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Abstract

The aim of this contribution is: (1) to present
an easy to maintain robot hardware plat-
form which allows on-line evolutionary ex-
periments and demonstrations; (2) to intro-
duce a simple method to measure dynamical
characteristics of the time-dependent �tness
landscape by using reference individuals; (3)
to demonstrate dynamical properties of the
�tness landscape based on �tness measure-
ments of reference individuals. The impli-
cation of the observations for the design of
on-line EAs in time-dependent �tness land-
scapes are discussed.

Keywords: genetic programming, evolu-
tionary robotics, on-line evolution, dynami-
cal �tness landscape, reference �tness

1 INTRODUCTION

In a conventional evolutionary algorithm (EA) [1] it
is assumed that one �tness value is assigned to each
individual1. In a typical implementation the �tness is
evaluated, when the individual is created and stored
together with the individual in the population data
structure. In this case the �tness landscape2 can be

1An individual is de�ned as an element of the search
space.

2A �tness landscape is the relation between individ-
uals and �tness values. The �tness value characterizes the
quality of an individual which should be optimized. This
notion of �tness should not be confused with the biological
notion of �tness.

expressed as a mathematical function. If the �tness
function is non-deterministic, the �tness of an individ-
ual can be described by a probability distribution. If
this probability distribution changes over time we call
the �tness landscape dynamic.

Dynamic �tness landscapes are typical phenomena
encountered in the �eld of evolutionary robotics es-
pecially in on-line evolutionary experiments on real
robots [5, 10, 12, 13, 16]. Another domain deal-
ing with dynamical �tness landscapes is co-evolution
[6, 11] where the �tness of an individual depends on
the phenotype of the individuals in the current popu-
lation. This is qualitatively di�erent to the robotic ex-
periments, because here the �tness landscape depends
on the position of the robot in the environment and
the state of the environment. Dynamic �tness land-
scapes can be modeled as oscillating functions (e.g.
oscillating Fletcher-Powell function [9] or oscillating
NK-landscapes [17]) which depend on time, only.

Note that in general the change of a dynamic �tness
landscape can not be regarded as a function over time
which maps t to a �tness function, as in [9, 17]. In
our case the change of the �tness landscape depends
heavily on previous �tness evaluations and therefore
on robot actions. The landscape changes because the
robot moves around and thus encounters situations of
di�erent di�culty. The change of the �tness landscape
should be regarded as a dynamical process in
uenced
by the executed individuals controlling the robot.

In this paper we introduce a simple method how the
change of the �tness landscape over time can be vi-
sualized and analyzed based on reference individuals.
The method is demonstrated by applying it to the evo-



lution of a controller for a random morphology robot
which should move the robot forward as fast as pos-
sible. We found that the �tness landscape changes
drastically over time. It is also shown that there may
be regions in time where good individuals can not be
discriminated from better ones. Potential implications
for the design of evolutionary algorithms for dynamical
�tness landscapes are discussed.

2 RANDOM MORPHOLOGY

ROBOT

A random morphology robot (RM robot) is composed
of a couple of servo motors which are connected ar-
bitrarily (Fig. 1 and 2) [3, 4]. Thus, its morphol-
ogy is called random. The hardware structure can
be changed very easily and can even be made arbi-
trarily complex by simply adding more servo motors
and connections. Simulations of evolving morpholo-
gies in virtual environments [7, 15] have motivated the
RM robot. It is also related to bio-inspired robots
which consist of many similar and simple intercon-
nected components [18].

Figure 1: The random morphology robot (RM robot)
without movement measuring cart.

Actuators: The RM robot is composed of a couple of
conventional RC servos which are connected randomly.
These devices possess a complete servo system includ-
ing: motor, gear box, feedback device, servo control
circuit, and drive circuit. The connections are made
by brass poles available for hobby modeling. They can
be easily connected to the servos, thus one can set up
or change an architecture quickly, which is useful for
evolutionary experiments in hardware.

Sensors: Movement of the RM robot is measured by
a computer mouse device, mechanically connected to
the robot (Fig. 2). This device allows precise mea-
surement of motion in the 2-D plane. The positional
error is about 1mm.

Figure 2: The random morphology robot from top
with movement measuring cart. This picture has been
taken during the experiments described here.

Control: The servos are controlled by a pulse signal
generated by a micro-controller connected to the host
computer by a serial RS232 interface. The host is a
PC running LINUX which we found well suited for this
task. It is fast enough even without a real-time kernel.
A piece of interface software was written to control the
servos via the serial RS232 line.

