
What Makes a Problem GP-Hard? Analysis of a Tunably␣ Difficult
Problem in Genetic Programming

Jason M. Daida*, John A. Polito 2**, Steven A. Stanhope*, Robert R. Bertram*, Jonathan C. Khoo*,
 and␣ Shahbaz A. Chaudhary*

*The University of Michigan, Artificial Intelligence Laboratory and Space Physics Research Laboratory
2455 Hayward Avenue, Ann Arbor, Michigan 48109-2143

**The MEDSTAT Group, 777 E. Eisenhower Parkway, Ann Arbor, Michigan 48108

Abstract

This paper addresses the issue of what makes a prob-
lem GP-hard by considering the binomial-3 prob-
lem. In the process, we discuss the efficacy of the
metaphor of an adaptive fitness landscape to explain
what is GP-hard. We show that for at least this prob-
lem, the metaphor is misleading.

1 INTRODUCTION

What makes a problem GP-hard? Unlike other areas in evolu-
tionary computation, genetic programming (GP) has but a
nascent body of theoretical work that has addressed this sub-
ject. Guidance for understanding what makes a problem diffi-
cult for genetic programming has come from work and ideas
in areas like genetic algorithms (GA). For example, one could
take a cue from previous work in genetic algorithms and posit
that what makes for a GP-hard problem is what makes for a
GA-hard problem—a rugged fitness landscape (a deceptive
fitness landscape, a flat fitness landscape, etc.). As of this writ-
ing, however, GP theory has furnished only a few principles
to guide practitioners about whether a problem is difficult (or
easy). The ability to score the difficulty of a problem in ad-
vance of actually trying to solve it with GP has proven trouble-
some, if only because investigators have yet to identify all of
the essential ingredients in creating a difficult problem for GP.

In place of theory, then, conventional wisdom in GP has sug-
gested that what makes a problem difficult in GP is a problem’s
domain. For that reason, many empirical papers that address
GP theory feature several different problems from several dif-
ferent domains. In recent years, researchers have moved to-
ward an informal consensus in adopting several of these prob-
lem domains as being suitable for investigations in theory.

We have found in our investigations that perhaps for GP, nei-
ther prevailing notions of fitness landscapes nor intrinsic prop-
erties of a problem’s domain have sufficient explanatory power
to account for what makes a problem GP-hard. To accom-
plish this, we have investigated a tunably difficult problem
that features the following: a statistically invariant combina-
torial search space, a fixed fitness function, a fixed set of ge-
netic programming operators, a fixed function set, and a fixed
terminal set.

1.1 PREVIOUS WORK

There are but a few theoretical works that address problem
difficulty in GP at all. The first work to do so appeared in
[Koza 1992], Chapter 8. In that work, Koza provided a semi-
empirical formula that estimated the number of trials needed
to solve a problem with a specified success probability. O’Reilly
[1997] attempted to extend fitness landscape analysis in GA
research (i.e., [Mathias and Whitley 1992; Horn and Goldberg
1995; Jones 1995]) to GP. Langdon and Poli [1998] provided
an alternative by proposing to sample a solution space (either
exhaustively or using Monte Carlo methods) and applying this
technique to a particular problem (i.e., Artificial Ant on the
Santa Fe trail [Jefferson, et al. 1991; Koza 1992]).

A closely related issue involves GP test problems that are tun-
ably difficult. As of this writing, the GP community has not
had a well-recognized suite of test problems (along the lines of
the De Jong [1975] or Ackley [1987] test suites in GA re-
search). There have been several promising candidates, how-
ever. Koza [1992] provided the first set of tunably difficult
problems that have included the Boolean multiplexers and the
Boolean parity functions (i.e., both even and odd parity). In
his second book, Koza [1994] included polynomials (a sextic
and a quintic), Boolean symmetry (5- and 6-symmetry), Fou-
rier sine series (3- and 4-terms), the Lawnmower Problem and
the Bumblebee problem. Punch et al. [1996] introduced a
tunably difficult Royal Tree problem, which they have designed
along the lines of the Royal Road problem [Mitchell, et al.
1992] in GA. Gathercole and Ross have proposed the MAX
test suite [Gathercole and Ross 1996], which they have devel-
oped along the lines of the Ones-Max problem [Ackley 1987]
in GA research. Foster and his colleagues have offered the
Maximum Clique problem for GP [Soule, et al. 1996].

Other researchers have turned to examples from Koza’s books
[Koza 1992; Koza 1994] in place of a recognized suite of test
problems. Typical suites have included Multiplexer,
Lawnmower, symbolic regression, and Artificial Ant (in [Luke
and Spector 1998]); Boolean parity, symbolic regression, Ar-
tificial Ant (in [McPhee, et al. 1998]); Boolean Parity, Sun-
spot, and Intertwined Spiral (in [Angeline 1997]). General
domain themes have been to include a problem from each of
the following categories: Boolean, symbolic regression, and
finite-state machine.

1.2 ABOUT THIS PAPER

This paper describes the binomial-3 problem and presents its
statistical portrait as the problem is tuned from relatively eas-
ily to relatively difficult. We show that under certain condi-
tions, the problem scales logarithmically in difficulty. We
present our analysis of this problem and describe the process
by which this problem can be tuned. In doing so, the analysis
challenges current views about what makes a problem diffi-
cult.

