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Abstract

This paper presents a robust real-coded ge-
netic algorithm using the Unimodal Normal
Distribution Crossover (UNDX) enhanced by
the Uniform Crossover (UX). The UNDX has
an advantage, which most other crossover op-
erators do not have, that it can efficiently
optimize functions with strong epistasis a-
mong parameters. However, the UNDX has
a disadvantage that there can be some areas
where the UNDX cannot sufficiently gener-
ates individuals by using a given initial pop-
ulation. Contrary to this, the UX has an ad-
vantage that it can make individuals in areas
where the UNDX cannot with the same ini-
tial population and has a disadvantage that
it cannot efficiently optimize functions with
epistasis among parameters. To make use of
the advantages of the UNDX and the UX that
are complementary to each other, we intro-
duce a mechanism of adapting the operator
probabilities according to the characteristics
of a given function. Through some experi-
ments, we show the robustness of the pro-
posed method by demonstrating that the pro-
posed method can solve more various func-
tions than a GA using only the UNDX.

1 Introduction

There have been proposed various real-coded genetic
algorithms for function optimization so far [Davis 90],
[Radcliffe 90], [Wright 91], [Janikow 91], [Michalewicz
92], [Eshelman 93], [Voigt 95], [Ono 96], [Eshelman
97], [Ono 97]. Functions that we have to optimize in
real world problems often have strong epistasis among
parameters. However, the performance of most real-

coded GAs deteriorates considerably on functions with
epistasis among parameters [Salomon 96], [Ono 96].
Against this problem, the authors have proposed the
Unimodal Normal Distribution Crossover (UNDX) for
real-coded GAs, considering epistasis among parame-
ters, and have shown that the UNDX can efficiently
optimize some benchmark functions with strong epis-
tasis among parameters [Ono 97]. Eshelman et al.
have independently proposed a similar crossover op-
erator named the directional-BLX [Eshelman 97].

The UNDX generates offsprings mainly on the line seg-
ment connecting two parents. The authors have shown
that the UNDX preserves the correlation among pa-
rameters well[Kita 98]. The advantage of the UNDX
in optimization of epistatic functions is attributed to
this feature.

However, at the same time, this feature of the UNDX
brings about the following two disadvantages. The
first problem is that there can be some areas where
the UNDX cannot generates offsprings with a given
initial population when the population size is small
relative to the search space. If one of such areas is
the promising area including the optimal point, the
UNDX fails in finding the optimal point. The second
problem is that the UNDX has the difficulty in finding
the optimal point(s) near the boundaries.

In this paper, we propose a robust real-coded ge-
netic algorithm employing both the UNDX and the
UX, complementary crossover operators. To choose
a crossover operator efficiently, we introduce a self-
adaptive mechanism of crossover probabilities into the
algorithm. To examine the effectiveness of the pro-
posed method, we apply it to optimization problems of
various benchmark functions such as multimodal func-
tions, epistatic functions and mixed variables function-
s including discrete parameters as well as continuous
ones.
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Figure 1: UNDX (nparam = 2) [Ono 97]

In section two, we briefly review the UNDX and the
MGG [Satoh 96], which is a generation-alternation
model used with the UNDX in [Ono 97]. We
discuss some advantages and disadvantages of the
UNDX+MGG [Ono 97] in section three. In section
four, we propose a robust real-coded genetic algorith-
m with adapting probabilities of applying the UX and
the UNDX. The proposed method is applied to some
benchmark functions to show its robustness in section
five. Section six is a discussion and section seven con-
cludes this paper.

2 A Brief Review of UNDX+MGG

2.1 UNDX [Ono 97]

The UNDX generates two offsprings by using the nor-
mal distribution which is defined by three parents, as
shown in Fig. 1. Offsprings are made around the line
segment connecting the two parents, Parent 1 and Par-
ent 2. One of the standard deviation values of the
normal distribution which corresponds to the axis con-
necting Parent 1 and Parent 2 is proportional to the
distance between Parent 1 and Parent 2. The others
are proportional to the distance of the third parent,
Parent 3, from the line connecting Parent 1 and Par-
ent 2 and are multiplied by 1/√nparam, where nparam

is the number of parameters. The effect of 1/
√

nparam

is to keep the distribution of individuals unchanged in
the process of applying the UNDX repetitively [Kita
98]. Offsprings are generated as the followings:

~C1 = ~m + z1~e1 +
nparam∑

k=2

zk~ek, (1)

