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ABSTRACT

In recent years, the genetic pro-
gramming crossover operator has been
criticized on both theoretical and em-
pirical grounds. This paper introduces a
new crossover operator for linear ge-
nomes that encour ages the emer gence of
positional homology in the population.
Preliminary experimental results sug-
gest that this approach is a promising
direction for redesign of the mechanism
of crossover.

1. Introduction

Crossover in genetic programming has, in recent years, been
described as highly destructive [Nordin, 1996] and as per-
forming no better than mutation [Angeline, 1997]. By way
of contrast, crossover in nature appears robust and rarely
produces lethally defective offspring.

This paper describes and tests a new form of crossover
for linear GP. It was inspired by our observation that ho-
mology in a population and constraints on crossover appear
to be important to the success of crossover in nature. This
new operator implements a limited form of forced alignment
between genomes during crossover and may encourage the
emergence of positional homology in genetic programming
populations.

2. The Emergence of Homology

Natural crossover is highly constrained [Banzhaf, et al.,
1998]. For example, natural crossover is strongly biased to
exchanging genes that are in the same position on the chro-
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mosome and that express similar functionality. That bias
arises from two features of crossover:

(1) Homology. Crossover amost always occurs between
organisms that have nearly identical base pair sequences in
their chromosomes. For example, in organisms that repro-
duce sexually, mating occurs only between members of the
same species. Within a species, there is a high degree of
similarity (homology) between the genomes of the various
members of that species.

(2) Base Pair Bonding. Two strands of DNA combine
into a single double helix because of base-pair bonding be-
tween the bases in the two strands. As a result, there is a
strong tendency for two strands of DNA to recombine
(crossover) in a manner that exactly matches the comple-
mentary base-pair sequences in the other. [Watson, et d.,
1987] Indeed, during crossover, "complementary base-
pairing between strands unwound from two different chro-
mosomes puts the chromosomes in exact register. Crossing
over thus generates homologous recombination; that is, it
occurs between two regions of DNA containing identical or
nearly identical sequences.” [Id]

Homology in nature is, therefore, both positional and
functional. These rigid constraints on crossover suggest that
it is an evolved operator—a form of emergent order. Ho-
mology permits the meaningful exchange of functionaly
similar genes through the base-pair bonding mechanism. At
the same time, the existence of base pair bonding tends to
encourage the emergence of homology. When these biases
are applied through many iterations, one can envision the
evolution of emergent homology in nature. By this view,
sexual reproduction in species represents the evolution of
evolvability in nature [Altenberg 1994].

3. Genetic Programming Homology

With few exceptions, crossover in genetic programming is
characterized by swapping code between two parents with-



out regard to position of the code in the parent programs or
the function the code performs. This is true regardless
whether trees, graphs or linear structures are used to repre-
sent the genome [Koza, 1992] [Teller, 1996] [Nordin,
1994].

Furthermore, genetic programming runs have no obvi-
ous homology in the population, at least at the beginning.
After al, the programs in a population are initialized ran-
domly—the opposite of the almost identical genomes shared
by members of a sexually reproducing species. This prob-
lem is well illustrated by an example we have given else-
where:

"Crossing over two programs [in GP] is alittle like
taking two highly fit word processing programs,
Word For Windows and WordPerfect, cutting the
executables in half and swapping the two cut seg-
ments. Would anyone expect this to work? Of
coursenot." [Banzhaf, et al., 1998, page 158].

The reason the conclusion in the quoted material is so obvi-
ous is that there is no homology between Word Perfect and
Word for Windows. Accordingly, athough these two pro-
grams perform the same overall function in a very similar
manner, they are in a sense, from different "species.” As
such, we do not expect them to mate successfully any more
than we would expect a zebra to mate successfully with a
cow, even though both animals eat grass and have four legs.