The conventional view for thinking about what makes any
problem difficult for any EC method has been the metaphor
of an adaptive landscape in evolutionary biology. The adap-
tive landscape, as posed in [Wright 1932], has suggested to
EC practitioners an optimization of fitness in a multi-dimen-
sional, multi-modal search space. A common idea in EC re-
search has been that the adaptive landscape is primarily an
external consideration, an environment, and that EC individu-
als “walk” on this landscape. This interpretation of the meta-
phor of an adaptive landscape is not without precedent in evo-
lutionary biology. After all, Wright’s illustration of adaptive
landscapes looked like topographic maps (which Simpson com-
mented upon in his seminal work [Simpson 1944, p.49]).
Noted neo-Darwinist Dobzhansky took Wright’s figure of
speech one step further and mapped Wright’s abstraction of
“hills” and “valleys” to real mountains and valleys (i.e., the
San Bernadino Mountains, California, USA) [Dobzhansky
1941; Depew and Weber 1995, p. 294].

In his thesis, Jones correctly noted that this common idea of
adaptive landscapes is fraught with pitfalls for EC [Jones 1995,
p. 46]. Instead, Jones proposed a one-operator/one-landscape
view of fitness for genetic algorithms. In this view, landscapes
are directed graphs, the configuration and the traversal of which
are determined by a particular operator (e.g., mutation). In a
sense, Jones’ proposal for a rigorous definition of a fitness land-
scape is that of constrained externality. In particular, problem
difficulty is still primarily an external phenomenon. Problem
difficulty is also a constrained phenomenon as well, since the
determination of which topological environment a GA indi-
vidual must traverse is determined by a genetic algorithm’s
operators. By framing the fitness landscape as such, Jones and
Forrest [1995] were able to devise a metric of problem diffi-
culty that was largely independent of a genetic algorithm.

In this paper, we show that problem difficulty can largely be
driven by factors that have usually been considered internal to
an EC algorithm. In the binomial-3 problem, the “outside” is
not the sole driver for problem difficulty. A fitness function
does not need to correspond to a “rugged” environment for a
GP to encounter difficulty. Instead, the source of difficulty
stems from “internal” conflicts involving content and context.
It is in the process of solving the problem and not the problem
itself that difficulty ensues. Perhaps difficulty for GP, then, is
not so much pictured as a photograph from Ansel Adam’s se-
ries “Sierra Nevada: The John Muir Trail” [Adams 1938] — a
portfolio of the soaring peaks and the deep valleys of the Si-
erra Nevada. Perhaps at least for some cases in GP, a more
appropriate picture would be Edvard Munch’s painting “The
Scream”—an oil depicting an internally tortured soul on what
would otherwise be a fairly mundane landscape.

2 EXPERIMENT DESCRIPTION

This section describes our experiment and includes a descrip-
tion of the binomial-3 problem.

2.1 BINOMIAL-3 PROBLEM DESCRIPTION

The binomial-3 problem is an instance taken from symbolic
regression and involves solving for the function f(x)= 1 + 3x +
3x2 + x3. The term “binomial” refers to the sequence of coeffi-
cients in this polynomial; the “3” refers to the order of this
polynomial.

We define the binomial-3 problem as follows. Fitness cases are
50 equidistant points generated from the equation f(x)= 1 +
3x + 3x2 + x3 over the interval [-1, 0). Raw fitness score is the
sum of absolute error. A hit is defined as being within 0.01 in
ordinate of a fitness case for a total of 50 hits. The stop crite-
rion is when an individual in a population first scores 50 hits.
Adjusted fitness is the reciprocal of the quantity one plus raw
fitness score.

A function set is a subset of {+, –, ×, ÷}, which correspond to
arithmetic operators of addition, subtraction, multiplication,
and protected division. We define protected division as the
operator that returns one if the denominator is exactly zero.
Typical function sets include {+, –, ×, ÷}, which we presume
for this paper. Other sets may include other permutations such
as {+, ×} or { –, ×}.

A terminal set is a subset of {X, R}, where X is the symbolic
variable and R is the set of ephemeral random constants
(ERCs). We presume that the ephemeral random constants
are uniformly distributed over a specified interval of the form
[-a

R
, a

R
], where a

R
 is a real number that specifies the range for

ERCs. We require that each ERC is generated but once at
population initialization and is not changed in value during
the course of a GP run. Typical terminal sets include either
{X} (a binomial-3 problem without ERCs) or {X, R} (a bino-
mial-3 problem with ERCs).

Tuning is achieved by varying the value associated with a
R
.

We defer until Section 4 the discussion of how a
R
 affects prob-

lem difficulty without changing the combinatorial search space.

2.2 BINOMIAL-3 PROBLEM BACKGROUND

The binomial-3 problem shares many properties that are com-
mon with other problems in GP. It requires symbol manipula-
tion. It allows for introns (i.e., unexpressed code). It affords
GP to choose from multiple approaches to solve for the same
problem. Of these properties, the latter two warrant further
explanation.

The problem allows for several types of introns, some of which
involve the structure (- X X) . Multiplication of this struc-
ture to any other results in a value of 0. Division by this struc-
ture to any other results in a value of1. We note that other
types can be derived or are similar to these basic two.

