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Abstract

An unususal GP implementation is proposed,
based on a more \economic" exploitation
of the GP algorithm: the \individual" ap-
proach, where each individual of the popula-
tion embodies a single function rather than
a set of functions. The �nal solution is then
a set of individuals. Examples are presented
where results are obtained more rapidly than
with the conventional approach, where all in-
dividuals of the �nal generation but one are
discarded.

1 Introduction

We present a more \economic" approach of the res-
olution of some complex problems such as the ones
related to Iterated Function Systems: it is based on
the co-evolving capacities of populations in GA/GP.
The solution to the problem is then represented by
the whole population (or a subset of the whole popu-
lation) and not any more by a single individual (just as
\classi�er systems" approaches, see [10], or as in [14]
for Evolution Strategy). We have chosen to call this
approach \individual." Although it is more complex
to implement (mainly with respect to the �tness com-
putations) it allows to build more e�cient algorithms
in some particular cases.

We describe the general characteristics of such an ap-
proach in section 2. We then present how it can be
applied in an e�cient way to problems related to the
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study of some fractal objects (used for image compres-
sion); 2D attractors of non-linear Iterated Function
Systems (IFS). Theoretical background for IFS and
Polar IFS is presented in section 3. Section 4 presents
an application to the random generation of 2D Polar-
IFS attractors with a �xed surface. Section 5 describes
how individual GP has been used to solve the inverse
problem for Polar IFS.

2 Individual GP

The standard approach, which uses evolutionary meth-
ods as stochastic optimisers (where a set of individu-
als in the search space evolves, via speci�c, classical
or genetic operators, so that the best individual of the
population converges towards the desired optimum)
may sometimes seem wasteful: only the best individ-
ual of the �nal population is kept, while the others are
discarded. The behaviour of GA however leads us to
think that an important part of the �nal population
bears signi�cant information on the structure of the
search space. This observation has led to, and jus-
ti�ed such techniques as sharing, or niching (see [10])
that get more out of evolutionary algorithms than only
guiding the best individual towards the global opti-
mum.

If the solution to the problem is represented by an im-
portant set of individuals, or by the whole population1,
the implementation of the algorithm is more delicate:

� Not all optimisation problems can be formulated
as a union of sub-problems.

� One must be able to correctly evaluate the con-
tribution of each of the individuals to the global
solution (one can quite often use a local evalua-

1This approach is not new, and is usually referred to as
\Michigan" type GA's



tion function for an individual along with a global
evaluation function for the whole population).

� Finally, it seems indispensable to use a \sharing"
method with a well chosen distance function to
place each individual with reference to the others.
The evolution of the system can be seen as seeking
a position of balance.

3 Fractal shapes based on Iterated

Function Systems

3.1 IFS Theory

An IFS (Iterated Function System) 0 =
fE; (wn)n=1;::;Ng is a collection of N functions de�ned
on a complete metric space (E; d).

Let W be the operator de�ned on the space of subsets
of E2:

8 K � E; W (K) =
[

n21;:::;N

wn(K)

Then, if the wn functions are contractive (the IFS is
then called a hyperbolic or contractive IFS), there ex-
ists a unique set A such that: W (A) = A. A is called
the attractor of the IFS.

Recall:
A mapping w : E ! E, from a metric
space (E; d) into itself, is called contractive
if there exists a positive real number s < 1
such that:

d
�
w(x); w(y)

�
� s � d(x; y) 8x; y 2 E

The uniqueness of a hyperbolic attractor is a result
of the Contractive Mapping Fixed Point Theorem for
W , which is contractive according to the Hausdorff
distance:

dH(A;B) = max

�
max
x2A

�
min
y2B

d(x; y)
�
;max
y2B

�
min
x2A

d(x; y)
��

From a computational viewpoint, an attractor can be
generated according to two techniques:

� Stochastic method (toss-coin):
Let x0 be the �xed point of one of the wi func-
tions. We build the points sequence xn as fol-
lows: xn+1 = wi(xn), i being randomly chosen in
f1::Ng.

2wn(K) represents the set fwn(x); x 2 Kg

Then
S
n xn is an approximation of the real at-

tractor of 0. The larger n, the more precise the
approximation.

