
Genetic Programming with Incremental Data Inheritance

Byoung-Tak Zhang

Arti�cial Intelligence Lab (SCAI)
Dept. of Computer Engineering

Seoul National University
Seoul 151-742, Korea

http://scai.snu.ac.kr/~ btzhang

Je-Gun Joung

Arti�cial Intelligence Lab (SCAI)
Dept. of Computer Engineering

Seoul National University
Seoul 151-742, Korea

http://scai.snu.ac.kr/~ jgjoung

Abstract

A data-driven method for accelerating ge-
netic programming is presented. This
method, called incremental data inheritance
or IDI for short, evolves programs using
program-speci�c subsets of given data which
also evolve incrementally as generation goes
on. The concept of data evolution in IDI
is contrasted to conventional genetic pro-
gramming in which all the given training
data are used repeatedly. IDI is also dis-
tinguished from the previous subset selec-
tion methods in that each program in IDI
evolves its own data set of incremental size
rather than a common data set of �xed or
arbitrary size for the whole population. The
method has been applied to time series pre-
diction. Compared to the conventional meth-
ods, IDI signi�cantly reduced the evolution
speed of genetic programming without loss
of the generalization accuracy of evolved pro-
grams. We also provide a theoretical foun-
dation of the IDI method from the Bayesian
inference point of view.

1 Introduction

The computational time for evolving programs in ge-
netic programming (GP) is proportional to the prod-
uct of population size, generation number, and the size
of data for �tness evaluation. Typical population size
for GP ranges from a few hundreds to several thou-
sands [7, 2]. A run usually takes several dozens to
hundreds of generations. The data size depends on
applications, ranging from a few dozens to thousands
of �tness cases. Fitness evaluation takes the most of
computational e�ort in GP since it requires programs
to be executed against �tness cases.

The basic idea behind the incremental data inheri-
tance (IDI) approach described in this paper is that
�tness evaluation time can be reduced by evolving the
programs using a small but representative set of �t-
ness data rather than all the �tness cases geiven. We
present a method for actively selecting (or evolving)
data sets while evolving programs. This idea of active
data selection in supervised learning is not very new; It
has been used for e�cient learning and optimization
of neural networks in GENIE [12]. The given data
set B is initially divided into two disjoint subsets of
a small training data D and the remaining candidate
data C. Then, in its selective incremental learning
or SEL mode [17, 14], the neural network is trained
on D which evolves incrementally by choosing data
from C that have large errors on the current neural
network. When the candidate set C is automatically
generated by a genetic algorithm, the method is called
creative incremental learning or CSEL [18]. When the
network architecture also grows while the training data
set grows, the method is called self-development learn-
ing or SELF [13]. In GENIE, only one program and
one data set are maintained.

Recently, Gathercole and Ross [4, 5] introduced a sim-
ilar data selection method into genetic programming.
Their DSS (dynamic subset selection) method involves
picking a subset of cases from the full training set for
each generation. Each generation of GP is evaluated
using only this subset. In DSS, the subset size is �xed
as an algorithm parameter. The cases are selected ac-
cording to their di�culty and age. Siegel [9] describes
a similar algorithm, but does not make use of the age
of data. Daida et al. [3] studied a dynamic �tness
evaluation method in genetic programming for image
classi�cation.

More recently, Teller and Andre [11] presented the
RAT (rational allocation of trials) method that au-
tomatically chooses the number of �tness cases. RAT
allocates individual programs to tournaments prior to

their evaluation, and then allocates �tness cases only
to those individuals for which the cost of evaluating
another �tness case is outweighed by the expected util-
ity that the new information will provide. Previously,
Angeline and Pollack [1] reported that competitive en-
vironments evolve better solutions for complex tasks.

