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Abstract

The problem addressed is that of automat-
ing the task of visual inspection of images to
detect objects of interest. Detectors are func-
tions of the pixel information. When moved
across an image these discriminate objects
from non-objects according to the value that
is computed. The detector is evolved off-line
in two evolution stages. This strategy results
in practical evolution times. It produces fast
automatic detectors that can be interpreted
to understand object detection principles.

1 Introduction

An attraction of Genetic Programming is its ability to
return a tangible formula or computer program that
can shed light into the logic employed to solve a task.
For the problem of machine vision, an analysis of this
logic may explain some general principle for discrimi-
nating an object from a scene.

The method discussed in this paper uses a number of
examples of ‘object’ and ‘non-object’ to evolve a dis-
criminator or object detector. The evolution is an in-
ductive learning and CPU intensive task that is carried
out off-line to discover a detector that can be applied
to a great number of images on-line.

A potential problem area with GP is the growth of its
structures, however, this appears to relate to its power
as a search method. This growth can significantly aug-
ment the computing requirements of evolution. It also
means that large detectors can be difficult to interpret
even after they have been simplified algebraically; de-
tectors will contain more operations; and possibly take
longer to process an image.

A staged evolutionary process is developed in section 2

to circumvent some of these difficulties. The validity of
this approach is discussed in section 3 with reference to
a SAR image analysis problem. An IR image analysis
task in section 4 illustrates how the approach can begin
to address the so called stability-plasticity dilemma [1].

2 Staged approach

Given a rectangular image of dimensions N x M pix-
els, containing objects that can be bounded in sub-
windows of size n x n pixels, the task is to construct
a function of pixel data with support n x n that can
be systematically moved across the entire image, i.e.
is evaluated pixel by pixel and line by line. Typically,
N x M is O(10°) pixels and n x n is O(10?) pixels.

At each pixel the function returns a value that is either
positive (P) or negative (N) to either denote detection
of an object or of a non-object respectively. Usually,
the number of non-object pixels dominates, i.e. the
number of object pixels in N x M is very small.

A number of such images is selected to evolve the de-
tector, and a ‘truth’ of known object locations is pre-
pared for each image. A true positive (TP) results
when the detector correctly detects an object from the
truth; a false positive (FP) occurs when it incorrectly
detects an object - also known as a ‘false alarm’. Sim-
ilarly a true negative (TN) is a correct non-object de-
tection and a false negative (FN) is an object missed.

When an object is fairly small, e.g. n x n = O(10) as
in section 3, it is appropriate to denote the object as
a single pixel. For larger objects, e.g. as in section 4,
a small area of pixels or a line of pixels may be used.

The evolution process that attempts to discriminate
every object pixel from every non-object pixel in the
image is prohibitively expensive as it requires repeated
function evaluations at all N x M pixels.

In the staged GP method presented here, the first



stage of GP attempts to discriminate every object pixel
from a small random selection of non-object pixels.
Upon completion of the first stage of GP, the fittest
detector is applied to the entire image, i.e. all N x M
pixels. This results in a number of misclassifications
or FP - non-object pixels that are similar to object
pixels. In a second stage, a brand new run of GP now
attempts to discriminate every object pixel from these
discovered FP.

The fittest detector from the first stage is combined or
‘fused’ with the fittest detector from the second stage.
It is done such that both detectors must detect the
object for it to be counted as detected, i.e. both must
return a positive value. When applying them to an
image on-line, the first detector is evaluated first at all
N x M pixels, and the second detector is applied only
to the positive returns from the first - a very small
number of pixels relative to N x M. It is important to
note that the second evolution stage has a tougher job
than the first stage because it must discriminate like
from like. Another observation is that there is little
point in varying the random set of non-object pixels
used by the first stage because ‘difficult’ non-object
pixels are few and unlikely to be covered with such a
small random set of non-object pixels.

It turns out that one can exploit this situation to cir-
cumvent the program growth and some of the appar-
ent disadvantages of GP. Because the first detector so
dominates the CPU time of on-line image processing
it is essential that it be a small and efficient function.
This is achieved by setting a low maximum size of
tree and limiting the variety of terminal nodes in the
first evolution stage. These constraints do not compro-
mise the power of the overall evolution process because
only the second evolution stage has the difficult job of
discriminating like from like, and it has the freedom
to evolve large trees with many types of terminals to
achieve its task.

As a result: an efficient on-line object detector is pro-
duced and also a first detector is produced that can
always be interpreted as it is very small, e.g. 20 nodes.
Evolution times are also reasonable because the staged
evolution process involves a minority of pixels from the
N x M set.