But on closer reflection, a type of homology does
emerge in genetic programming populations and does so
frequently. The term, "introns" in genetic programming has
come to refer to nodes or instructions in evolved programs
that have no effect on the output of the program, such as
x=x*1 [Banzhaf et a., 1998, p. 186-198] [Nordin et a.,
1996] [Soule & Foster, 1996] [Soule & Foster, 1997]. Code
bloat (or runaway growth of introns) is a commonly re-
marked feature of genetic programming runs. When code
bloat has come to dominate a population, crossover becomes
a matter of swapping sequences of code that have no effect
on the fitness of the individual. Such crossover is necessarily
non-destructive because it is completely neutral. [Nordin &
Banzhaf, 1995].

Code bloat is a form of emergent homology, abeit of a
perverse type. Where code has bloated, there is a high de-
gree of homology between almost any two randomly chosen
nodes on any two evolved programs in this population. That
is, any two nodes chosen for crossover are likely to contain
functionally useless code. Because crossover between two
such nodes is amost always neutral, the population—domi-
nated by introns and neutral crossover—has become a "spe-
cies' in the sense that all members can mate with each other
with a high probability that the offspring will not be lethally
defective. Thisis, in effect, position independent homology.

4. Encouraging Useful Homology

The homology represented by code bloat is not especially
useful or even interesting. Its existence does, however, es-

tablish that homology can emerge from genetic program-
ming runs, depending on initial conditions. The issue pre-
sented by this paper is whether it is possible to redesign the
crossover operator so that it encourages useful homology.
In that regard, we need to identify a crossover operator that:

(1) Encourages a genetic programming run to evolve
useful homology in the population; and

(2) Exploits the evolved homology usefully.

Such a crossover operator could be expected to be less-
and-less destructive as the run continues, tend to discourage
code bloat and, perhaps, improve system performance.

4.1 Sticky Crossover

We propose to make our program genomes "sticky,"
somewhat like DNA, during crossover. We refer to thisasa
"homologous crossover operator” or, in lighter moments, as
"sticky crossover."

In simple terms, the homologous crossover operator
only permits instructions at the same position in the genome
to be exchanged with other instructions in the same position.
More precisely, sticky crossover chooses a sequence of code
randomly from one parent program. The sequence of code
in the same position from the second parent is then chosen.
The two segments are then swapped.

4.2 Sticky Crossover Dynamics

Our new operator does not actively seek out function-
aly equivalent segments of code in evolved programs and
cross them over. So in that sense, it does not duplicate the
base pair bonding of biological crossover.

Instead, our proposed operator provides a high prob-
ability that, say, the second instruction in an evolved pro-
gram, will be swapped during crossover with the second
instruction from another program. This may encourage the
evolution of functionally similar code at equivalent positions
in the genome.

Why should this be so? In [Nordin & Banzhaf, 1995],
we proposed that the probability that an individual will
propagate in increasing numbers from one generation to the
next depends not just on its own fitness, but on expected
value of its offspring's fitness. We referred to this aggregate
measure of fitness as "effective fitness." Effective fitness
describes the notion that even highly fit programs will not
long survive if they cannot produce fit offspring. Thus, ef-
fective fitness measures a program's ability to be success-
fully replicated by means of crossover.

The effective fitness of an evolved program may be
quite different for different types of crossover. For example,
evolved programs containing a high proportion of code that
actually affects their output have little defense against de-
structive ordinary crossover, even if they are highly ho-
mologous as to other individuals in the population. This is
because ordinary crossover is constantly moving the func-
tional code around in the genome. Each time that happens,



positional homology among members of the population
changes. So there is little chance that positional homology
will evolve out of functional code when exposed to ordinary
crossover.

By way of contrast, we propose that programs contain-
ing a substantial proportion of functional code and that are
relatively homologous to other programs in the population
will have higher effective fithess than those that are not so
homol ogous, when exposed to the sticky crossover operator.

Assume the following about a genetic programming
popul ation:

(1) Two programs in the population are more than ran-
domly homologous as between themselves;

(2) The rest of the population is randomly homologous
asto al other members of the population; and

(3) The sticky exchange of homologous segquences is
less likely to produce low fitness children than the exchange
of non-homologous sequences, as appears to be the case in
nature.

Given these premises, and al other things being equal,
the two relatively homologous programs will be more likely
to produce fit offspring when subjected to sticky crossover
than other programs in the population. That is, relatively
homologous programs have higher effective fitness. Be-
cause of the reproductive advantage of their children, these
two programs will be more likely to propagate their genetic
material through generations of evolution than randomly
homol ogous programs.