Incremental data inheritance is distinguished from the
previous studies in several aspects. First, IDI main-
tains a separate data set associated with each program,
rather than a common data set for all programs as
in DSS. Second, the data size in IDI increases mono-
tonically as generation goes on. This is important
for convergence of performance and contrasted with
RAT. Third, data sets evolve by inheriting the data of
their parents (data inheritance) just as the programs
inherit their structures from their parents' (program
inheritance). The concept of data inheritance and pro-
gram inheritance provides an interesting property that
can be naturally integrated into the Bayesian infer-
ence framework. More theoretical treatment of the
IDI method with applications to classi�cation and di-
agnostic problems can be found in [15]. In this paper,
we focus on the speed-up e�ect of IDI in genetic pro-
gramming applied to time-series prediction.

The paper is organized as follows. Section 2 describes
IDI in more detail. Section 3 presents the experimen-
tal results, analyzes the characteristics of evolved data
sets, and compares its performance with those of con-
ventional methods. Sections 4 and 5 provide theoret-
ical foundations of the presented method and draws
conclusions.

2 Incremental Data Inheritance

2.1 Algorithm Description

The basic idea in genetic programming with incremen-
tal data inheritance is that programs and their data
are evolved at the same time. With each program is
associated a separate data set. Programs are tree-like
structures while data are �tness cases used for evolv-
ing programs. Thus, IDI distinguishes two popula-
tions: program population and data population. The
program population A(g) consists of program individ-
uals Ai(g) and the data population D(g) consists of
data individuals Di(g), where g denotes the genera-
tion number.

The program population has a �xed size of M , while
the size of the data population increases incrementally.
The initial program population A(0) is created ran-
domly. The initial data population D(0) of size n0 is
created by �tness cases chosen (at random) from the

1. Initialize program population A(0) of size M .

2. Initialize data population D(0) of size n0. Each
data set Di(0) is randomly sampled from the
basis data set D(N) of size N which is given.

3. Set generation count g 1.

4. While (g � gmax) do

(a) Evaluate �tness Fi(g) of programsAi(g) us-
ing associated data sets Di(g).

(b) Repeat until (M o�spring programs are
generated)

i. (Program inheritance) Select and re-
combine two parent programs Ai(g) and
Aj(g) to generate two o�spring pro-
grams Ai(g + 1) and Aj(g + 1).

ii. (Data inheritance) Recombine two par-
ent data sets Di(g) and Dj(g) to gen-
erate two o�spring data sets Di(g + 1)
and Dj(g+1) with jDi(g+1)j � jDi(g)j
(see text for more details).

(c) g g + 1.

Figure 1: Outline of genetic programming with incre-
mental data inheritance (IDI).

given basis data set D(N) of size N . Then the data
population evolves as the program population evolves.
The entire process is summarized in Figure 1.

At each generation g, the �tness value Fi(g) of all pro-
grams Ai(g) are evaluated using the associated data
sets Di(g). Fitter programs are chosen into the mat-
ing pool B(g) and then the mating process is repeated
until M o�spring programs are produced.

The mating process is divided into two phases: pro-
gram inheritance and data inheritance (Figure 2). The
program inheritance phase evolves child programs,
Ai(g+1) and Aj(g+1), from parent programs, Ai(g)
and Aj(g), using crossover and mutation. This is the
same as in standard genetic programming. The data
inheritance phase is similar to the program inheritance
phase except it evolves data sets rather than programs.

2.2 Uniform Data Crossover

Several data inheritance mechanisms are possible. We
propose a variant of uniform crossover that we call
uniform data crossover. A simpli�ed example for illus-
trating this process is given in Figure 3.

Two parent data sets, Di(g) and Dj(g), are crossed to
inherit their subsets to two o�spring data sets, Di(g+

A1 g()+1 A2 g()+1 A3 g()+1 . . . AN-2()g+1 AN-1 g()+1 AN()gg+1

D1 g()+1 D2 g()+1 . . . DN-1()g+1 N()gg+1DN-2()D3 g+1 D ()g+1

g()1A g()2A g()3A . . . ()gN-2A g()AN-1 ()ggAN

g()1D g()2D g()3D . . . ()gN-2D DN-1()g ()ggDN

data
inheritance

program
inheritance

generation g+1

generation g

Figure 2: The program inheritance and data inheri-
tance in genetic programming with incremental data
inheritance.