~C2 = ~m − z1~e1 −
nparam∑

k=2

zk~ek, (2)

where ~C1, ~C2 are offspring vectors respectively, ~m =
(~P1 + ~P2)/2, ~P1 and ~P2 are parent vectors of Par-
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Figure 2: MGG [Satoh 96]

ent 1 and Parent 2 respectively, z1 ∼ N(0, σ2
1),

zk ∼ N(0, σ2
2) (k = 2, · · · , nparam), σ1 = αd1,

σ2 = βd2/
√

nparam, ~e1 = (~P2 − ~P1)/
∣∣∣~P2 − ~P1

∣∣∣, vec-
tors ~e2, · · ·~enparam are the orthogonal basis vectors s-
panning the subspace perpendicular to vector ~e1, d1

is the distance between Parent 1 and Parent 2, d2 is
the distance of the third parent, Parent 3, from the
line connecting Parent 1 and Parent 2. α and β are
constants and α = 0.5 and β = 0.35 are recommended
[Ono 97], [Kita 98].

2.2 MGG [Satoh 96]

The Minimal Generation Gap (MGG) model has been
proposed in [Satoh 96] and has shown good perfor-
mance [Satoh 96]. The MGG was used in [Ono 97] as
a generation-alternation model. Fig.2 illustrates the
MGG. The algorithm of the MGG is described as the
followings:

1. Generation of Initial Population
Make an initial population that is composed of
random real number vectors.

2. Selection for Reproduction
Choose a pair of individuals by random sampling
without replacement from the population.

3. Generation of Offsprings
Generate 2ncrossover offsprings by applying the
UNDX to the chosen pair of individuals ncrossover

times. The third parent which is used for calculat-
ing the standard deviation value, σ2, is randomly
chosen from the population.

4. Selection for Survival
Choose two individuals from the family contain-
ing the parents and their offsprings; one is the
best individual and the other is selected from
2ncrossover + 1 individuals other than the best one
by the rank-based roulette wheel selection [Gold-
berg 89]. Replace the parents chosen in Step 2 in
the population with the two individuals.

5. Repeat the above procedures from step 2 to step
4 until a certain stop condition is satisfied.



3 Features of UNDX+MGG :
Advantages and Disadvantages

The feature of the UNDX is that the distribution of
offsprings generated by the UNDX with an appropri-
ate parameter setting preserves the mean vector and
the covariance matrix of the distribution of the parent
population, according to a theoretical analysis [Kita
98]. In other word, the UNDX generates offsprings
distributed similarly to the parent population. This
feature gives the UNDX an advantage as well as a dis-
advantage as described in the followings.

The feature becomes an advantage when parents dis-
tribute on some promising areas, especially on valleys
that are not parallel to the coordinate axes. Such val-
leys are caused by epistasis among parameters. This
case often happens in the middle search phases or lat-
er. In this case, the UNDX can efficiently search along
the valley without making children away from the val-
ley. If the optimal point lies on the valley, the UNDX
can find the optimal point efficiently. Therefore, for
the UNDX to perform successfully, it is important to
sufficiently sample points from all over the search s-
pace in the early search phases for correctly finding
promising areas and fitting the distribution of parents
to the shape of the promising areas.

On the other hand, the feature becomes a disadvan-
tage when parents do not distribute on any promising
areas and exploring the search space is required. This
case often happens in the early search phases. In this
case, there can be some areas where the UNDX can-
not generates offsprings with a given initial population
when the population size is small relative to the search
space size, which often happens when the number of
parameters to be optimized is large. Suppose that we
optimize a function with nparam parameters by using a
UNDX-based GA with the population size of 500 and
that we divide the search space into 2nparam subspaces
by splitting each axis into two parts. If nparam > 9, we
have more than 512 subspaces and the expected num-
ber of parents in each subspace becomes less than one.
This means that there are many subspaces including
no parents. In situations like this, it is difficult to gen-
erate offsprings in the subspaces including no parents
because the UNDX basically makes offsprings along
the line connecting two parents.

Furthermore, the UNDX has another problem. The
UNDX tends to sample more points near the center of
the search space than ones near the boundaries even
if parents are uniformly distributed over the search
space. As the result, the UNDX has the difficulty in
finding the optimal point(s) near the boundaries.

The feature of the MGG is that it can maintain a di-
versity in the population during the search very well
though it works based on only the order of fitness. An
advantage of the MGG is that the algorithm is very

simple and it can be applied to any type of problems.
A disadvantage of the MGG is that the convergence
speed is slow. The reason is that it needs to choose
a bad individual in the step of selection for survival
for maintaining a diversity in genotype because the
selection is based on only fitness.