There is another, and more emergent aspect to this
analysis. When two programs that are relatively homolo-
gous are crossed over (using sticky homologous crossover),
they necessarily produce children that are themselves rela
tively homologous to the other children and to the parents.
In other words, the number of relatively homologous pro-
grams in the population increases after crossover of two
relatively homologous individuals because sticky crossover
does not alter homology. As the offspring of two evolved
programs that are relatively homologous to each other (and
their offspring) spread throughout the population, the de-
scendants relative reproductive advantage deriving from
that homology spreads because there are now more homolo-
gous programs in the population derived from the same an-
cestors. Thus, we would predict that the homology of the
overall population should also increase and that homology
should appear as emergent order.

But does emerging homology contribute to useful fit-
ness from a problem-solving viewpoint? We know from
runaway code bloat that emergent homology is not always
useful. In this regard, however, sticky, homologous cross-
over is quite different than standard linear crossover. It re-
spects the position of the swapped code; that is, it respects
positional homologies.

With standard crossover, the only code that could be the
cause of emergent homology is introns (useless code) be-
cause that is the only code that is probably homologous no
matter where it appears in the genome. But with our ho-

mologous crossover operator, code that is homologous to
other programs in the population need not also be homolo-
gous at other positions on the genome because sticky cross-
over does not move the code around. Obviously, functional
code may exhibit homologous properties when exposed to
sticky crossover as long as that code only needs to be ho-
mol ogous in one location on the genome.

This reasoning does not, of course, prove that useful
homology will emerge. Only that we can expect homology
with this new operator, to look considerably different than
the perverse homology of code bloat, that it will be homol-
ogy of, at least partialy functional code, and that this func-
tional code may well evolve through normal selection to be
useful code.

There is one prediction we can make from this reason-
ing. If useful homology emerges, it will do so because
crossover is less destructive when performed between ho-
mologous elements of the population. Previous research
indicates that intron growth in genetic programming is
caused in large part by the destructive effect of the crossover
operator. [Nordin et al., 1996] [Soule & Foster, 1997]. If
crossover becomes less destructive because of emerging
homologies, we would predict that increasing the amount of
homologous crossover in the population should decrease the
rate of growth of the length of programs in the population.

4.3 Previous Related Work

Our approach is not entirely novel. We are aware of two
previous sets of experiments in tree-based genetic program-
ming that added positional dependence to the crossover op-
erator.

D'Haeseleer devised strong context preserving cross-
over in 1994. In that work, D'Haeseleer permitted crossover
to occur only between nodes that occupy exactly the same
position in the two parents. D'Haeseleer got modest im-
provement by combining ordinary crossover with his strong
context-preserving crossover [D'Haeseleer, 1994].

Similarly, Poli & Langdon introduced one point cross-
over in 1997 [Poli & Langdon, 1997]. One point crossover
is even more restrictive than strong context preserving
crossover because it only permits crossover between nodes
that match in position and arity.

But homologous crossover with linear genomes is con-
siderably different than these two prior approaches. These
previous works alow very large subtrees and very small
subtrees to be exchanged in crossover, as long as the base
node of the two subtrees occupies the same position in the
genome. By way of contrast, our homologous linear opera-
tor requires that the exchanged code sequences are very
similar in size and that they occupy the same position in the
genome. Thus, our linear operator is forced to exchange
segments of code that are more likely to be similar (in se-
mantics and, therefore, function) than the code exchanged in
these two tree based systems.



5. Implementation

AIMGP stands for Automatic Induction of Machine Code,
Genetic Programming. AIMGP uses linear genomes made
up of native machine code functions. It performs crossover,
mutation and fitness evaluations directly on the machine
code [Nordin 1994].

Our first experiments with homologous crossover in
AIMGP began about two years ago at the University of
Dortmund. During that time, we have become increasingly
convinced of its beneficia effects.