1) and Dj(g + 1). In the uniform data crossover, the
data of parents' are mixed into a union set

Di+j(g) = Di(g) [Dj(g); (1)

which are then redistributed to two o�spring Di(g+1)
and Dj(g+1), where the size of o�spring data sets are
equal to ng+1 = ng +�, where � � 1 is the data incre-
ment size. Thus, the size of data sets monotonically
increases as generation goes on.

To ensure performance improvement, it is important
to maintain the diversity of the training data during
evolution. The diversity of data set Di(g) is measured
by the ratio of distinctive examples:

di =
jDi+j(g)j

jDi(g)j
� 1; 0 � di � 1 (2)

where di = 0 if the parents have the same data and
di = 1 if parents have no common training examples.
To maintain the diversity, a portion � of the diversity
factor di is used to import examples from the basis
data set.

ri = � � (1� di); 0 � � � 1: (3)

This injection can be regarded as a data mutation.

Figure 3 illustrates the process, where two parent data
sets of size 6 each are unioned to form the genetic pool
of size 10, from which two o�spring data sets of size
8 each are inherited. Marked are the data imported
from the basis data set to maintain the diversity.

2.3 The Adaptive Fitness Function

Note that each program uses a di�erent set of �tness
cases, and thus the �tness function changes as gen-
eration goes on. To de�ne our �tness function, let
L(Di(g)jAi(g)) denote a code length for describing

Di(g) Dj(g)

Offspring data

Parent data

d12 d19dd d2 d17d19d16d d8 d13 d 7dd3 10

d dd dd2 1612

d d158 d12 d16 d19

d8dd 1915d7d3d1 8d6

7d6d3d2d1d

7 14d

3

Di)g(j+

Di(g Dj(g)+1 +1)

15d3

Figure 3: Data crossover: a simpli�ed example.

data Di(g) using program Ai(g). We also consider
the description length of the program itself, denoted
L(Ai(g)). The �tness is then de�ned as their sum:

Fi(g) = L(Di(g)jAi(g)) + L(Ai(g)): (4)

Minimizing this quantity is known as the minimum de-
scription length (MDL) principle [8]. The MDL princi-
ple leads to �nding the most compact program having
good predictive performance for unseen data.

The exact calculation of information-theoretic code
lengths requires the true probability distribution of un-
derlying data structure which is in most real situations
unknown. Instead, we de�ne an adaptive �tness func-
tion in its most general form as

Fi(g) = L(Di(g)jAi(g)) + L(Ai(g))

= �FD + �FA

= E(Di(g)jAi(g)) + �(g)C(Ai(g)); (5)

where E(Di(g)jAi(g)) and C(Ai(g)) are the mea-
sures for error and complexity of the program.
Here, we have used the relation L(Di(g)jAi(g)) =
� logP (Di(g)jAi(g)) / E(Di(g)jAi(g)) with the as-
sumption of Gaussian noise in the training data. The
parameter �(g) balances the two factors (E(�) and
C(�)) as follows

�(g) =

(
1
n2g

Ebest(g�1)

Ĉbest(g)
if Ebest(g � 1) > �

1
n2g

1
Ebest(g�1)�Ĉbest(g)

otherwise:
(6)

This is the adaptive Occam method [16] in which ng is
now a variable that increases monotonically as a func-
tion of generation g. User-de�ned constant � speci-
�es the maximum training error allowed for the run.
Ebest(g�1) is the error of the best model of generation
g � 1. Ĉbest(g) is the size of the best model at gener-
ation g estimated at generation g � 1. These are used
to balance the error and complexity terms to obtain
models as parsimonious as possible while not sacri�c-
ing their accuracy.