� Deterministic method:
From any initial set S0, we build the sets sequence
fSng:

Sn+1 =W (Sn) =
S

n wn(Sn)

When n tends towards1, Sn is an approximation
of the real attractor of 0.

3.2 Polar IFS

Problems associated to a�ne IFS, i.e.: when the wi are
a�ne 1D or 2D functions, have been extensively stud-
ied, mainly because fractal compression techniques
rely on a�ne IFS modelling. A major challenge is to
tackle the inverse problem for non-a�ne IFS. Previous
work on this subject have raised the idea to use GP
for the resolution of such problems, [15], [5].

The main problem which arises when manipulating
non-linear IFS (mixed IFS, [15], for instance) is the
management of the contractance constraint. This is
quite tricky when one tries to solve the associated in-
verse problem using stochastic methods.

Let us use a subset of non-linear functions, wi, conc-
tracting with respect to a point Pi:

8M 2 E = [0; 1]2 jj
������!
Piwi(M) jj < jj

���!
PiM jj (1)

which can be transcribed in polar coordinates centred
on Pi as:

������!
Piwi(M) =

0
@ �

th(k � F (�; �)) + 1

2

G(�; �)

1
A (2)

F (�; �) and G(�; �) are random non-linear functions
which can be represented with a tree (as for mixed-
IFS functions).

The form �
th(k�F (�;�))+1

2 insures that the relation (1)

is veri�ed, because the factor th(k�F (�;�))+1
2 is always

< 1. The form of this factor has been chosen in order
to make a rather smooth bijective mapping of IR onto
(0; 1), see �gure 1. k is �xed to 10�7 for the same
reasons.

The �xed points Pi of these wi functions are:

8M 2 E lim
n!1

wn
i (M) = Pi
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Figure 1: The y = th(kx)+1
2 curve with k = 10�7

Figure 2: Examples of Polar IFS attractors

However, these functions are not systematically con-
tractant, see [5] for details.

The restriction to functions verifying (2) does not un-
fortunately prevent us from checking whether the func-
tions are contractant or not. This restriction is how-
ever very interesting, because functions constructed
this way are quite often contractant and have a known
unique �xed point. What is more, this set of func-
tions is general enough to produce a wide variety of
shapes through their attractor, see �gure 2. They are
quite easy to use in such applications as the solving
of the inverse problem or the interactive generation of
attractors.

4 Random generation of Polar IFS

attractors with a prescribed surface

A �rst problem that can be solved using GP is the ran-
dom generation of non-linear IFS attractors. Due to
the contractance constraints, the space of possible sets
of wi functions which admit an attractor is very sparse.
If one wants to �nd IFS attractors that have com-
pact, \nice," or �xed criteria, the problem becomes
extremely di�cult. Solutions have been proposed in
[18] in an interactive manner for the \artistic" genera-
tion of attractors, similar to Karl Sims techniques [19].

This approach is based on a conventional exploitation
of GP: a whole IFS (i.e.: a set of wi functions) is rep-
resented as an individual of a population.

If an individual of the population encodes a single wi

function, the IFS is represented by the whole popula-
tion, or by a part of the population. We present below
how this structure can be evolved to produce an IFS
having an attractor of arbitrary surface in the image.

The advantage of using Polar IFS is twofold:
1. each function converges towards a �xed point, and

the functions are rather frequently contractive,
see [5] for experiments,

2. access to the �xed point of the function is direct.

This second point allows to consider in a di�erent way
genetic operators on �xed points and on tree structures
of an individual that represents a wi function. Genetic
operators are classical GP mutation and crossover for
the tree structured part of the wi. Fixed points are
mutated according to a random shot in a disk of ra-
dius � centered on it. Fixed points crossover is a classi-
cal barycentric crossover whose parameter is randomly
chosen in [�1; 2] for each o�spring (x0 = 
x+(1�
)y).

The main problem of \individual" approaches is the
careful design of the �tness function, and the use of a
sharing scheme, in order to disperse the individuals of
the population.