The experiments reported here were run using Discipu-
lusd 1.0 software [RML Technologies, Inc., 1998], which is
a commercial version of AIMGP written for WINTEL ma-
chines running 486DX, Pentiuma and Pentium 14 proces-
sors. It implements over fifty native machine code instruc-
tions from the floating-point processor in these systems.

Although we will provide some implementation details
here, the implementation and operation of this software is
exhaustively documented in [Francone, 1998].

5.1 Program Representation

During evolution, AIMGP systems hold evolved pro-
grams as native machine code functions. Each program is
comprised of the following parts: header, body, footer and a
return instruction as shown in Figure 1.

Figure 1. The Structure of an AIMGP Program. ("IB" Refers to
Instruction Blocks).

Header B B B B Footer Return

32 bits 32 bits 32 bits 32 bits

The body of the evolved programs is where evolution
takes place. The crossover and mutation operators operate
only in the body and the output of each evolved program is
calculated in the body of the program.

The body of an evolved program is composed of one or
more 32 hit "instruction blocks." An instruction block may
be comprised of a single 32-hit instruction or any combina-
tion of 8, 16, or 24-hit instructions that add up to 32 bits.
Crossover occurs only at the boundaries of the instruction
blocks and without reference to the content of the instruction
blocks.

5.2 Crossover And Mutation

In these experiments, we blended "ordinary" crossover
and sticky, homologous crossover. In this system, some
non-homologous crossover is necessary because that is the
only way for genomes to change length.

Ordinary Crossover. Ordinary crossover is traditional
AIMGP crossover—two-point crossover, with the selected
code fragments being chosen randomly from the two par-

ents. Figure 2 represents traditional (non-homologous)
crossover in Discipulusd. Each block represents an in-
struction block. Each instruction block may contain one or
more instructions. Crossover occurs at the boundary of in-
struction blocks.

Figure 2. Non-Homologous Crossover in AIMGP using Instruc-
tion Blocks

PARENT PROGAMS

A=SIN(A) A=COS(A)
A=COS(A) A=ABS(A)
A=SIN(A] M g
NOP( ) INSTRUCTION NOP
NOP A=A*INPUT(24)
SWAP
A=A+INPUT(3) A=COS(A)
NOP A=SQRT(A)
A=ABS(A) Azs g‘P(A)
A=SQRT(A) NOP
OFFSPRING PROGAMS
A=SIN(A) A=COS(A)
A=COS(A) A=ABS(A)
A=SIN(A)
NOP
A=AYINPUT(24) NOP
A=ABS(A) A=A+INPUT(3)
A=SQRT(A) NOP
A=COS(A)
A=SQRT(A)
A=SIN(A)
NOP
NOP

Homologous Crossover. We implemented homologous
crossover as shown in Figure 3. What distinguishes ho-
mologous from non-homologous crossover is that in ho-
mologous crossover, instruction blocks can only be swapped
with an instruction block at the same position in the other
parent's genome.

Mutation. Mutation makes a random change to a ran-
domly chosen instruction block. There are three kinds of
mutation:

Block Mutation. Random regeneration of an entire
instruction block;

Data Mutation. Randomly pick one instruction in
the instruction block and randomly change an oper-
and; and

Instruction Mutation. Randomly pick one instruc-
tion in the instruction block and randomly change
its operator.

6. Experimental Setup®

We chose to test the effect of adding homologous crossover
to linear genetic programming on the Gaussian 8D problem.
Gaussian 8D is a classification problem comprising two
classes and eight independent variable inputs. In addition to
the eight 'rea’ inputs, we added sixteen 'false’ inputs—that
is, sixteen data series containing random variables are pro-
vided to the system in addition to the eight real inputs. This

! All data, software, parameters and configuration files nec-
essary to duplicate these experiments in their entirety may
be found at [RML Technologies, Inc., 1999].



makes the system engage in variable selection as well as
classification.

Figure 3. Homologous Crossover in AIMGP.
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A=SIN(A) A=COS(A)
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A=SIN(A)
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A=A*INPUT(24) NOP
A=COS(A) A=A+INPUT(3)
A=SQRT(A) NOP
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A=SQRT(A) Nop

The eight 'real’ inputs were generated as follows:

- For Class 0 examples, each of the inputs are nor-
mally-distributed, random values with a mean of 0
and a standard deviation of 1.
For Class 1 examples, each of the inputs are nor-
mally-distributed, random values with a mean of O
and a standard deviation of 2.