In the experiments, we use the following error measure:

E(Di(g)jAi(g)) =
1

ng

X
(xc;yc)2Di(g)

(fi(xc)� yc)
2; (7)

where fi(xc) = f(xc;Ai(g)) is the output of the pro-
grams Ai(g) for input xc and ng is the size of the train-
ing set Di(g). The program complexity can be de�ned
in various ways since the adaptive Occam method uses
relative complexity rather than absolute values. Typ-
ically, the complexity of genetic trees is de�ned as the
number of nodes in the tree and other additive terms.

3 Application to Time Series

Prediction

3.1 The Problem and the Method

Figure 4 shows a series of 2000 measurements of
chaotic intensity
uctuations. This data was gener-
ated from far-infrared NH3 laser in a physics labora-
tory [6]. This problem was used as a benchmark in
the 1992 Santa Fe time series competition. We used
the �rst 1000 data points for evolving the programs
and the rest 1000 data points for testing the general-
ization performance. The training data was generated
from the time series as follows: three contiguous val-
ues x1(t), x2(t), x3(t) were used as input for the tth
training pattern, and the immediate next point x4(t)
was used as the target value y(t) to be predicted. The
input attributes of all data sets were linearly scaled
into the interval [0; 1]. The output attribute has con-
tinuous values between 0 and 1.

We used neural trees for program structures. A neu-
ral tree consists of nonterminal nodes and terminal
nodes [16]. The nonterminal nodes represent neural
units and the neuron type is an element of the ba-
sis function set F = fneuron typesg. Each terminal
node is labeled with an element from the terminal set
T = fx1; x2; :::; xng, where xi is the ith component
of the external input x. Each link (j; i) represents a
directed connection from node j to node i and is asso-
ciated with a value wij , called the synaptic weight.

The root node is also called the output unit and the
terminal nodes are called input units. Nodes that are
neither input nor output units are hidden units. The
layer of a node is de�ned as the longest path length to
any terminal node of its subtrees.

Di�erent neuron types are distinguished in the way of
computing net inputs. Sigma units compute the sum
of weighted inputs from the lower layer:

neti =
X
j

wijyj (8)

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000

x(
t)

t

Figure 4: Laser intensity time series used for train-
ing (t = 1; :::; 1000) and testing (t = 1001; :::; 2000) of
neural tree programs.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000

x(
t)

t

Figure 5: Laser intensity time series: prediction error.

where yj are the inputs to the ith neuron. Pi units
compute the product of weighted inputs from the lower
layer:

neti =
Y
j

wijyj (9)

where yj are the inputs to i.

The output of a neuron is computed either by the
threshold response function

yi = �(neti) =

�
1 : neti � 0
�1 : neti < 0

(10)

or the sigmoid transfer function

yi = f(neti) =
1

1 + e�neti
(11)

where neti is the net input to the unit computed by
equations (8) or (9).

3.2 Results

Figure 5 plots the di�erence between the true val-
ues and one-step-ahead prediction values for the 1000

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

x(
t)

t

Figure 6: All the training data points given for the
laser time series.

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

x(
t)

t

Figure 7: The data points selected by the best neu-
ral tree at g = 30, using GP with incremental data
inheritance.

training points and the following 1000 test points. It
can be seen that the neural tree evolved by GP with
incremental data inheritance has captured the general
trend of the time series. The regions where larger pre-
diction errors were occurred are the turning points of
the time series which are known to be di�cult to pre-
dict. Note that the results have relatively good gener-
alization performance.

In the following we want to analyze the data selection
behavior of the incremental data inheritance method.
Figure 6 shows the 1000 data points for the entire
training set that are given. From these data, the IDI
method started genetic programming with an initial
data set of size 40 which was increased by 8 each gen-
eration. To see the evolution of data sets we depicted
in Figure 7 the data points of the best individual at
generations g = 30. Comparison of Figures 6 and 7
indicates that the sampled subset of the original data
set is representative.