The problem affords GP to choose from multiple approaches.
For example, equivalent solutions include (1 + x)3, (1 + x)(1 +
2x + x2), (x – -1)3 and (x + 1) ÷ (1 ÷ (1 + (x÷0.5) + (x ÷ (1 ÷
x))). In addition to these equivalent approaches, there exists a

number of approximate approaches (e.g., rational polynomi-
als that fit all 50 points, but not necessarily anywhere else).
There are several ways to generate numerical coefficients as
well. For example, the coefficient 2 can be generated by using
an ERC that (approximately) equals this value. It can be gen-
erated with the value 0.5 and taking the reciprocal of that
value. It can also be generated through distribution, e.g., (x +
x). We surmise that the total number of ways to solve the bi-
nomial-3 problem to be on the order of a few thousand (i.e.,
see [Daida, et al. 1999]).

The choice of coefficients, form, and order of the target func-
tion f(x) for the binomial-3 problem was purposeful and de-
liberate. The use of f(x) = (1 + x)3 has allowed for an extended
mathematical treatment [Daida, et al. 1999].

The binomial-3 problem does not share an antecedent with a
related test problem in GA research, but its domain has an
extended history in GP. One of the earliest, intuitive applica-
tions of GP has involved data modeling under the moniker of
symbolic regression. In [Koza 1992], symbolic regression has
been synonymous with function identification, which involves
finding a mathematical model that fits a given data set. Closely
linked problems have included sequence induction, Boolean
concept learning, empirical discovery, and forecasting. Typi-
cally, practitioners use GP and symbolic regression in several
ways: as a benchmark problem to test GP systems, as a soft-
ware demonstration or tutorial, and as a means of generating
mathematical models for real-world domains. The latter area
includes applications in control systems, bio-engineering, bio-
chemistry, image compression, and finance.

In spite of these works, we recognize that from a purely prac-
tical standpoint, there exist modifications to standard GP that
may be better suited for data modeling. This seems to have
been particularly true in the generation of parameter constants,
which standard GP does awkwardly with ERCs. Recent de-
velopments in GP indicate methods that appear to generate
constants with greater efficacy than as with using ERCs (e.g.,
[Angeline 1996; Evett and Fernandez 1998; Raidl 1998]).

Our interest in using ERCs stems from their worth in illus-
trating fundamental processes in GP dynamics. ERC values
can serve as tracers that allow tracking of individual nodes, if
each ERC value is unique and generated just once. ERCs can
also be used to address building block issues, as we have done
in [Daida, et al. 1999].

2.3 EXPERIMENT PROCEDURE

We used a patched version of lilgp [Zongker and Punch 1995]
to generate our data. Most of the modifications were done for
bug fixes, as well as to add other features for use in other ex-
periments (e.g., strong typing and population initialization).
We did replace the random number generator (RNG) in lilgp
(Knuth subtractive RNG) with the Mersenne Twister
[Matsumoto and Nishimura 1997; Matsumoto and Nishimura
1998]. The Mersenne Twister has excellent mathematical prop-
erties that make this RNG a reasonable candidate for theo-
retical work in GP. (See [Daida, 1997] for issues concerning
RNGs). We note that lilgp supports the use of ERCs and that
ERCs in lilgp are generated once at population initialization.

For all practical purposes, all ERC values generated at popula-
tion initialization were unique, with every ERC value having
just one instance in an initial population. We configured lilgp
to run as a single thread.

Most of the GP parameters were identical to those mentioned
in Chapter 7 [Koza 1992]: population size = 500; crossover
rate = 0.9; replication rate = 0.1; population initialization with
ramped half-and-half; initialization depth of 2–6 levels; and
fitness-proportionate selection. Other parameter values were
maximum generations = 200 and maximum tree depth = 26
(Note: these last two parameters differ from those presented
in [Koza 1992], which specifies a maximum number of gen-
erations = 51 and a maximum depth = 17. Part of the reason
we extended these parameters was to mitigate against possible
effects that occur when GP processes individuals at these lim-
its.)

The experiment involved varying the tuning parameter a
R
. We

used seven values of a
R
: 0.1, 1, 2, 3, 10, 100, 1000. We also

ran one control with no ERCs. Eight data sets were collected
in all: Control (No ERCs), Tenth (ERC: [-0.1, 0.1]), Unity
(ERC: [-1, 1]), Two (ERC: [-2, 2]), Three (ERC: [-3, 3]), Ten
(ERC: [-10, 10]), Hundred (ERC: [-100, 100]), and Thou-
sand (ERC: [-1000, 1000]). Each data set consisted of 600
trials for a total of 4800 runs for the first part. All trials were
run on Sun Ultra workstations.

3 RESULTS

Table 1 summarizes the best-of-trial results of the experiment.
The best possible score is 600. Throughout the course of this
paper, we use perfect, upper decile, and upper quartile hit-
score measures of problem difficulty.

The inclusion of ERCs as a whole increased problem diffi-
culty. Without ERCs, the binomial-3 was an easy problem to
solve, with 5 out of 6 trials resulting in a perfect score. We
note that for the most part, the general trend is that if a

R
 ≥ 1

and a
R
 increasing, the problem becomes increasingly more

difficult to solve. (That trend does not hold for 0 ≤ a
R
 < 1).

Figure 1 plots the results for a
R
 ≥ 1 in Table 1, with hit scores

normalized to 100%. The regression coefficient is -0.997.

