regularities
necessary for achieving perfect generalization.

6 A HIGH-COMPLEXITY TASK

The task is to learn the \embedded Reber grammar",
e.g. Smith and Zipser (1989), Cleeremans et al. (1989),
and Fahlman (1991). It allows for training sequences
with very short time lags and can therefore be learned
by many recurrent net algorithms. Its AC is rather
high, though, since predictions are required at each
time step, and numerous input combinations need to
be learned. PIPE without �ltering completely failed to
solve this task. During its best runs PIPE was merely
able to predict roughly 60% of all data points of a se-
quence correctly. Filtering, however, did enable PIPE
to solve this popular recurrent net benchmark.
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Figure 2: Transition
diagram for the Reber
grammar.
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Figure 3: Transition
diagram for the em-
bedded Reber gram-
mar. Each box repre-
sents a copy of the Re-
ber grammar (see Fig-
ure 2).

Task De�nition. Starting at the leftmost node of the
directed graph in Figure 3, symbol strings are gener-
ated sequentially (beginning with the empty string) by
following edges | and appending the associated sym-
bols to the current string | until the rightmost node
is reached. Edges are chosen randomly if there is a
choice (probability: 0.5). The task is to read strings,
one symbol at a time, and to permanently predict the
next symbol (error signals occur at every time step).
To correctly predict the symbol before last, the second
symbol has to be remembered.

Comparison. We compare PIPE with MCs and
�ltering to LSTM (results taken from (Hochreiter
and Schmidhuber, 1997)), \Elman nets trained by



Elman's training procedure" (ELM) (results taken
from Cleeremans et al. 1989), Fahlman's \Recur-
rent Cascade-Correlation" (RCC) (results taken from
Fahlman 1991), and RTRL (results taken from Smith
and Zipser (1989), where only the few successful trials
are listed). It should be mentioned that Smith and
Zipser actually make the task easier by increasing the
probability of short time lag exemplars.

Training/Testing. We use local input/output repre-
sentation (7 inputs, 7 outputs). Following Fahlman,
we use 256 training strings and 256 separate test
strings. The training set is generated randomly. Test
sequences are generated randomly, too, but sequences
already used in the training set are not used for test-
ing. For PIPE we use three pairs of training and test
sets. The �rst two pairs (1,2) have training sets that
contain on average shorter sequences than their corre-
sponding test sets. For the third pair (3) the opposite
is true. A trial is considered successful if all symbols
of all sequences in both test set and training set are
predicted correctly | that is, if the output value(s)
corresponding to the possible next symbol(s) is(are)
always the largest ones. We measure PIPE's test per-
formance on all three test sets.

Neural Network Setups. Architectures and pa-
rameter settings for LSTM, RTRL, ELM, RCC are
reported in the references listed above.

PIPE Setup. We use PIPE with MCs, MPs, and
�ltering. Each expert consists of 7 programs (one for
each output) that share 10 MCs. Each �lter consist of
one program with 10 MCs. MCs are initialized to 0 be-
fore each sequence presentation. We set F = f+;�; �;
%; set M; get M; sin; cos; exp; rlogg (see Sa lustowicz
and Schmidhuber, 1997 for function de�nitions), and
T = fB; T; S;X;E; P; V;Rg, where B; T; S;X;E; P; V
are input variables and R is the \generic random con-
stant" (see Sa lustowicz and Schmidhuber, 1997). For
�lters, program outputs are mapped to class I if > 0
and to class II otherwise. Expert �tness is the num-
ber of wrong predictions (note: smaller �tness is bet-
ter!). Filter �tness for a positive (negative) �lter is
the number of incorrectly classi�ed class I (II) points,
if all class II (I) points have been classi�ed correctly,
and in�nite otherwise. We set PE = 5; 000; 000 (time
constraint), FITs = 0, Elsmax=1,000 program evalua-
tions, Edmin=1, Flsmax=10,000 program evaluations,
Fdmin=1, PT=0.9, " = 0:000001, Pel=0.1, PS=10,
lr=0.01, PM=0.4, mr=0.4, TR=0.3.