4 A Robust Real-Coded GA :
(UX,UNDX)+EMGG

4.1 Uniform Crossover for Augmenting
UNDX

To compensate for insufficient capability of the UNDX
in exploration of the search space, we introduce the U-
niform Crossover (UX) that has complementary char-
acteristics to the UNDX. The UX has been used in
several real-coded GAs [Davis 90],[Wright 91],[Janikow
91], [Michalewicz 92] and in Evolution Strategies (ES-
s) [Bäck 96]. In ESs, the UX is called the Discrete
Recombination and has been report to accelerate the
search process according to [Bäck 96].

In the UX, for each component of the vectors, it is
decided at random from which of both parents the
component is copied to the offsprings.

c1i = pxi, c2i = pyi (3)

where ~P1 = (p11, · · ·, p1nparam) and ~P2 = (p21,· · ·,
p2nparam) are parent vectors, ~C1 = (c11, · · ·, c1nparam)
and ~C2 = (c21, · · ·, c2nparam) are offspring vectors and
nparam is the number of parameters. Index x is a uni-
form random variable which takes 1 or 2. Index y is a
complement of x given by y = 3 − x.

The UX can generate various offsprings that the
UNDX cannot make from the same pair of parents.
Moreover, the UX uniformly samples points from the
search space when parents distribute uniformly. We
expect that the UX widely samples points from var-
ious areas to correctly adapt the parent distribution
to the shapes of promising areas and, as the result,
the UNDX efficiently searches in the promising areas
exploiting the parent distribution.

However, the UX has a disadvantage that the search
efficiency considerably deteriorates when applied to
functions with epistasis among parameters.

4.2 Self-Adaptation of Crossover
Probabilities

Because the UX and the UNDX are complementary to
each other, a mechanism of utilizing a suitable one to
the situation is required to achieve efficient search.

We introduce a mechanism for adapting operator prob-
abilities into the MGG. Some studies on adapting op-



erator probabilities have been done [Davis 89], [Jul-
strom 95], [Tuson 96]. In this paper, we employ a very
simple mechanism. The basic idea of the mechanism
is that the probabilities of applying each operator are
adapted based on the performance of the offsprings
generated by the operator, which was originally pro-
posed in [Davis 89]. Similar idea has been proposed
by Schwefel for mutation operator[Schwefel 95], [Bäck
96]. In our algorithm, the probabilities of applying the
UX and the UNDX are calculated every generation of
nkid × (npop/2) pairs of offsprings by these operators
as follows:

P apply
UNDX = P success

UNDX /(P success
UX + P success

UNDX ) (4)

P apply
UX = 1 − P apply

UNDX (5)

where nkid is a constant value given by a user, npop is
the population size, P apply

UNDX and P apply
UX are the proba-

bilities of the UNDX and the UX respectively, P success
UNDX

and P success
UX are the rate at which each crossover op-

erator succeeds in generating a better offspring than
the both parents after the last update of P apply

UNDX and
P apply

UX . We limit the range of P apply
UNDX to 0.05 to 0.95

because P success
UNDX (or P success

UX ) cannot be calculated if
P apply

UNDX is 0.0 (or 1.0).

4.3 Enhanced-MGG (EMGG)

The MGG has a problem with the way of selection
for survival as described in the previous section. To
overcome the problem, we introduce a new selection
scheme, in which individuals are chosen based on not
only fitness but also the distance between individuals,
into the MGG.

In the new scheme for selection for survival, if an off-
spring is better than the both parents, the offspring
replaces one of its parents nearer to the offspring. The
other parent is replaced with the other offspring if the
offspring is better than the parent.

We expect that the new scheme improves the con-
vergence speed, keeping the possibility of finding the
optimum. In this paper, we call the new model the
Enhanced-MGG (EMGG).

4.4 Algorithm

In this section, we design a real-coded GA with adapt-
ing probabilities of the UX and the UNDX, named
(UX,UNDX)+EMGG, based on the above discussion-
s. The algorithm is as the followings:

1. Generation of Initial Population
Make npop real-number vectors randomly and
let them be an initial population. Let P apply

UNDX

be InitP apply
UNDX given by a user and P apply

UX be
(1 − InitP apply

UNDX).
2. Initialization of parameters for adaptation

Let NUX, NUNDX, N success
UX and N success

UNDX be zero
respectively.

3. Generation-alternation Cycle #1
Repeat step 3.1 to 3.3 nkid × (npop/2) times.
3.1 Selection for Reproduction #1

Choose a pair of individuals, Parent 1 and
Parent 2, by random sampling without re-
placement from the population.

3.2 Generation of Offsprings #1
Choose the UX or the UNDX according to
operator probabilities, P apply

UX and P apply
UNDX.