Table 1. Main Part Summary. This table shows the total number of trials (out
of 600 trials) that scored perfectly, in the upper decile, and in the upper quartile.

a
R

tcefreP eliceD1 elitrauQ1

enon 205 515 645

1.0 41 24 031

1 912 923 364

2 441 582 334

3 501 932 093

01 75 541 213

001 9 23 401

0001 3 4 5

Figure 2 summarizes the results from the following data sets:
Control, Tenth, Unity, Two, Three, Ten, Hundred, and Thou-
sand. Each plot shows 600 points, with each point correspond-
ing to a best-of-trial individual. Rows are arranged by data set.

In creating the plots for the second and third columns, we
added a small amount of uniform random noise to both (x, y)
coordinates of each point. We did this for visualization only.
The quantities corresponding to node count, depth, and gen-
eration are integer values—because of this, a single dot could
correspond to many data points. The noise was added to dis-
place points visually away from each other. That technique
was not repeated for the first column, if only because adjusted
fitness is a real-, not integer-valued quantity.

Figure 2 first column shows the effect of ERC range concern-
ing node count versus adjusted fitness. From Unity to Thou-
sand data sets, the cluster of points appears to progress from
right to left (higher to lower fitness). The results from the Tenth
data set appear similar to the results from the Hundred data
set. The vertical line of data points in Control corresponds to
those best-of-trial individuals that had perfect adjusted fitness
scores.

Figure 2 second column shows the effect of ERC range con-
cerning node count versus the generation in which the best-
of-trial individual was identified. Note that the individuals
that occur near generation 0 are generally concise and have
likely required less computational effort to generate than those
solutions near generation 200. From Unity to Hundred, the
cluster of points appears to progress toward the right. That
overall pattern breaks down for Thousand. The pattern for
Tenth is similar to that for Hundred.

Figure 2 third column shows the effect of ERC range con-
cerning node count versus the depth of the best-of-trial indi-

viduals. The lines indicate the upper and lower bounds for the
numbers of nodes that can be present in a tree for a certain
depth. From Unity to Hundred, the cluster of points appears
to progress toward the right. That overall pattern breaks down
for Thousand, which appears more like Control. The pattern
for Tenth is similar to that for Hundred.

4. DISCUSSION

That problem difficulty can be tuned by means of varying a
R

has been demonstrated clearly by the experiment. As shown
in Table 1 and Figure 1, the hit scores for perfect, upper decile,
and upper quartile were monotonically decreasing for increas-
ing a

R
 for a

R
 ≥ 1. The hit scores for perfect are well described

with a log-log regression fit.

The crux of this paper addresses why the binomial-3 problem is
tunable in this way. A reasonable notion associated with in-
creasing a

R
 is that GP needs to sort through an increasing

number of ERCs. Consequently, the problem becomes more
difficult because there are that many more ERCs from which
to choose. We show otherwise by examining our claim that
the combinatorial search space remains statistically invariant
even though a

R
 varies.

As it turns out, the specification of ERCs as we have alluded
to for the binomial-3 problem suggests the following (typical)
implementation. Let there be two terminal types X and r ,
where X is a symbolic variable and r a terminal of type ERC.
From the perspective of the user, this is what is typically speci-
fied, as opposed to X and the N different terminals of con-
stants that have a unique value. The terminal r serves as a
token, a placeholder. Instead of managing N different termi-
nals, GP manages one terminal type, r , which references a list
of ERC values by means of an index set (e.g., a hash table). In
essence, GP operates on X and a set of tokens whose values are
determined elsewhere. Consequently, by changing a

R
, what is

changed is not the number of tokens, but the table of lookup
values that are assigned to those tokens. Figure 3 shows an
example of this in a hypothetical population. The grayed circles
represent tokens. The accompanying table shows ERC values
that occur for two different ranges of a

R
. (Note: in actuality,

two different random number seeds were chosen for each ERC
range to generate two independent samples). The combinato-
rial search space remains statistically invariant even though a

R

varies. (For example, the number of ERCs allocated for a popu-
lation of 500 individuals, regardless of a

R
, was roughly

4500±400.)

If the combinatorial search space remains statistically invari-
ant, and if fitness function, function set, and specifications for
crossover and replication remain constant, what causes the
problem to vary in difficulty?

In posing a problem like the binomial-3, we have shifted away
from linking problem difficulty with problem scalability. Ex-
amples of scalable genre include parity and multiplexer prob-
lems (which increase in difficulty with increases to the num-
ber of inputs). Instead, we have linked problem difficulty with
terminal selection, in which the task is to choose the most

Figure 1 Hit Score v. a
R
. This log-log plot shows the relation-

ship between the tuning parameter a
R
 and the hit score. The

problem becomes progressively more difficult as a
R
 increases.

0.1

1

10

100
N

um
be

r
of

 T
ria

ls
 (

%
)