To further investigate the e�ciency of the incremen-
tal data inheritance method, we compared its per-
formance with two other methods. One is standard
genetic programming in which the baseline data set

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30 35 40 45 50

fit
ne

ss

generation (g)

basis data set (BDS)
fixed random selection (FRS)

incremental data inheritance (IDI)

Figure 8: Fitness vs. generation for laser intensity time
series.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2e+09 4e+09 6e+09 8e+09 1e+10 1.2e+10

fit
ne

ss

time (t)

basis data set (BDS)
fixed random selection (FRS)

incremental data inheritance (IDI)

Figure 9: Fitness vs. pseudo-cpu time for laser inten-
sity time series.

(BDS) of size 1000 is used. The second is the method
of �xed random selection (FRS) in which a �xed size
(in this case 200) of data sets chosen at random for
each generation was used.

Figure 8 compares the �tness evolution for the var-
ious data selection methods as a function of gener-
ation. The incremental selection method (IDI) con-
verged faster than BDS and FRS.

To see the real speed-up, we measured the computa-
tional time as a product of the population size and the
data size for each generation. The time for data selec-
tion can be ignored since most of the execution time is
spent on �tness evaluation, especially for �ne-tuning
of weights. The performance in this pseudo-cpu time
is compared in Figure 9. The speed-up e�ect of IDI is
even clearer here. The performance of IDI improved
very fast, especially in the early generations, and ap-
proached a �tness level of approximately 0.1. Fixed
random selection also improved its performance rela-
tively fast, but its �tness stocked around 0.25. The

baseline method (BDS) was the slowest and its �t-
ness converged to around 0.27 when IDI reached 0.1.
Though BDS could eventually reach the performance
level of IDI if run further, but it took so long that this
cannot be seen in Figure 9. In e�ect, the genetic pro-
gramming with incremental data inheritance achieved
for this problem a speed-up of up to an order of mag-
nitude compared to the baseline algorithm.

4 Discussion

4.1 Four Key Properties of IDI

The incremental data inheritance method can be char-
acterized by the four properties: separate data sets for
programs, same data size for each generation, data in-
heritance, and monotonic growth of data size during
evolution.

1. Separate data sets. Each model Ai(g) in the pop-
ulation has its own data Di(g), where Di(g) is a
subset of the original data set D(N) of size N .

2. Same data size. The sizes of data sets are equal
for all programs at the same generation, but their
elements may be di�erent:

jDi(g)j = jDj(g)j; Di(g) 6= Dj(g);

i; j = 1; :::;M: (12)

3. Data inheritance. Just as programs inherit their
structural features from their parents, data sets
Di(g) of programs inherit partial data from their
parents' Dp(g � 1) and Dq(g � 1), where p and q

are parents of i.

4. Monotonic growth. Data sets grow monotonically
as generation goes on, i.e. jDi(g)j > jDi(g � 1)j.

All these features together constitute the incremental
data inheritance method. The monotonicity property
is important to ensure the method ultimately uses all
the given data. This guarantees the method not to
loose known information about the problem domain.
This is contrasted with DSS [5] where only one com-
mon data set for each generation exists, data are cho-
sen randomly, and the data size remains �xed through
the generations. This is also contrasted with RAT
where the data size arbitrarily changes from genera-
tion to generation.

The experimental results support the importance of
both \incremental selection" and \data inheritance"
concepts adopted in the IDI algorithm. Without the
\incremental" component, there is no guarantee for

reaching the desired �tness level, as shown in the
case of �xed random selection. Using data inheritance
rather than random sampling, the induction process is
accelerated. This is because by keeping separate data
for each program, the training can focus on new data
rather than the whole data.