The two stage GP process can be generalised into
a multi-staged process to address additional require-
ments as discussed in section 4.

3 Two-stage GP

The experiments in this section demonstrate the util-
ity of an evolution strategy involving two GP stages

in a real world image analysis problem setting. The
reader can consult references [2-4] for a more complete
account than is provided in this section.

3.1 Test problem and GP formulation

The objective was to evolve an automatic ship detec-
tor for Synthetic Aperture Radar (SAR) images of the
English Channel taken by the ERS-1 satellite both at
50 metre and 100 metre resolution. In order to pro-
duce a detector that generalised well, the set of images
was divided into three: training, test, and blind sets.
These consisted of one, two, and two images respec-
tively. Figure 1 shows two of these images that are
typical. Each image is made up of approximately one
million grey level pixels.

Figure 1: SAR images of the English Channel.

The objects in this problem are essentially very small
and were represented in the truth at single pixel loca-
tions. The n x n subwindow as defined in section 2
was kept small, i.e. it never exceeded 9 x 9. Figure 2
shows some of these ships in-situ. A steady-state GP
implementation, was run with MS Visual C+-+ under
Windows NT and on a number of Pentium II PCs. It
was modified to work with pre-computed statistics of
pixel data as the GP primitives - a technique discussed
by Poli [5].

Figure 3 illustrates some of the GP primitives defined
in the n x n sub-window. For example, 19 is the aver-
age of the pixel values in a 9 by 9 box centred on the
pixel; V9 is the standard deviation of the pixel values
in a 1 pixel perimeter on the edge of this 9 by 9 box; P9
is the corresponding average of the same area; while
D37 = I3 — P7 can be thought of as a ‘spot’ statistic.
Very simple mathematical operations listed in Table 1
were chosen for the GP tree.



Figure 2: Presence of ships in the SAR image subjec-
tively classified into grades.

Figure 3: Examples of precomputed statistics defined
in n x n (from left): pix,Is, I5, Vr or Pz, and Dagr.

3.1.1 Training data and fitness measures

The availability of the 50-m resolution SAR imagery
made it practical to design a truth for the correspond-
ing 100-m resolution SAR imagery. By this method it
was possible to identify very faint objects in the 100-m
resolution images. Therefore, objects in the truth var-
ied quite significantly in size and in intensity making
it possible to subjectively grade the ships in terms of
their distinction. Five grades were arbitrarily deter-
mined, such that lower grades identified more distinct
ships. For grade 5 sub-images, it was decided that
the ships in the 50-m resolution sub-images were not
distinguishable in the corresponding 100-m resolution
sub-images. Referring to Figure 2 the grade 1 to 4
ships are clearly visible, but the grade 5 ship (in the
box) is indistinguishable from the general ocean clut-
ter. Consequently, only the clearer ships (grades 1 to
4) were used to evolve detectors.

The detector must both minimise the number of false
alarms and the number of object misses. Fitness mea-
sures involving FP and TP were tested to determine
which could most reliably produce accurate detectors.
In other words, it was not an objective of this problem

Table 1: GP parameter table

parameter setting
functions +, -, *, %, min, max.
terminals integer (-127...128).

real (0.0, 0.005... 1.0).

real (0.0,-0.005...-1.0).

pixel statistics: pix,

I3...19, P5...Py, V5...Vy,

D35, D3g7, D3gg.

5000 non-objects + 59 objects.
FP from 1st stage + 59 objects.

1st GP stage
2nd GP stage

to set the balance between false alarms and misses to
some precise level, but instead to consistently produce
a family of detectors that could be considered superior
in the Pareto ranking to those produced with other fit-
ness measures or with rival techniques such as neural
networks. While Pareto ranking is somewhat qualita-
tive a comparison, the accuracy and generality of the
evolved detectors was more exactly established by cal-
culating a figure of merit (FOM) that assumed a neu-
tral stance on desirability of false alarms and misses:

TP

FOM = ———
ships + FP

(1)
whereby ships stands for the total number of ship ob-
jects in the truth (including grade 5 ships).

The fitness measure that consistently produced supe-
rior detectors took ship grade into account by reward-
ing more highly for detections of the more distinguish-
able, lower grade, ship objects, and had the following

form:
Ehits (5 — SG) _
D ships(D — SG) + FP

I = (2)
Here ships is the number of grade 1-4 ships in the
training image, hits is TP or the total number of de-
tections and SG is the ship grade of the object in the
truth.