1
2 4 6

10
2 4 6

100
2 4 6

1000
ERC Range

 Upper Quartile
 Upper Decile
 Perfect

best score attainable

log y = -0.36 log a
R
 + 1.56

2
10

2
8

2
6

2
4

2520151050

2
10

2
8

2
6

2
4

1.00.50.0

2
10

2
8

2
6

2
4

1.00.50.0

2
10

2
8

2
6

2
4

1.00.50.0

2
10

2
8

2
6

2
4

1.00.50.0

2
10

2
8

2
6

2
4

2001000

2
10

2
8

2
6

2
4

2001000

2
10

2
8

2
6

2
4

2001000

2
10

2
8

2
6

2
4

2001000

2
10

2
8

2
6

2
4

2520151050

2
10

2
8

2
6

2
4

2520151050

2
10

2
8

2
6

2
4

2520151050

2
10

2
8

2
6

2
4

2001000

2
10

2
8

2
6

2
4

1.00.50.0

2
10

2
8

2
6

2
4

1.00.50.0

2
10

2
8

2
6

2
4

2001000

2
10

2
8

2
6

2
4

2520151050

2
10

2
8

2
6

2
4

1.00.50.0
Adjusted Fitness

2
10

2
8

2
6

2
4

2001000
Generation

2
10

2
8

2
6

2
4

2520151050
Depth

2
10

2
8

2
6

2
4

2001000

2
10

2
8

2
6

2
4

2520151050

2
10

2
8

2
6

2
4

1.00.50.0

(a) Control

(b) Tenth

(c) Unity

(d) Two

(e) Three

(f) Ten

(g) Hundred

(h) Thous.

210

28

26

24

2520151050

N
od

es
N

od
es

N
od

es
N

od
es

N
od

es
N

od
es

N
od

es
N

od
es

Figure 2.
Best-of-Trial
Results. Each
row summa-
rizes a data
set, where
each data set
consisted of
600 trials.
This figure
shows the
effect of
increasing
ERC values
on the size
and shape of
best-of-trial
individuals.

appropriate set of terminals out of a large set to solve for the
problem. Genres like these also have practical implications for
real-world applications (e.g., [Gilbert, et al. 1998]).

Without knowing the results presented in Section 3, one could
reasonably hold the expectation that the binomial-3 problem
would actually get easier as a

R
 increases. Intuitively, this would

make sense. It is easier to visualize how the value 1 makes
more sense in solving for (x + 1)3 than the value 1000. Clearly,
the “obviously wrong” values would be selected against. By
positing such a hypothesis, one is arguing that content matters
in what makes a problem GP-hard. While for many GP prac-
titioners this makes reasonable sense, in the larger scope of EC
theoretical research on fitness landscapes, the linkage is not
obvious. Terminal content is a matter that arguably goes be-
yond the operator and directed graph formalism of fitness land-
scapes. Furthermore, it would also mean that one intrinsically
binds the concept of fitness landscapes to not just the fitness
function and parse-tree representation, but to the components
used to solve for the fitness function. In other words, one could
recreate a fitness landscape, albeit one specific to GP, by either
an exhaustive or Monte Carlo sampling of random parse tree
programs created from program components.

We would agree that content matters. However, we would also
argue that content alone does not determine problem difficulty.

After all, the binomial-3 problem became harder as a
R
 in-

creased. We posit that context also matters and that context is
an emergent by-product of GP processing.

To a GP system working with X and N random tokens r , at
the outset, all values corresponding to r are equally valid. It is
only after a few iterations of GP that any values of r gain any
meaning (worth) towards solving the problem. Anything that
confounds moving toward a common meaning for a value of
r hinders selection, since the worth ascribed is inconsistent.
What drives inconsistency is the context of an ERC value in a
parse tree. Figure 4 illustrates two common inconsistencies
that can arise.

Figure 4a shows the inconsistencies that arise when the con-
text of an ERC value switches from an intron to a functional
expression. In this example, there are two ERC tokens r

1
 and

r
a
, where r

a
 is not expressed in Parent 1 and r

1
 exists as a part

of Parent 2. In this hypothetical example, r
1
 can occur in the

next generation as part of either of two possible children. The
possible tree fragments are functionally equivalent to (x + r

1
)

or (x + 1). We assume that (x + 1) is a desired fragment to-
wards the solution of the problem. In either possible child,
the meaning of r

1
 is conflicted: in one instance r

1
 means noth-

ing and in the other instance r
1
 appears in the expression of

the tree fragment. We note that the magnitude of this conflict
increases as r

1
 increases. The probability of this occurring in-

creases as the range increases. For example, a value taken from
the range [-1, 1], say 0.9, appears alternately as (x + 1) or (x +
0.9). In contrast, a value taken from the range [-1000, 1000],
say 999.9, appears alternately as (x + 1) or (x + 999.9).

Introns probably represent the most dramatic way an ERC
value can result in inconsistencies. However, there are other
ways that produce such conflicts. Figure 4b shows the another
possibility. As in the hypothetical example depicted in Figure
4a, the meaning of r

1
 is conflicted: in one instance, r

1
 ap-

pears in the numerator and in the other instance, r
1
 appears

in the denominator. We note that as in the previous example,
the magnitude of possible conflict can increase as either r

1
 ≥ 1

and r
1
 increases or | r

1
| < 1 and r

1
 decreases. We further note

that Figures 4a and 4b represent just two of several means in
which inconsistencies can arise in trying to ascribe worth to
an ERC token.

We point out that context-driven inconsistency is not an ei-
ther/or proposition. As a GP run progresses, it is not uncom-
mon for “relatives” to exchange subtrees, which results in
multiple instances of a single token. We have shown in [Daida,
et al. 1999] that what starts out as a single instance of a par-
ticular token value at generation 0 can result at the end of a
GP run, 103–104 instances of that same value. Not surpris-
ingly, then, the same ERC value can simultaneously exist on
both sides of an inconsistency.

Taken in a different perspective, context-dependency is a con-
sequence that can occur as a result of crossover. Large swings
in meaning can significantly affect the functional meaning of
an individual and these swings can be either beneficial or del-
eterious. It is these deleterious swings that other researchers
have labeled as “destructive” crossover. In a sense, varying a

R

varies the destructive effect of crossover.