3 EVOLVING ROBOT

CONTROLERS

To evolve control programs we applied GP [2, 8] as a
learning method. A variant of stochastic sampling as
in [14] has been used where the �tness evaluation for
an individual is performed by allowing the individual
to control the robot only for a short time (here, about
10 seconds).

3.1 THE GENETIC PROGRAMMING

SYSTEM

Here, a simple tree-based steady-state GP algorithm
is applied. An individual controls the robot only for
short time by executing the individual a few times (see
Sec. 3.3). Its performance is measured while the robot
advances in the desired direction. The �tness is eval-
uated during the tournament selection. In a tourna-
ment four individuals are selected randomly. Their
�tness is evaluated by calling the procedure evalF it()
(Sec. 3.3). The two worst performing individuals are
replaced by o�springs from the two best performing in-
dividuals. As in conventional GP one subtree in each
parent is selected randomly and exchanged for recom-
bination. Nodes near the root have a higher probabil-
ity to be selected as crossover points in order to reduce
the number of neutral recombinations. After recom-



bination each o�spring is mutated with a probability
of 0.9. For this one randomly selected node from the
o�spring is replaced by a node randomly selected from
the set of nodes with the same arity. So, a terminal is
always replaced by another terminal.

3.2 INDIVIDUAL SYNTAX AND

SEMANTICS

An individual is represented by a parse tree with the
function set shown in Tab. 1. The arithmetic opera-
tors have arity two, DELAY and SETSERVOx have
arity one. The leafs are 
oat constants from the inter-
val [�150; 150]. When an individual I is executed by
the interpreter (exec(I)) its return value is discarded.
Its output are side e�ects generated by DELAY and
SETSERVOx. The operation (DELAY t) causes the
interpreter to pause for t milliseconds. The operation
(SETSERVOx a) sets the servo position of servo x to
angle a. The operation does not wait until the servo
motor has adjusted the servo to the new position but
returns immediately so that di�erent servos can be set
virtually at once by successive SETSERVOx opera-
tions.

Similar to the arti�cial ant example ([8], p. 147) an
individual is executed in the following loop which is
used for �tness evaluation:

execInd(I; tmax; nmax) :=
(1) nrep  0 and set real time clock to zero
(2) exec(I)
(3) nrep  nrep + 1
(4) if nrep < nmax and real time < tmax goto 2
(5) return (real time =nrep , n )

The procedure execInd(I; tmax; nmax) executes the in-
dividual I until the maximumtime tmax or the number
of allowed executions nmax is exceeded. It returns the
number of executions nrep and the average execution
time per individual in seconds.

3.3 FITNESS EVALUATION

To evaluate the current �tness f = evalF it(I) of an
individual I the robot is initialized by executing the in-
dividual a few times for about 3 seconds without mea-
suring the movement (step (1)). Then the individual is
executed for about 8 seconds while the distance moved
is measured (steps (2)-(4)). The resulting �tness is a
weighted sum of the covered distance and speed. The
algorithm for evaluating the �tness of an individual I
reads:

evalF it(I) :=
(1) execInd(I; 3s; 4)
(2) (x1; y1) getMousePosition()
(3) (�t; nrep) execInd(I; 8s; 20)
(4) (x2; y2) getMousePosition()
(5) sf  (y1 � y2)=nrep , ss  (x1 � x2)=nrep
(6) vf  sf=�t, vs  ss=�t
(7) return f  (1

3
sf + vf ) +

1

8
(1
3
ss + vs)

where sf and ss is the distance covered by one individ-
ual forward and sidewards, respectively. �t is the real
time (measured in seconds) that is required for one
execution of the individual, vf and vs are the speed
the robot moves forward and sidewards, respectively.
The procedure getMousePosition() returns the cur-
rent mouse position.

3.4 REFERENCE FITNESS

From diagrams showing the population �tness over
time (e.g. best or average �tness) it is not possible
to derive with con�dence whether the system achieves
any improvements. This is because the �tness land-
scape constantly changes. In order to overcome this
problem we have de�ned a reference �tness fref (t),
which is the �tness of a well performing reference in-
dividual that is evaluated after each tournament.

Based on reference �tness the relative �tness

frel(I; t) of an individual can be calculated as

frel(I; t) =
f(I; t)

fref (t)
(1)

where f(I; t) is the �tness of the individual measured
nearly at the same time as the reference �tness is mea-
sured and fref (t) > 0.