4.2 Bayesian Aspects of GP with IDI

The genetic programming with incremental data in-
heritance can be formulated as attempting to �nd the
best program using as small a training set as possible,
where the time limit is given as the maximum genera-
tion gmax. The goodness of the programs are de�ned
as the �tness function Fi(g). Thus, we can formulate
the GP with IDI as:

A
(g)
best = ming�gmax

argminAi(g);Di(g) Fi(g) (13)

where Ai(g) 2 A and Di(g) � D(N), where A is the
space of all possible programs considered. It should
be noted that, in contrast to conventional GP, here
the data sets Di(g) as well as the programs Ai(g) are
evolved.

The process (13) can be interpreted as a Bayesian in-
ference where the maximum a posteriori (MAP) pro-
gram is sought. To see this, let Pi(g) denote the pos-
terior probability of programs, i.e. the probability of
the program Ai(g) given the data Di(g):

Pi(g) � P (Ai(g)jDi(g)): (14)

Using Bayes rule, this can be written as

Pi(g) =
P (Di(g)jAi(g))P (Ai(g))P

Aj(g);Dj (g)
P (Dj(g)jAj(g))P (Aj(g))

: (15)

Now, we de�ne the �tness function as the minus loga-
rithm of Pi(g):

Fi(g) � � log(Pi(g)) (16)

which should be minimized. Substituting this into Eq.
(13) and using Bayes rule (15), we get

A
(g)
best = ming�gmax

argminAi(g);Di(g) Fi(g);

minFi(g) = minf� logP (Di(g)jAi(g))

� logP (Ai(g))g (17)

= minfL(Di(g)jAi(g)) + L(Ai(g))g;

which leads to our MDL-based �tness function (5).

This shows that our formulation of genetic program-
ming can be regarded as a Bayesian inference. In other
words, the ideal Bayesian inference is approximated by

a more practical evolutionary search method based on
genetic programming, where the space of programs to
be searched is limited to the size of program popula-
tion and the allowed computing time is limited to the
maximum generation number. The role of incremental
data inheritance in this process is to reduce the time
for estimating the probability of programs. Our exper-
imental analysis shows this can be done without loss
of predictive accuracy of the programs.

5 Conclusions

We have presented a method for accelerating evolu-
tion speed of genetic programming by incrementally
evolving subsets of given �tness cases. Since the �t-
ness evaluation step is a bottleneck in GP comput-
ing time, this method can make an essential contribu-
tion to improving the GP performance. In contrast
to �xed-size subset selection method, such as dynamic
subset selection, the incremental selection method has
the advantage that the e�ective data size is determined
automatically during evolution.

Experimental results have shown that by reducing the
�tness cases the evolution speed of GP can be en-
hanced without loss of generality of the evolved pro-
grams. This is especially true for problem settings in
which a large amount of �tness cases are available. In
this case, the active data inheritance can exploit the
redundancy in the data, while the standard GP blindly
re-evaluates all the �tness cases.

Genetic programming with incremental data inheri-
tance (IDI) can be interpreted as co-evolution of pro-
grams and their data sets. While existing GP methods
evolve only the programs, the GP with incremental
data inheritance evolves data sets associated with the
programs. Since the evolution of programs depends
on data sets and the evolution of data sets depends
on programs, both the program and its data concur-
rently evolve towards an optimal combination. This
can be viewed as a genetic programming version of
the genetic-neural co-evolutionary learning process in
GENIE [12]. From the e�ciency point of view, it is
interesting that IDI results in accelerated evolution of
programs through minimal use of �tness cases.

Acknowledgments

This research was supported in part by the Korea
Science and Engineering Foundation (KOSEF) under
grants 96-0102-13-01-3 and 981-0920-350-2.

References

[1] P. J. Angeline, and J. B. Pollack (1993). Com-
petitive environments evolve better solutions for
complex tasks. In Proc. 5th Int. Conf. on Genetic

Algorithms, 264-270. Morgan Kaufmann.

[2] W. Banzhaf, P. Nordin, R. Keller, and F. Fran-
cone (1998). Genetic Programming - An Introduc-

tion, Morgan Kaufmann, San Francisco, CA.