Figure 3. Hypothetical Population with Ephemeral Random
Constants (ERCs). ERCs are denoted in gray. ERC values are
show in the accompanying table. Although the values change,
the number of ERCs do not.

62 674.0 6.74

i]1,1-[01-[2 01, 2]

1 735.0- 7.35-

2 312.0 3.12

3 820.0- 8.2

4 387.0 3.87

5 425.0 4.25

6 780.0- 7.8-

7 369.0- 3.69-

8 246.0 2.46

9 011.0- 0.11-

… … …

Evidence for the phenomena that we have described can be
seen in Figure 2. Works by others have indicated general trends
when destructive crossover has taken place. The amount of
nonfunctional code increases with the destructiveness of cross-
over; the nonfunctional code serves as a sort of buffer. Conse-
quently, an increase in destructive crossover tends to increase
the amount of nonfunctional code, which in turn creates for
larger and deeper individuals. [Soule and Foster 1997; Banzhaf,
et al. 1998]. The trends in program size and shape shown in
Figure 2 support this. Shorter best-of-trial individuals tended
to occur earlier in a GP-run; larger best-of-trial individuals
tended to occur later. As the difficulty of the problem increased,
the runs generally took longer and the programs were larger
(Figure 2 column 2). Likewise, as the difficulty of the prob-
lem increased, the programs were deeper (Figure 2 column 2).

Researchers have also argued that there are limits to this buff-
ering effect and that there are emergent processes that occur as
GP evolves individuals toward the depth limit, in part because
of this code growth. [McPhee and Miller 1995; Soule and
Foster 1997; Banzhaf, et al. 1998]. In Figure 2 column one,
the trend in adjusted fitness for Unity–Hundred showed the
distribution moving gradually from high fitness to low fit-
ness. However, in Thousand, we note that the pattern for ad-
justed fitness collapsed; the pattern for generations became
inchoate, and the pattern for depth no longer followed the
general trend. We suggest that Thousand represents a case
where the buffering effect, as well as associated emergent pro-
cesses, was no longer able to overcome the destructive effect of
crossover.

That context and content ultimately lie at the root of the de-
structive effect of crossover is shown in Figure 2, Tenth. Fig-

ure 4b represents the case where context switching between
numerator and denominator can be significant, particularly
for values of |r |<< 1.

5. CONCLUSIONS

What makes a problem GP-hard? This paper has considered
the metaphor of a fitness landscape in describing problem dif-
ficulty and has indicated that this metaphor may not have
sufficient explanatory power. We have examined one of the
formalisms that have results from that metaphor and show
that formalisms derived under GA do not account for phe-
nomena observed in GP.

The particular phenomena that we have examined are results
from the binomial-3 problem. The binomial-3 is our simple
test problem that does not have an antecedent in GA research,
but is an instance from a domain that has had an extensive
history of use in GP. We have quantitatively demonstrated that
this problem is tunable while keeping the combinatorial search
space invariant. We have also demonstrated that the tuning
characteristics of this problem are well posed and monotonic
with respect to the tuning parameter a

R
.

Our analysis has shown that both content and context matter
in determining problem difficulty. We have shown that con-
flicts in meaning can result when the context of the terminal
content is switched. We have made a case that this conflict is
an emergent phenomenon and is a result of GP attempting to
ascribe consistent worth among subtrees. For that reason, we
have suggested that the conflict in trying to ascribe worth is a
largely internal process, as opposed to an external environ-
mental that is suggested by the metaphor of a fitness land-
scape.

Our results support conjectures in GP theory that both con-
text and content of subtrees are integral factors to consider.
(See [O’Reilly and Oppacher 1995; Daida, et al. 1999]).

For more information and related papers on this subject, please
see our website at www.sprl.umich.edu/acers.

Acknowledgments

Our work has benefitted extensively from others in our re-
search group: D. Ampy, O. Chaudri, H. Li, and M.
Ratanasavetavadhana, for experiment protocols; G. Eickhoff,
P. Litvak, and S. Yalcin, for their philosophical analysis; S.
Chang, for support software; S. Ross, J.McClain, and M.
Holczer, for their previous unpublished work. We thank U.-
M. O’Reilly, C. Jacob and the other (anonymous) reviewers
for their constructive comments. This research was partially
supported through grants from U-M CoE, UROP-OVPR, and
SPRL. We thank J. Vesecky and S. Gregerman for their con-
tinued support. The first author thanks I. Kristo and S. Daida.

References

Ackley, D. H. (1987). A Connectionist Machine for Genetic Hillclimbing. Bos-
ton: Kluwer Academic Publishing.

Adams, A. (1938). Sierra Nevada: The John Muir Trail. Berkeley: Archetype
Press.

Figure 4. Context of Content Matters in Determining Mean-
ing. The context of ERC determines itsfunctional meaning.
(a) For introns. (b) For division.