Results. Table 3 shows all results for the analog
methods. LSTM is the only one that always learns to
solve the task. RTRL and RCC perform better than
ELM, but worse than LSTM. Results for PIPE with

Table 3: Results of several analog approaches for
the embedded Reber grammar: percentage of success-
ful trials and number of sequence presentations un-
til success for RTRL (results taken from Smith and
Zipser 1989), \Elman net trained by Elman's proce-
dure" (results taken from Cleeremans et al. 1989),
\Recurrent Cascade-Correlation" (results taken from
Fahlman 1991) and LSTM (results taken from Hochre-
iter and Schmidhuber 1997). Only LSTM always
learned to solve the task. It also needed least sequence
presentations on average (mean of 30 trials).

Analog Approaches
method hidden % of success

units success after

RTRL 12 \a fraction" 25,000
ELM 15 0 >200,000
RCC 7-9 50 182,000

LSTM 3 blocks, size 2 100 8,440

Table 4: PIPE's results for the embedded Reber gram-
mar: The \tr. set" column shows which training set is
used. The \av. tr. err. / max. err." column reports
PIPE's average training error (�tness) and the maxi-
mal error (worst possible �tness) on the training set.
The \success after" column reports on how many se-
quence presentations (averaged over 20 runs) are nec-
essary to achieve perfect performance on the training
set. The rightmost two columns report PIPE's average
(vs. worst possible) test set performance on all three
test sets and on how often PIPE discovered perfectly
generalizing solutions.

PIPE
tr. av. tr. err. success av. test err. perf.
set / max. err. after / max. err. sol.

1 0 / 4018 24,880,896 0 / 13329 100%
2 0 / 3909 28,062,976 0 / 13329 100%
3 0 / 4717 16,006,400 4.7 / 13329 10%

�ltering are shown in Table 4. Filtering enabled PIPE
to always learn the task. Due to short time lags, how-
ever, LSTM learned signi�cantly faster. With the �rst
two training sets (containing short sequences) PIPE
was always able to �nd perfectly generalizing solutions.
Training set 3 it learned in roughly 2/3 of the time
needed to learn training sets 1 and 2. When trained
on longer sequences (training set 3), however, it rarely
achieved perfect generalization. The imperfect solu-
tions performed close to optimal (1{8 wrong predic-
tions out of 4630{4705) on longer test sequences, but
worse (9{21 wrong predictions out of 3994) on shorter
ones (from test set 3).



Discussion. Filtering enabled a discrete method
(PIPE) to reliably (always) learn a task with compar-
atively high AC that PIPE by itself could not learn,
and that has been reliably (always) solved by only
one analog method (LSTM). PIPE's programs gen-
eralized extremely well, except for those learned from
long sequences: one of the many non-minimal algorith-
mic representations of long sequences may be learned
quickly but does not necessarily embody a small �nite
state automaton capable of generating both the long
sequences and certain shorter ones outside the training
set.

7 CONCLUSION

The traditional static approach to pattern processing
typically involves statistic estimators and regressors
of which feedforward neural nets are particular in-
stances. Despite the sometimes obvious advantages of
sequential pattern recognition, however, conventional
statistics has not contributed too much insight into
learning sequential analysis of temporally extended
patterns. In fact, conceptionally novel approaches
such as gradient-based learning algorithms for recur-
rent neural nets with time-varying inputs and meth-
ods for searching algorithm space are more closely re-
lated to each other than to more conventional static
approaches. Each o�ers certain advantages and disad-
vantages. Among those identi�ed in this paper are
the following: discrete incremental program search
(as embodied by PIPE) can outperform even the cur-
rent state-of-the-art analog, gradient-based method
(LSTM) in case of problems with solutions of low algo-
rithmic complexity (relative to the algorithm-learning
device) and very long (as opposed to merely long) time
lags between relevant training events. LSTM, how-
ever, seems better suited to tasks that involve both
long time lags and algorithmically complex solutions.
On the other hand, discrete methods like PIPE can
be augmented by a novel data and task decomposition
technique called �ltering, which not only splits com-
plex tasks into several subtasks solvable by compara-
tively simple algorithms (experts) but also decomposes
into managable subtasks the problem of �nding an ap-
propriate expert for given data. Filtering can enable
discrete methods such as PIPE to reliably solve tasks
with comparatively high algorithmic complexity.
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