[3] J. M. Daida, F. Bersano-Begey, S. J. Ross, and
J. F. Vesecky (1996). Computer-assisted design
of image classi�cation algorithms: Dynamic and
static �tness evaluations in a sca�olded genetic
programming environment. In J.R. Koza (eds.).
Genetic Programming 1996, 279-284. Cambridge,
MA: The MIT Press.

[4] C. Gathercole, and P. Ross (1994). Dynamic
training subset selection for supervised learning
in genetic programming. In Y. Davidor, H.-P.
Schwefel, and R. M�anner, (eds.). Parallel Prob-
lem Solving from Nature III, 312-321. Berlin:
Springer-Verlag.

[5] C. Gathercole, and P. Ross (1997). Small popula-
tions over many generations can beat large pop-
ulations over few generations in genetic program-
ming. In J.R. Koza (eds.). Genetic Programming

1997, 111-118. Cambridge, MA: The MIT Press.

[6] H. H�ubner, C. O. Weiss, N. B. Abraham, and D.
Tang (1993). Lorenz-like chaos in nh3-�r laser. In
Weigend, A. and Gershenfeld, N., editors, Time

Series Prediction: Forecasting the Future and Un-

derstanding the Past, 73-104. Addison-Wesley.

[7] John R. Koza (1992). Genetic Programming: On

the Programming of Computers by Means of Nat-

ural Selection. Cambridge, MA: The MIT Press.

[8] J. Rissanen (1986). Stochastic complexity and
modeling. The Annals of Statistics, 14:1080-1100.

[9] E. V. Siegel (1994). Competitively evolving deci-
sion trees against �xed training cases for natural
language processing. In K. E. Kinnear, Jr., (Ed.),
Advances in Genetic Programming, Chapter 19.
Cambridge, MA: The MIT Press.

[10] T. Soule, J. A. Foster, and J. Dickinson (1996).
Code growth in genetic programming. In J.R.
Koza (eds.). Genetic Programming 1996, 215-223.
Cambridge, MA: The MIT Press.

[11] A. Teller, and D. Andre (1997). Automatically
choosing the number of �tness cases: The ra-
tional allocation of trials. In J.R. Koza (eds.).
Genetic Programming 1997, 321-328. Cambridge,
MA: The MIT Press.

[12] B.-T. Zhang (1992). Learning by Genetic Neu-

ral Evolution, (in German), DISKI Vol. 16, 268
pages, ISBN 3-929037-16-6, In�x-Verlag, St. Au-
gustin/Bonn.

[13] B.-T. Zhang (1993). Self-development learning:
Constructing optimal size neural networks via in-
cremental data selection, Arbeitspapiere der GMD

768, German National Research Center for Infor-
mation Technology (GMD), St. Augustin/Bonn,
July 1993.

[14] B.-T. Zhang (1994). Accelerated learning by ac-
tive example selection, International Journal of
Neural Systems, 5(1): 67-75.

[15] B.-T. Zhang (1999). A Bayesian framework for
evolutionary computation, Proc. 1999 Congress

on Evolutionary Computation (CEC99), Special
Session on Theory and Foundations of Evolution-
ary Computation, Washington, D.C., IEEE Press,
1999 (to appear).

[16] B.-T. Zhang, P. Ohm, and H. M�uhlenbein (1997).
Evolutionary induction of sparse neural trees.
Evolutionary Computation, 5(2): 213-236.

[17] B.-T. Zhang, and G. Veenker (1991). Focused
incremental learning for improved generalization
with reduced training sets, Proc. Int. Conf. Arti-
�cial Neural Networks, ICANN-91, Kohonen, T.
et al. (eds.) North-Holland, 227-232.

[18] B.-T. Zhang, and G. Veenker (1991). Neural net-
works that teach themselves through genetic dis-
covery of novel examples, Proc. Int. Joint Conf.
on Neural Networks, IJCNN-91, 690-695. IEEE
Press.