The �tness function can be made up of two main con-
tributions: a local �tness which measures the intrinsic
characteristic of the individual, and a global �tness
that stems from the global performance of the popula-
tion, redistributed on each individual, proportionally
to its \contribution."

� Local Fitness: a combination of three terms ac-
cording to:

1. The �xed point position with respect to the
image (represented as 2, the [0; 1]2 square).
A very simple property of attractors is that
the �xed point of each wi belongs to the at-
tractor of fwig. If we thus wish that the at-
tractor of the fwig be inside the image, the
�xed points have to be within 2.

A �rst term is proportional to the inverse dis-
tance between the �xed point xi of wi and 2:

F1(wi) =
1

1 +D(xi;2)

F1 is maximum and equals 1 when xi 2 2,
and tends to zero when xi is far away from
2.



Table 1: Parameters setting for the random generation
of attractors, using GA-Lib
SIGMA 0.2
Local �tness tuning � = 20
Mutation probabilities
constant ! constant 0.15

according to a Gaussian
law of variance SIGMA

variable ! constant 0.02
randomly chosen in [�1; 1]

constant ! variable 0.06
variable ! variable 0.08
function ! function 0.08
(same arity)
�xed points: 0.03

according to a uniform
law in the circle
of radius SIGMA

Crossover probability
PCROSS 0.95

for trees and �xed points
Sharing
� (Goldberg [10]) 2*SIGMA
Population replacement scheme
replacement percentage 50%

Overlaping populations

2. The wi(2) position with respect to 2: We
compute the image wi(2), in order to test
if it is included in 2.

Let #[X ] be the number of pixels (according
to the considered image resolution) of the set
X , then:

F2(wi) =
#[wi(2)

T
2]

#[wi(2)]

F2(wi) is maximum (and = 1) if wi(2) � 2.

3. The size of wi(2) in 2:

F3(wi) =
#[wi(2)

T
2]

#[2]

We have chosen to favour wi's that generate
large images.

The local �tness for individual wi is:

Floc(wi) = F1(wi) + F2(wi) + �F3(wi) (3)

� tunes the relative importance of term F3 in com-
parison to F1 and F2 (F1 and F2 tend easily to
one, while F3 is more di�cult to increase).

� Contractivity constraints:
The contractance test can be included in the com-
putation of the image of wi(2). At the same time,
the mean contraction factor ki can be estimated.
If the function is not contractive, F2 is not com-
puted and is directly �xed to zero, as well as Floc
in order to discard this individual.

� Global �tness:
The N (to be determined with respect to the lo-
cal �tness3) best individuals of the evolved pop-
ulation represent a solution to our problem. A
toss-coin algorithm can thus be used in order to
compute the attractor 0 of these individuals, and
a global �tness can be de�ned for a prescribed
image occupancy S 2 [0; 1] as:

Fglob =
2

1 + 100(#[0]
#[2] � S)2

Fglob is a measurement of the distance between
#[0]
#[2] and S. The function has been chosen so that

Fglob = 1 when #[0] = S � 10%.

This global �tness can be distributed on the N wi

which have been selected from the current pop-
ulation (the global �tness of the individuals that
have not been selected is simply Floc), proportion-
nally to their contribution to 0 i.e.: to F2(wi), or

grossly to ki (in fact related to ki =

P
kj

N
):

F (wi) = Floc(wi)�N
kiP
kj
Fglob (4)

Fglob is used as a multiplicative factor, thus im-
proving (if � 1) or degrading the individuals' �t-
ness with respect to their global performance.

Fglob can also be used as a stopping criterion for
the GP: stop the algorithm when the target sur-
face is approximated with a �xed threshold.

A GP with sharing is used, the distance being simply
the euclidean distance between �xed points of the wi

functions.

Results obtained with the parameter setting of table 1
are presented in �gures 3 and 4.

5 Resolution of the inverse problem

for Polar IFS

The inverse problem for 2D IFS can be stated as fol-
lows:3In fact, we select all the contractive individuals of the
population with F3(wi) > 0:1



density 0.24 density 0.2 density 0.22
10 generations 9 generations 20 generations
6 functions 7 functions 10 functions

Figure 3: Three di�erent runs of the algorithm:
128x128 random attractors generated for S = 0:2, with
a population size of 20 individuals, the algorithm is

stopped as soon as #[0]
#[2] > S.

for a given 2D shape (a binary image), �nd a
set of contractive maps whose attractor pro-
duces a similar shape, the similarity being de-
termined by a pre-de�ned distance function.