+

–

X X

×

ra ÷

X X

+

X

r1

+

–

X X

×

r1 ÷

X X

+

X

+

–

X X

×

ra

+

Xr1

Parent 1
Fragment

Parent 2
Fragment

Child A Fragment

Child B Fragment

(x + 1) r1

(x + r1)

(x + 1)

Parent 1
Fragment

Parent 2
Fragment

Child A Fragment

Child B Fragment

+

+

÷

rc ÷

X X

+

X

ra rb

+

+

÷

rc ÷

X X

+

X

ra r1

+

+

÷

r1 ÷

X X

+

X

ra rb

(x + 1 +
(ra + rb) ⁄ rc)

r1

(x + 1 +
(ra + r1) ⁄ rc)

(x + 1 +
(ra + rb) ⁄ r1)

r1

(a) (b)

Angeline, P. J. (1996). “An Investigation into the Sensitivity of Genetic Pro-
gramming to the Frequency of Leaf Selection During Subtree Crossover.”
In J. R. Koza, D. E. Goldberg, D. B. Fogel and R. L. Riolo (Eds.), Genetic
Programming 1996: Proceedings of the First Annual Conference: July 28–31,
1996, Stanford University. Cambridge: The MIT Press. pp. 21–29.

Angeline, P. J. (1997). “Subtree Crossover: Building Block Engine or
Macromutation?” In J. R. Koza, K. Deb, M. Dorigo, et al (Eds.), Genetic
Programming 1997: Proceedings of the Second Annual Conference, July 13-16,
1997, Stanford University. San Francisco: Morgan Kaufmann Publishers. pp.
9–17.

Banzhaf, W., P. Nordin, et al. (1998). Genetic Programming: An Introduction:
On the Automatic Evolution of Computer Programs and Its Applications. San
Francisco: Morgan Kaufmann Publishers, Inc.

Daida, J. M., R. B. Bertram, J. A. Polito 2, and S. A. Stanhope. (1999).
“Analysis of Single-Node (Building) Blocks in Genetic Programming.” In L.
Spector, W. B. Langdon, U.-M. O’Reilly and P. J. Angeline (Eds.), Advances
in Genetic Programming 3. Cambridge: The MIT Press (In press).

Daida, J. M., S. J. Ross, et al. (1997). “Challenges with Verification, Repeat-
ability, and Meaningful Comparisons in Genetic Programming.” In J. R.
Koza, K. Deb, M. Dorigo, et al. (Eds.), Genetic Programming 1997: Proceed-
ings of the Second Annual Conference, July 13-16, 1997, Stanford University.
San Francisco: Morgan Kaufmann Publishers. pp. 64–69.

De Jong, K. A. (1975). An Analysis of the Behavior of a Class of Genetic Adap-
tive Systems. Ph.D. dissertation. Ann Arbor, The University of Michigan.

Depew, D. J. and B. H. Weber (1995). Darwinism Evolving: Systems Dynam-
ics and the Genealogy of Natural Selection. Cambridge: The MIT Press.

Dobzhansky, T. (1941). Genetics and the Origin of the Species. New York: Co-
lumbia University Press.

Evett, M., and T. Fernandez (1998). “Numeric Mutation Improves the Dis-
covery of Numeric Constants in Genetic Programming.” In J. R. Koza, W.
Banzhaf, K. Chellapilla, et al (Eds.), Genetic Programming 1998: Proceedings
of the Third Annual Conference, July 22–25, 1998, University of Wisconsin,
Madison. San Francisco: Morgan Kaufmann Publishers. pp. 66–71.

Gathercole, C. and P. Ross (1996). “An Adverse Interaction between Cross-
over and Restricted Tree Depth in Genetic Programming.” In J. R. Koza, D.
E. Goldberg, D. B. Fogel and R. L. Riolo (Eds.), Genetic Programming 1996:
Proceedings of the First Annual Conference: July 28–31, 1996, Stanford Uni-
versity. Cambridge: The MIT Press. pp. 291–296.

Horn, J. and D. E. Goldberg (1995). “Genetic Algorithm Difficulty and the
Modality of Fitness Landscapes.” In L. D. Whitley and M. D. Vose (Eds.),
Foundations of Genetic Algorithms 3. pp. 243–269.

Jefferson, D., R. Collins, et al. (1991). “Evolution as a Theme in Artificial
Life: The Genesys/Tracker System.” In C. Langton, C. Taylor, J. Farmer,
and S. Rasmussen (Eds.), Artificial Life II. Redwood City: Addison-Wesley.
pp.549–578.

Jones, T. and S. Forrest (1995). “Fitness Distance Correlation as a Measure of
Problem Difficulty for Genetic Algorithms.” In L. J. Eshelman (Ed.), Pro-
ceedings of the Sixth International Conference on Genetic Algorithms. San Fran-
cisco: Morgan Kaufmann Publishers, Inc. pp. 184–192.

Jones, T. C. (1995). Evolutionary Algorithms, Fitness Landscapes and Search.
Ph.D. Dissertation. Albuquerque: University of New Mexico.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge: The MIT Press.

Koza, J. R. (1994). Genetic Programming II: Automatic Discovery of Reusable
Programs. Cambridge: The MIT Press.

Langdon, W. B. and R. Poli (1998). “Why Ants Are Hard.” In J. R. Koza, W.
Banzhaf, K. Chellapilla, et al (Eds.), Genetic Programming 1998: Proceedings
of the Third Annual Conference, July 22–25, 1998, University of Wisconsin,
Madison. San Francisco: Morgan Kaufmann Publishers. pp. 193–201.