It is important to choose good programs as reference
individuals possessing high �tness values to reduce

uctuations of the relative �tness.

3.5 BEHAVIOR OF THE GP SYSTEM

In [3, 4] we have shown that tree-based and linear GP is
able to evolve control programs which move the robot.
Figure 3 shows �tness over time of an experiment with
the setting given in Tab. 1. As it can be observed in
Fig. 3 absolute �tness values and relative �tness are

uctuating heavily which is typical for all experiments.

4 DYNAMIC CHARACTERISTICS

OF THE FITNESS LANDSCAPE

This section describes the result from an investigation
of dynamic properties of the changing �tness land-



Objective Find a program that moves the robot straight on as fast
as possible

Raw �tness The sum of pixels the mouse pointer travels in a de-
sired direction minus the sum of pixels the mouse pointer
travels in the opposite direction. (See text.)

Fitness Weighted sum of speed and distance traveled. (See
text.)

Terminal set CONST (random constants)
Function set ADD, SUB, MUL, DIV, DELAY, SETSERVO0,

SETSERVO1, SETSERVO2, SETSERVO3,
SETSERVO4, SETSERVO5, SETSERVO6

Population size M = 50
Initialization method half-and-half, max nodes: 200, max depth: 50
Maximal number of nodes lmax = 500 nodes
Probability of mutation pm = 0:9
Number of nodes mutated nmut = 1 node
Probability of crossover pc = 1:0
Probability of reproduction pr = 0
Tournament size for genetic operators Tr = 4
Termination criteria decision by experimenter

Table 1: Koza tableau of the evolution of motion control programs for the experiments reported here.

scape. It is not intended to characterize the land-
scape according to the search space (e.g. ruggedness
or causality ) but to characterize its time-dependence.

4.1 METHOD

For our analysis the following method has been ap-
plied:

Step 1: Select reference individuals from di�erent
sources, e.g. from normal evolutionary runs or random
populations. It is important that (at least some of) the
individuals have high �tness values.

Step 2: Perform experiments each with two reference
individuals I1; I2 selected from this set by evaluating
their �tness alternating with the same setting as have
been used in the evolutionary experiments:

measureF it(I1; I2) :=

(1) t 0
(2) F (I1; t) evalF it(I1)
(3) t t+ 1
(4) F (I2; t) evalF it(I2)
(5) t t+ 1
(6) goto (2)

Step 3: Use obtained data F (: : :) to characterize the
dynamic property of the �tness landscape as it will be
demonstrated in the following sections.

4.2 REFERENCE INDIVIDUALS

For the experiments reported here we took seven ref-
erence individuals, arbitrarily: three reference individ-
uals from two evolutionary experiments (speed2-long
and speed2-1) with the same setting as shown in Tab. 1
and four from a sequence of randomly generated indi-
viduals. We assured that the strategy of the individ-
uals to move the robot are di�erent. And we inten-
tionally selected well and poor performing individuals
to get a diverse spectrum. The �tness values given in
the following table are the �tness values obtained in
the experiments. A comparison of the quality of two
individuals should not be based on these values.

name f source avg. performance
ind1 5.14015 speed2-long very good
ind2 4.02222 speed2-1 good
ind3 2.91667 rand good
ind4 2.08333 rand poor
ind5 1.23958 speed2-long poor
ind6 0.266667 rand very poor
ind7 0791667 rand very poor

4.3 RESULTS

The results described in this section are based on 17
runs of the algorithmmeasureF it(: : :) (Sec. 4.1) with
9 di�erent pairings of the reference individuals ind1
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Figure 3: Smoothed �tness development over time
(top) and relative �tness of a long run [4]. The refer-
ence individual has been taken as the best individual
of generation 5 (Series 3, run speed2-long).

- ind7. For these experiments a total of 7467 �tness
evaluations have been performed. A typical run of 500
�tness evaluation lasts about 2 hours. To present and
discuss the data obtained typical graphs are shown
below. The data of all runs is available via WWW
from the address given below.

4.3.1 Very Good vs. Good

Figure 4 shows a typical run with ind1 (very good)
and ind2 (good). The robot performs a trajectory
as illustrated in Fig. 6 which is also typical for 90%
of all runs. During the robot movement the �tness
landscape changes dramatically. Overall it becomes
more di�cult because the cable stretches and the robot
turns around. This latter fact has a strong in
uence
because carpet is not \isotropic". In the orientation
at position (P1) in Fig. 6 friction between servos and
the carpet is much higher than in the orientation at
position (P3) so that it is easier to move.

