
1

Adaptive Genetic Algorithm for Multiprocessor Scheduling

Mohamed M. Zahran
CairoUniversity,Giza,

EGYPT
mzahran@ ieee.org
Tel : +2 02 3540125

Ashraf H. Abdel Wahab
Computers & Systems Dept.
Electronic Research Institute

El Tahrir str. Dokki, Giza, EGYPT
ashraf@eri.sci.eg

Tel : +2 02 3310502/3351631

Samir I. Shaheen
Computer Engineering Dept.

Faculty of Engineering
Cairo University, Giza, EGYPT

sshaheen@frcu.eun.eg
Tel : +2 02 3358577/5735208

 This research presents a solution for the
NP-hard problem of static multiprocessor
scheduling using adaptive genetic algorithm
(AGA), which represents a modification of the
conventional genetic algorithm and gives
optimal or near optimal solutions in a fewer
number of generations. The main performance
criteria to be optimized is the schedule
makespan, defined as the finishing time of the
last task in the task graph. The use of GA to
schedule task graphs to multiprocessor system
has been done before [Hou et al 1994]. The
proposed AGA simple string of genes is used
where the index indicates the task to be
scheduled and the alleles represent the
processors numbers. Remainder stochastic
sampling without replacement was used as the
selection scheme together with niching method
to get multiple solutions. Two types of
crossover were used: single-point crossover
and uniform crossover. Also, two types of
mutation were used: swapping mutation and a
proposed mutation that causes high disruption.
Depending upon the degree of diversity in the
population, the selection between the types of
crossover and mutation at each generation is
performed. Choosing crossover mates is made
adaptively at each generation depending on the
degree of similarity between parents. This
similarity is done using hamming or Euclidean
distance. The degree of similarity used to
choose mates changes adaptively at each
generation. Probabilities of crossover and
mutation are adapted depending on the current
population and the chromosomes chosen as
proposed in [Pal and Wang 96].

The proposed adaptive algorithm:
1. Generate initial population at random
2. Assign best_so_far to best individual in

the population
3. While number of generations have not

reached the required maximum do:
a- Perform remainder stochastic

without replacement
b- Adapt similarity metrics
c- Choose type of crossover and

mutation
d- do until new population is

formed:
d1) choose first mate using

 tournament selection
d2)chose second mate
 based on similarity metrics
d3)calculate Pc
d4)perform crossover with
 probability Pc and insert
 in new population the

 best two individuals
 e-for each member of new pop. do:
 e1)calculate Pm

 e2)perform mutation with prob
 Pm and if the new individual is
 better then insert it in the pop.
 f- if best individual in the current
 population is better than
 best_so_far then assign it to
 best_so_far
 g- assign best_so_far to the worst
 Individual in the population
 h- if after ([maximum number of

 generations]/6) best_so_far has
 not changed:
 h1)generate 0.75*pop_size
 population at random
 h2)the remaining population is
 assigned as best_so_far

Experiments: The implemented system has
been tested against conventional GAs as well
as ranked weight [Samadzadeh and Henrick 92
] method. The AGA gives better results and
reaches a better solution in a fewer number of
generations
References:
Hou,E.S., Ansari, N. and Ren,H.(1994) A GA
for multiprocessor scheduling . IEEE Trans.
Parallel and distributed systems,
vol.5,No.2,pp.113-120

Pal,K.S. and Wang,P.(1996) Genetic
algorithms for pattern recognition. CRC press

Samadzadeh,F.A and Henrick,G.E.(1992) A
heuristic multiprocessor scheduling algorithm
for creating near optimal schedules using task
system graphs . Proc. ACM/SIGAPP
symposium on applied computing (VOL II):
technological challenges of the 1990s, pp.711-
718