We divided the data into training and validation sets of
one thousand examples each.

We measured the performance of arun by the best clas-
sification rate attained on the validation set (in percentage
correct classifications).

To test the effect of homologous crossover, we used the
parameters described at www.aimlearning.com/gecco. The
only parameters varied were the mutation rate and the ho-
mologous crossover rate as follows:

- The mutation rate was varied between 5% and 80%

(5%, 20%, 50%, and 80%).

The overall crossover rate was fixed at 100%. The
composition of the crossover operator as between
homologous (sticky) and non-homologous cross-
over was varied as follows. 0%, 20%, 40%, 60%,
80%, and 95%. (Any crossover that is not homolo-
gousistraditional or non-homologous crossover.)

Altogether we performed twenty-five runs at each pa
rameter setting using a different random seed for each of the
twenty-five runs. Because there were twenty-four different
parameter combinations tested, we performed 600 runs to
obtain the data reported here.

Each run was alowed to continue for two minutes be-
fore termination. Although two minutes may seem like a
very short run for a difficult problem, this is machine code
genetic programming. It is approximately sixty times faster
than typical genetic programming systems. Accordingly, a
run of two minutes on this system is comparable to a run of
about two hours on atypical genetic programming system.

Table 1. Best Percentage Hit Rate on Validation Set by Mutation
Rate (horizontal legend) and Homologous Crossover Rate (vertical
axis). Each box is average of 25 runs.

Mutation Rate

Hom.Crossover 5% 20% 50% | 80%
Rate

0% 71.1 72.6 729 | 74

20% 69.5 71.4 749 | 73.9

40% 70.6 73.2 737 | 73.4

60% 68 72.4 745 | 74.6

80% 70 74.4 749 | 75.7

95% 70.8 75.3 776 | 774

7. Reaults

We measured overall performance by the percentage of cor-
rect classifications attained by the best individua on the
validation set.

Table 2. Number of Tournaments before Average Length Equaled
or Exceeded 500 bytes, in thousands of tournaments (000), by Mu-
tation Rate (horizontal legend) and Homologous Crossover Rate
(vertical axis). Each box is average of 25 runs.

Mutation Rate

Hom.Crossover 5% 20% 50% | 80%
Rate

0% 10 11 10 12

20% 9 10 11 11

40% 9 11 9 9

60% 11 11 9 10

80% 16 18 12 14

95% 20 24 22 22

Table 1 reports the results of our runs cross-tabulated
by mutation rate and homologous crossover rate. As is ap-
parent, runs with high homologous crossover rates tend to
perform better than runs with lower homologous crossover
rates.

Table 2 shows the average number of tournaments that
transpired before the average length of the evolved programs
in the population exceeded 500 bytes in length. The more
homologous crossover, the longer runs continue before they
reach 500 bytes in length. This effect is pronounced at each
level of mutation.

7. Discussion

On these data, both of our predictions are confirmed for this
problem. Homologous crossover does apparently have a
significant and beneficial effect on the fitness of the best
individual on the validation data and on code bl oat.

Significantly, the emergent aspects of homologous
crossover do not become apparent until the operator com-
prises at least 80% and perhaps 95% of all crossover events.
This suggests the mechanism by which the homologous op-
erator works is in fact the emergence of homology within the
popul ation.



8. Further Work

The homologous crossover operator introduced here is only
the beginning of what we believe should be a concerted ef-
fort into improving the crossover operator by analogy to
biological systems. For this operator, no attempt was made
to guide the evolution of homology within the population
other than permitting the genomes to have a degree of
stickiness. Further, in our current experimental setup, only
one species is able to evolve per population. Additional
research is planned into mechanisms that would permit dif-
ferential speciation within the population. Finally, we ex-
pect future work to look more deeply into the actual opera-
tion of the crossover operator at run-time rather than view-
ing only the collective output of arun asasingle entity.
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