Here, let the chosen crossover operator be
CROSSOVER. Increment NCROSSOVER. Ap-
ply the CROSSOVER to Parent 1 and Parent
2 to make two offsprings, Child 1 and Child
2, where the offspring nearer to Parent 1 is
named Child 1 and the other Child 2. In ap-
plying the UNDX, the third parent which is
used for calculating the standard deviation
value, σ2, is randomly chosen from the pop-
ulation. If Child 1 or Child 2 is better than
the both parents, increment N success

CROSSOVER.
3.3 Selection for Survival #1

If Child 1 is better than the both parents,
• Replace Parent 1 with Child 1.
• If Child 2 is better than Parent 2, then

replace Parent 2 with Child 2.
If Child 2 is better than the both parents,
• Replace Parent 2 with Child 2.
• If Child 1 is better than Parent 1, then

replace Parent 1 with Child 1.
4. Generation-alternation Cycle #2

If npop/2 > N success
UX + N success

UNDX then repeat step
4.1 to 4.3 (npop/2− (N success

UX + N success
UNDX )) times.

4.1 Selection for Reproduction #2
Do the same procedure as step 3.1.

4.2 Generation of Offsprings #2
Do the same procedure as step 3.2.

4.3 Selection for Survival #2
Choose two individuals from the family con-
taining the parents and their offsprings; one
is the best individual and the other is select-
ed from three individuals other than the best
one by the rank-based roulette wheel selec-
tion. Replace the parents chosen in Step 4.1
in the population with the individuals.

5. Update of the operator probabilities
Update the operator probabilities according to eq.
(4) and (5). Here, P success

UX = N success
UX /NUX and

P success
UNDX = N success

UNDX /NUNDX.
6. Repeat the above procedures from step 2 to step

5 until a certain stop condition is satisfied.



5 Experiments

To examine the robustness of the proposed method,
we performed some experiments. We compared the
(UX,UNDX)+EMGG with the UNDX+EMGG in
which the UX was not used (i.e. P apply

UX = 0.0,
P apply

UNDX = 1.0), the UX+EMGG in which the UNDX
was not used (i.e. P apply

UX = 1.0, P apply
UNDX = 0.0) and

the UNDX+MGG [Ono 97]. InitP apply
UNDX was set to be

0.1 and nkid to be 100 in the (UX,UNDX)+EMGG.
ncrossover was set to be 100 in the UNDX+MGG. In
all experiments, the population size was set to be 500
and ten independent runs were performed.

We used ten 20-dimensional functions as benchmark
problems here. These functions can be categorized into
three types as follows:

• Continuous function
All variables are continuous.

• Discrete function
All variables are discrete. Each variable takes a
value from the value set that contains values dis-
cretized at the interval of 0.2 within a given range
of each variable.

• Mixed function
The first ten variables are continuous and the re-
mains are discrete. Each discrete variable takes
values discretized at the interval of 0.2 within a
given range of each variable.

In discrete functions and mixed ones, the UNDX does
not always generate feasible offsprings whose all values
are contained in a given value set. Illegal values in off-
springs are modified to the nearest values respectively
before the offsprings are evaluated.

The ten benchmark functions used here are follows:

• Continuous/Discrete/Mixed Rosenbrock function
The Rosenbrock function is given by

f(~x) =
n∑

i=2

[100(x1 − x2
i )

2 + (xi − 1)2], (6)

where −2.048 ≤ xi ≤ 2.048 and n = 20. This is
a unimodal function with strong epistasis among
parameters. It has a parabolic valley along the
curve x1 = x2

i (i = 2, · · ·n) with the unique min-
imum of zero at the point (1, · · · , 1). Fig.3(a),
(b) and (c) show the online performance of each
method on the Continuous, Discrete and Mixed
Rosenbrock functions, respectively. Each curve
shows the average of function values of the best
individuals in each run.

• Continuous/Discrete/Mixed Rastrigin function

The Rastrigin function is given by

f(~x) = 10n +
n∑

i=1

[x2
i − 10 cos(2πxi)], (7)

where −5.12 ≤ xi ≤ 5.12 and n = 20. It is a
multimodal function with no epistasis among pa-
rameters and has a unique global minimum of zero
at the origin surrounded by many local minima.
Fig.3(d), (e) and (f) show the online performance
of each method on the Continuous, Discrete and
Mixed Rastrigin functions, respectively.