An interesting tool for the resolution of the inverse
problem is the so-called collage theorem [2]:

Collage theorem: Let A be the attractor of the hy-
perbolic IFS 0 = fE; (wn)n=1;::;Ng:

8K � E; dH
�
K;W (K)

�
< " ) dH(K;A) <

"

1� �

� being the smallest number such that:

8n 2 f1; ::; Ng;8(x; y) 2 E2;

d
�
wn(x); wn(y)

�
< � � d(x; y)

This theorem means that the problem of �nding an
IFS 0 whose attractor is close to a given shape A, is
equivalent to the minimisation of the distance:

dH
�
A;

n[
i=1

wi(A)
�

under the constraint that the wi are contractive func-
tions.

We will see below that the \individual" approach al-
lows to use information stemming from both collage
theorem and toss-coin algorithm, in order to solve the
inverse problem e�ciently.

In the same way as in section 4, each wi is mainly
evaluated as a function of the position of its �xed point
(which is always de�ned and known, thanks to the use
of polar IFS) and as a function of the coverage

�
wi(A)

�
of the target shape (A). A distance is de�ned on the
search space (sharing method) to get the individuals
to be as far as possible one of each other (linked to the
euclidian distance between the wi �xed points). The

density 0.41 density 0.41 density 0.41
53 generations 54 generations 91 generations
12 functions 10 functions 19 functions

Figure 4: Three di�erent runs of the algorithm:
128x128 random attractors generated for S = 0:4, with
a population size of 30 individuals, the algorithm is

stopped as soon as #[0]
#[2] > S.

wi population then evolves so that the best individuals
of the population get the best and most economical
covering of the target image. A = [wi(A).

� Constrained �xed points: The �xed points xi
of individuals wi are randomly chosen among the
contour points of the target shape A in the initial
generation4. Mutation and crossover are adapted
in order to insure that the xi always stay on the
contour of A.

Mutation of and individual wi is for its �xed point
xi a uniform random shot among the contour
points in a neighbourhood of �xed size, and a
random modi�cation of the tree structure for its
function tree.

Crossover between individuals wi and wj does not
modify their �xed points, and is a classical GP
crossover (subtree exchange) between their tree
structures.

� Local �tness: a combination of two terms ac-
cording to:

1. The position of wi(A) with respect to A.
As the wi �xed points are constrained to be-
long to A. We can compute the image wi(A),
in order to test the set wi(A) with respect to
A.

Let #[A] be the number of pixels of A, the
term F1(wi) is:

F1(wi) =
1

1 +#[wi(A)nA]

4This constraint is related to a conjecture by Michel
Dekking that there always exist solutions to the inverse
problem where �xed points are on the edges of the target
shape. This result has been proven in the case of a�ne IFS
in [6].



Table 2: Fitness parameters for the inverse problem,
using GA-Lib
Local �tness tuning � = 0:4
Mutation probabilities
constant ! constant 0.15

according to a Gaussian
law of variance SIGMA

variable ! constant 0.05
randomly chosen in [�1; 1]

constant ! variable 0.06
variable ! variable 0.08
function ! function 0.08
(same arity)
�xed points: 0.4, linearly decreasing

with generation
uniform random choice
among contour pixels in a
neighborhood of radius
4 pixels

Crossover probability
PCROSS 1.

for trees and �xed points
Sharing
� (Goldberg [10]) 2*SIGMA
Population replacement scheme
replacement percentage 50%

Overlaping populations

F1(wi) is maximum (and equals 1) if wi(A) �
A.

2. The coverage of A with wi(A).
A term F2 has also to be de�ned, that cor-
responds to the maximisation of the size of
wi(A)

T
A.

F2(wi) =
#[wi(A)

T
A]

#[A]

F2(wi) is maximum (and equals 1) if A �
wi(A).