When the robot has reached position (P3) �tness eval-
uation process is halted (after step (4) of algorithm
evalF it(: : :)) and the robot is relocated to position
(P1) by hand. This is indicated in the diagrams by a
sudden increase of the �tness values.
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Figure 4: Fitness development over time of individuals
ind1 and ind2. The robot has been relocated to posi-
tion (P1) three times in this �gure. Series B, run2-4.

4.3.2 Good vs. Poor

Figure 5 shows a typical run of a well performing and
poorly performing reference individual. The good in-
dividual (ind3) can be clearly discriminated from the
bad individual (ind4) in nearly all situations.
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Figure 5: Fitness over time of individuals ind3 and
ind4. The graph represents one robot trajectory with-
out any relocation. Series B, run3-2.

4.3.3 Good vs. Good

Figure 7 shows the di�erential �tness over time of two
well-performing individuals (ind2 vs. ind3) with simi-
lar average performance. The points H1 to H7 in Fig. 7
mark the relocation of the robot to its starting position
(P1). Figure 6 shows a typical movement of the robot
between t = 100 and t = 240, according to Fig. 8. The
movement is subdivided into four phases represented
by position (P1) to (P4) in Fig. 6:

phase meaning
P1 start
P2 a curve with an angle of 180 degree
P3 a route straight on
P4 low �tness values caused by the

stretched cable and orientation
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Figure 6: Typical behavior of the RM robot during
the experiments. The numbers are time steps refering
to Fig. 8

For analysis we now concentrate on a typical trajectory
from (P1) to (P4) sketched in Fig. 6. Figure 8 shows an
enlarged window of the �tness development between
t = 100 and t = 240. In the �rst phase ind3 is superior
to ind2. If the situation becomes more di�cult two
qualitatively di�erent behaviors can be observed. For
example, between t = 170 and t = 190 the �tness of
both is very low and they cannot be discriminated. In
the interval t = 190 to t = 210 ind2 is superior to ind3
which has a �tness near zero.

Looking at the movements during this time the high
�tness of ind3 corresponds with the curve phase at
(P2). Better �tness values of ind3 corresponds with
the straight-on phase at (P3). This is a typical ex-
ample of two individuals performing di�erently in dif-
ferent situations, e.g. ind3 when the situation favors
curves, ind2 when a straight-on movement is favored,
which depends on the cable and carpet.

Expanded to the complete run (showed in Fig. 7) this
assumption has been con�rmed in several sections. Su-
perior �tness values of ind3 correlate with curve phases
and superior values of ind2 with straight-on phases.

This shows that even in this simple experimental set-
ting there are regions in search space where the �tness
landscape can be described as oscillating, which moti-
vates to model �tness landscapes as (partly) oscillating
functions [9, 17].

5 CONCLUSION

The �tness landscape changes because the robot moves
around and thus encounters situations of di�erent dif-
�culty. We have demonstrated that in our case the
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Figure 7: Di�erential �tness development of two well
performing individuals (ind2 vs. ind3). Series B, run6-
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Figure 8: Fitness and di�erential �tness development
of ind2 vs. ind3. Enlarged window of Fig. 7. Series B,
run6-1.

�tness landscape changes drastically so that it is dif-
�cult to compare individuals based on �tness values
evaluated at di�erent points in time. In a di�cult
situation, a good individual cannot be discriminated
from an individual with an overall lower performance.
In easy situations where high �tness values can be ob-
tained good individuals can be compared based on the
relative �tness, because the noise level is lower and
discrimination is easier. There are also regions where
the �tness landscape can be described as oscillating
which makes comparisons based on the relative �tness
problematic.

The implication for the design of on-line evolutionary
algorithms is: There are regions in time where the �t-
ness landscape does not allow to discriminate well from
better performing individuals. These situations can be
detected by measurements based on reference individ-
uals. In these regions, evolution should be \turned
o�" and can be turned on again when the robot has
left these regions. It may also be helpful to use not
only one reference individual (as shown in Fig. 3) but
two or more which allows to measure how well individ-
uals can be discriminated in the current situation and



whether the landscape oscillates.
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Supplement Material

To ensure reproducibility more detailed information,
source code, raw experimental data and hints for set-
ting up the hardware are available from:

http://ls11-www.cs.uni-dortmund.de/alife/rmrobot
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