Each evolutionary stage processed 59 ships (grade 1 to
4) from the training image. Both first and second GP
evolution stages used the same fitness measure. The
number of random non-object pixels (oceans) used in
the first stage was 5000. Parameters such as popu-
lation size, tournament size, and mating radius were
varied and ecach combination was run using 20 ran-
dom seeds (20 independent runs). Parameters were
varied as follows: population sizes from 200 to 5000,
tournament sizes from 2 to 16 and mating radiuses
from 200 to population size. The random seed gov-



erned the various random selections, e.g. initial popu-
lation, tournament selection, crossover point selection,
etc. However, each run used the same 5000 non-object
pixels.

As discussed in section 2, the maximum size of the
detector in the first evolution stage was restricted to
produce simple and fast detectors. Initially, the max-
imum tree size was varied. The same solution was
derived whenever the size was greater than 100 nodes.
The evolved detector always had less than 50 nodes
and it commonly had less than 20 nodes. In order
to encourage a simple solution, the maximum size of
the first detector was set to 20 nodes. In addition,
the first detector processed a minimal number of pixel
statistics. Three statistics were first investigated: Is,
P and V7. However, it was found that piz or the
value of the centre pixel was also required in order to
hit small, faint ships. The first detector was allowed
to evolve for exactly 10 generations. The maximum
size of the detector of the second GP stage was set to
1000. Crossover was used in an clitist strategy with
no mutation. The child was formed using the shorter
side of the swap when crossover threatened to exceed
the maximum prescribed tree size. The population of
second detectors was evolved for 30 generations.

A procedure was developed to assess generalisation.
For each run corresponding to a choice of GP param-
eters the ten best unique detectors at each generation
of the second evolution stage were saved and then each
of these was fused with the first detector. The FOM
was computed over both test images, and the chosen
fused detector was the one with the highest averaged
FOM, provided that FOM > 0.5 for both images.
As expected FOM always increased for the training
image, but over-training occured after a given genera-
tion when the FOM begins to drop for some or all of
images in the test set.

3.2 Discussion of Results

Conclusions of the GP parameter optimisation study
can be found in [2-4]. This showed that the larger
population and tournaments sizes more consistently
produced superior ship detectors.

The performance of the best fused detector pair was
measured up to results by Foulkes at DERA ([6] pg.
21) who tested a number of algorithms including multi-
layer perceptron neural networks. His best results were
obtained with a Kohonen SOM. These are displayed
side by side to those with the best GP detectors in
Table 2. The comparison is fair in the sense that both
teams devoted a considerable time to this problem
and used the same image for training the automatic

detectors. From Table 2 there is no case where the
GP method has fewer TP and more F'P. It can be
concluded that the two-stage evolution GP strategy
evolved accurate ship detectors. It was also notable

Table 2: two-stage GP vs. SOM for all the images.

ship truth | SOM GP

grades 1-5 TP FP | TP FP
7 44 21 56 0
33 18 1] 22 1
55 20 8| 22 1
71 5o 11 48 1
58 46 6| 41 1

that certain random seeds resulted in small second de-
tectors. For example, the performance of the follow-
ing very short fit detector pair approached that of the
champion detector:

1st detector:

min[pix — 0.49, max(pix,P7)] — 0.325 — 1.05P7; — V5
2nd detector:

pix—1-1I; —V;/0.285

The second detector can be regarded as a method for
reducing F'P or number of false alarms at the expense
of a slight increase in F'N or number of missed objects.
And when viewed this way it became interesting to
investigate whether the effect was to simply move the
threshold of detection from the condition: is object
when F > 0 to the condition: is object when E > ¢,
where € is a small positive number and E stands for the
evaluation of the detector function over the support n
x n. But this was not to be the case - it was a more
complex effect to achieve better detection rates [3].

3.3 Analysis of Detectors

Formulas for all champion detectors are reported in
[3]. When simplified, the first detectors to a first ap-
proximation, had the following type of formulation:

pixel value - local mean - local variance - constant

This is equivalent to local spot detection and, in the
absence of further information sources - such as in-
tuition, past experience, geographical and scenario
knowledge by analysts - could be considered to be a
rough approximation to the ‘human eye’ approach to
ship detection. Detectors evolved for the 50-m reso-
lution images mixed a threshold type detector with a
spot type detector - this is understandable when con-
sidering that ships in the 50-m resolution SAR images
are clearer.



4 Multi-stage GP

This section demonstrates the utility of extending the
two-stage GP to a strategy with multiple stages for
the purpose of addressing the more challenging prob-
lem of object recognition in poorly constrained envi-
ronments and with objects having large variability. It
gives a very brief account of those experiments while
[7,8] provide a more complete presentation.