Luke, S. and L. Spector (1998). “A Revised Comparison of Crossover and
Mutation in Genetic Programming.” In J. R. Koza, W. Banzhaf, K.
Chellapilla, et al (Eds.), Genetic Programming 1998: Proceedings of the Third
Annual Conference, July 22–25, 1998, University of Wisconsin, Madison. San
Francisco: Morgan Kaufmann Publishers. pp. 208–213.

Mathias, K. and L. D. Whitley (1992). “Genetic Operators, the Fitness Land-
scape and the Traveling Salesman Problem.” In R. Männer and B. Manderick
(Eds.), Parallel Problem Solving in Nature. Amsterdam: Elsevier Science Pub-
lishers B. V. pp. 219–228.

Matsumoto, M. and T. Nishimura (1997). mt19937.c. Keio, Department of
Mathematics, Keio University. http://www.math.keio.ac.jp/~matumoto/
emt.html.

Matsumoto, M. and T. Nishimura (1998). “Mersenne Twister: A 623-Di-
mensionally Equidistributed Uniform Pseudorandom Number Generator.”
ACM Transactions on Modeling and Computer Simulation 8(1): 3–30.

McPhee, N. F., N. J. Hopper, et al. (1998). “Impact of Types on Essentially
Typeless Problems in GP.” In J. R. Koza, W. Banzhaf, K. Chellapilla, et al
(Eds.), Genetic Programming 1998: Proceedings of the Third Annual Confer-
ence, July 22–25, 1998, University of Wisconsin, Madison. San Francisco:
Morgan Kaufmann Publishers. pp. 232–240.

McPhee, N. F. and J. D. Miller (1995). “Accurate Replication in Genetic
Programming.” In L. J. Eshelman (Eds.), Proceedings of the Sixth Interna-
tional Conference on Genetic Algorithms. San Francisco: Morgan Kaufmann
Publishers, Inc. pp. 303–309.

Mitchell, M., S. Forrest, et al. (1992). “The Royal Road for Genetic Algo-
rithms: Fitness Landscapes and GA Performance.” In F. J. Varela and P.
Bourgine (Eds.), Proceedings of the First European Conference on Artificial
Life. Toward a Practice of Autonomous Systems. Cambridge: The MIT Press.
pp. 245–254.

O’Reilly, U.-M. (1998). “The Impact of External Dependency in Genetic
Programming Primitives.” In Proceedings of 1998 IEEE International Con-
ference on Systems, Man, and Cybernetics. Piscataway: IEEE Press. pp. 306–
311.

O’Reilly, U.-M. (1997). “Using a Distance Metric on Genetic Programs to
Understand Genetic Operators.” In Proceedings of 1997 IEEE International
Conference on Systems, Man, and Cybernetics. Piscataway: IEEE Press. pp.
4092–4097.

O’Reilly, U.-M. and D.E. Goldberg (1998). “How Fitness Structure Affects
Subsolution Acquisition in Genetic Programming.” In J. R. Koza, W. Banzhaf,
K. Chellapilla, et al (Eds.), Genetic Programming 1998: Proceedings of the
Third Annual Conference, July 22–25, 1998, University of Wisconsin, Madi-
son. San Francisco: Morgan Kaufmann Publishers. pp. 269–277.

O’Reilly, U.-M. and F. Oppacher (1995). “The Troubling Aspects of a Build-
ing Block Hypothesis for Genetic Programming.” In L. D. Whitley and M.
D. Vose (Eds.), Foundations of Genetic Algorithms 3. San Francisco: Morgan
Kaufmann Publishers. pp. 73–88.

Punch, W. F., D. Zongker, et al. (1996). “The Royal Tree Problem, a Bench-
mark for Single and Multiple Population Genetic Programming.” In P. J.
Angeline and K. E. Kinnear, Jr. (Eds.), Advances in Genetic Programming.
Cambridge: The MIT Press. pp. 299–316.

Raidl, G. R. (1998). “A Hybrid GP Approach for Numerically Robust Sym-
bolic Regression.” In J. R. Koza, W. Banzhaf, K. Chellapilla, et al (Eds.),
Genetic Programming 1998: Proceedings of the Third Annual Conference, July
22–25, 1998, University of Wisconsin, Madison. San Francisco: Morgan
Kaufmann Publishers. pp. 323–328.

Simpson, G. G. (1944). Tempo and Mode in Evolution. New York: Columbia
University Press.

Soule, T. and J. A. Foster (1997). “Code Size and Depth Flows in Genetic
Programming.” In J. R. Koza, K. Deb, M. Dorigo, et al (Eds.), Genetic Pro-
gramming 1997: Proceedings of the Second Annual Conference, July 13-16,
1997, Stanford University. San Francisco: Morgan Kaufmann Publishers. pp.
313–320.

Soule, T., J. A. Foster, and J. Dickinson (1996). “Using Genetic Program-
ming to Approximate Maximum Cliques.” In J. R. Koza, D. E. Goldberg,
D. B. Fogel and R. L. Riolo (Eds.), Genetic Programming 1996: Proceedings
of the First Annual Conference: July 28–31, 1996, Stanford University. Cam-
bridge: The MIT Press. pp. 400–405.

Wright, S. “The Roles of Mutation, Inbreeding, Crossbreeding and Selection
in Evolution.” In Proc of the Sixth International Congress of Genetics. pp.
356–366.

Zongker, D. and W. Punch (1995). lilgp. Lansing, Michigan State University
Genetic Algorithms Research and Applications Group. http://
garage.cps.msu.edu/software/software-index.html.