The local �tness of the individual wi is a linear
combination of the previous terms.

Floc(wi) = (1� �)F1(wi) + �F2(wi) (5)

This �tness represents an interpretation of the
\collage" property of an IFS, i.e.: one searches for
the set of best wi's such that A =

S
wi(A). One

also understands the bene�t of a sharing scheme
in order to have an economic coverage of A with
the sets wi(A).

� Contractivity constraints are considered as in
section 4.

� Global �tness:
The N (to be determined with respect to the local
�tness5) best individuals of the evolved popula-
tion are evaluated via a toss-coin algorithm. The
attractor 0 of these best individuals is computed,
the global �tness then is:

Fglob =
1

#[0]
�x20DIST (x) +

#[0
T
A]

#[A]

DIST (x) is the pixel value of x in the distance
image of target shape A6.

Fglob is a measurement of the distance between 0
and A. The �rst term of this sum represents the
mean distance of the set 0 to A (1 if 0 � A), the
second term is 1 if A � 0.

This global �tness is distributed on N best wi,
proportionally to their contribution to the target
approximation in an additive manner.

F (wi) = Floc(wi) + kiFglob

Fglob can also be used to stop the algorithm, i.e.:
when the target is approximated with a �xed
threshold.

Target approx. 85.54% approx. 85.06%
22 generations 19 generations
19 functions 20 functions

Figure 5: Two runs of the algorithm: 64x64 target,
with a population size of 300 individuals, the algorithm

is stopped as soon as #[0]
#[A] > 85%.

Results obtained with the parameter setting of table
2, are presented in �gures 5 and 6.

6 Conclusion

The aim of this paper was to show the interest of us-
ing optimisation strategies for evolutionary algorithms

5We select all the contractive individuals having a F1
near 1, i.e.: whose �xed points are close to the target shape
A. This set is then �ltered by a simple clustering scheme
in order to select only the best individuals of each cluster.

6A distance image is the transformation of a black &
white image (the target shape A) into a grey-level one,
where the level a�ected to each image point is a function
of its distance to the original shape A. It can be easily
computed by a simple algorithm (see [4]).



Target approx. 60.46% approx. 60.13%
256x256 target 128x128 target
1000 indiv. 2000 indiv.

38 generations 64 generations
15 functions 27 functions

Figure 6: Two runs of the algorithm: Dolphin target,

the algorithm is stopped as soon as #[0]
#[A] > 60%.

other than the usual direct implementation that identi-
�es the �tness function to the function to be optimised.
Of course an individual approach can only be used on
speci�c problems such as the ones we presented here.
The careful design of �tness functions and balance be-
tween local terms and global terms is crucial for the
quality and e�ciency of the method.

However, the examples we have exhibited in this pa-
per show the bene�t of individual strategies: for the
inverse problem a rough approximation of the shape is
obtained very rapidly while �ne tuning are longer to
obtain. In comparison to the \direct" implementation,
one needs a reduced number of generations (and con-
sequently a reduced number of �tness evaluations) to
converge to an acceptable result7. An interesting ex-
periment in the case of the inverse problem (that may
also prove that \individual" approaches have still to be
considered as \regular" Evolutionary algorithms) is to
run the GP algorithm without the global �tness term :
results are almost similar, the in
uence of the global
�tness is small. The implementation of the individual
approach we describe here di�er thus from Credit As-
sigment Problems [10], where no information is avail-
able to measure the e�ciency of individuals, except
the one that comes from a global evaluation and that
has to be dispatched on individuals.

We also show that Polar IFS is an interesting model
that simpli�es the manipulation of non-linear IFS. Fu-
ture work on this topic concern:

7A precise comparison between these approaches is not
straightforward : due to the di�erence of individuals and
�tness functions structures in each approach, a comparison
with respect to the number of generations or �tness eval-
uations is not convenient. A more precise analysis as well
as an hybrid implementation (where individual and global
GA collaborate) is a part of future works we intend to do
on this topic

� implementations of section 4 technique in an in-
teractive manner for artistic generation of fractal
images,

� exploitation of inverse problem for Polar IFS in
the framework of physical structures optimisation.
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