4.1 Test problem

The objective was recognition of any motorised vehi-
cle in infrared linescan (IRLS) imagery obtained by
low flying missions. The objects varied in size in a
variable environment, i.e. automobiles or lorries, as
distinguished from roads, vegetation, and buildings.
Figure 4 illustrates typical infrared signature for such
vehicles and their large variability. The problem was

oL =

Figure 4: Examples of vehicles from the IRLS imagery

made more difficult by its operational requirements.
The detector must work with images taken at differ-
ent heights and the performance of sensor equipment
does in fact vary substantially.

4.2 Formulation

As the vehicles vary in shape, size, orientation and
appearance it was undesirable to detect vehicle fea-
tures such as windscreens, bumpers, or wheels. The
staged evolution strategy was designed to ‘discover’

these image features for itself with the first evolution
stage tuned for sensitivity and the second evolution
stage tuned for specificity. The n x n for these vehicle
objects is O(10?) so that they cannot be represented
by a single pixel.

A successful general scheme was developed. A vehicle
was simply represented by a single pixel subjectively
placed towards the center of the vehicle. A ‘vehicle
box’ was centered on this point to contain most of
the vehicle. GP was rewarded whenever it produced a
detection within this box. The target had to be ‘hit’.

A line was drawn along the major axis of each vehicle
in the truth. Pixels on these lines were taken as the
object pixels for the first evolution stage. Next, when
sweeping the training images with the champion first
detector, positives inside vehicle boxes were counted
as object pixels for the second GP stage(s).

The second GP stage was decomposed into a number of
sub-stages, e.g. 2i, 2ii, 2iii. The first second stage, 2i,
attempted to eliminate all of the FP and to hit as many
vehicles as possible. A second second stage, 2ii, took
all misses from the 2i stage for its target pixels and
tried to hit as many of them while again eliminating
all of the FP. Subsequent second stages continued with
this process until all targets had been hit.

Statistics were very similar to those in section 3, with
the exception that the statistics of Figure 3 were made
irrotational by defining them over concentric circles
of thickness one pixel. Four types of statistics were
defined on each circle at perimeters 11, 19, 27, and 35:
(a) perimeter averages; perimeter standard deviations;
edges found on the perimeter; and edge distribution
norm values (reference [7,8] for definitions).

This choice of statistics provided the evolutionary pro-
cess with: (1) an irrotational character; (2) robustness
to high variability in pixel data; (3) both angular and
radial information. Fourier analysis and invariant mo-
ments have only marginally improved the accuracy of
the detectors - noisy imagery. The size of concentric
circles was scaled according to flight height. The fit-
ness measure was a version of equation (2) with con-
stant SG = 4.

4.3 Results

Upon completion of the first stage, all detection within
vehicle boxes were defined as vehicle points for the sec-
ond evolution stage. This resulted in a larger coverage
over vehicle areas, and many more vehicle boxes. GP
then sacrificed many of these as the function of the
second evolution stage is to trade off vehicle detec-
tion against false alarms. Vehicle pixels that survived



this process were to be found in parts of the motor-
ized vehicle that GP considered to best represent the
vehicle. Therefore GP was able to discover both the
characteristic features and their location by general-
izing across these vehicle sub-images. This procedure
overcame the need to a-priori discover features from
vehicle sub-images that characterize all vehicles. Fig-
ure ) illustrates this. It applies the evolved detectors
to one of the images in the training set. Note that a
second detectors may hit a car though it may have not
trained on it.
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Figure 5: Hlustration of multi-staged evolution strat-
egy. From top to bottom: 1st, 1st+2i, 1st+2ii,
1st+4-2iii, fusion or 1st AND (2i OR 2ii OR 2iii)

The traditional method to handle infrared imagery has
been to apply a simple filter that returns anything
that is bright. The method we have developed is more
powerful as it returns anything that looks like a ve-
hicle. However, it is crucial to the stability-plasticity
dilemma that the first evolution stage return a pos-
itive detection for any new vehicle that is presented

for training. So far it always has. New and differ-
ent types of vehicles are handled with a new second
detector stage and the resulting detector is fused to
the existing set with the OR function. The penalty in
on-line evaluation of this approach is not significant.

5 Conclusions

The two-stage method has been shown to produce effi-
cient and accurate detectors that generalise and com-
pare well to those produced with rival Al techniques.
The two-staged method is able to circumvent the need
to control bloating in Genetic Programming.

A multi-stage method has been developed that does
not require vehicle features to be prescribed a-priori. It
is also able to address the so called stability-plasticity
dilemma of inductive learners.
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