• Continuous/Discrete/Mixed Rotated-Rastrigin
function
The Rotated-Rastrigin function is the one made
by randomly rotating the Rastrigin function
around the origin. It is a multimodal func-
tion with epsitasis among parameters. Fig.3(g),
(h) and (i) show the online performance of each
method on the Continuous, Discrete and Mixed
Rotated-Rastrigin functions, respectively.

• Continuous Schwefel function
The Schwefel function is given by

f(~x) = 418.9828873n +
n∑

i=1

xi sin
√
|xi|, (8)

where −500 ≤ xi ≤ 500 and n = 20. This func-
tion is a multimodal one with no epistasis among
parameters. It has a unique global minimum of
zero at the point (−420.968746, · · · ,−420.968746)
near the boundaries and has many local mini-
ma. Fig.3(j) shows the online performance of each
method on the function.

Fig.4 shows the changes of the probabilities of
the UNDX, P apply

UNDX, during the search when the
(UX,UNDX)+EMGG is applied to each function.
Each curve is the average of ten runs.

Fig.5 summarizes the results shown in Fig.3. In the
table, the numbers show the ranking of each method
on each function in convergence speed to the optimum.
Failed means that corresponding method failed in con-
verging to the optimum.

6 Discussions

[Robustness and convergence speed]

As shown in Fig.3 and Fig.5, the (UX,UNDX)+EMGG
succeeds in finding the optimum in all ten func-
tions while the UX+EMGG only two functions and
the UNDX+EMGG seven ones. This result shows
that the (UX,UNDX)+ EMGG is a robust search
algorithm compared to the UX+EMGG and the
UNDX+EMGG.



Figure 3: Performance Curves
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Figure 5: Summary of the results shown in Fig.3
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Figure 6: A contour plot of Rosenbrock func-
tion and behavior of UNDX+EMGG and (UX,
UNDX)+EMGG on Rosenbrock function

As shown in Fig.5, the (UX,UNDX)+EMGG succeeds
in finding the optimal point in the Mixed Rosenbrock
function and the Continuous Schwefel function where
both of the UX+EMGG and the UNDX+EMGG fail.
This shows that the UX and the UNDX complemen-
tarily work each other during a search process. It
is thought that the UX contributes to making par-
ents distribute along the parabolic valley in the Mixed
Rosenbrock function and near the boundaries in the
Continuous Schwefel function.

In the Continuous Rastirigin function and the Mixed
Rastrigin function, the convergence speed of the
(UX,UNDX)+ EMGG is faster than that of the
UNDX+EMGG although the UX+EMGG fails in
finding the optimum as shown in Fig.5. This can be
explained by that the UX+EMGG quickly converges

to solutions near the optimum as shown in Fig.3(d)
and (f).

The convergence speed of the (UX,UNDX)+EMGG is
slower than that of the UNDX+EMGG in the Contin-
uous Rosenbrock function, the Continuous Rotated-
Rastrigin function, the Discrete Rotated-Rastrigin
function and the Mixed Rotated-Rastrigin function.

Fig.6 shows search processes by the (UX,UNDX)+
EMGG and the UNDX+EMGG on the Continuous
Rosenbrock function. In the search process by the
UNDX+EMGG, first, parents do not widely distribute
on the parabolic valley but get together around the o-
rigin and stay there for a while (Fig.6(c)). After that,
the parents find the direction of the valley and gradu-
ally moves along the valley down to the optimal point
(Fig.6(e)). On the other hand, in the search process
by the (UX,UNDX)+EMGG, first, parents widely dis-
tribute on the parabolic valley (Fig.6(d)). After that,
the parents get together at good area on the parabol-
ic valley and move to the optimal point (Fig.6(f)).
While the UNDX generates improved offsprings on the
parabolic valley with high probability in a situation
such as Fig.6(c) 1, it generates offsprings in areas oth-
er than the parabolic valley with high probabilities in
a situation such as Fig.6(d) and the search becomes
inefficient. This is the reason the convergence speed of
the (UX,UNDX)+EMGG is slow on the Continuous
Rosenbrock function.

In the Rotated-Rastrigin function, it is required to
search along lines connecting local optimal points for
efficient search from the early search phases. In
such situations, the UNDX works well from the ear-
ly search phases and the UX does not attribute to
the search very much. As the result, the convergence
speed of the (UX,UNDX)+EMGG is slower than the
UNDX+EMGG on the Rotated-Rastrigin function.

[Effects of the adapting operator probabilities]

In the Continuous and Mixed Rosenbrock functions,
it is advantageous to choose the UNDX after parents
distribute on the parabolic valley, especially when all
the variables are continuous and the parabolic valley
is smooth. The curves of P apply

UNDX begin to rise at the
number of evaluation of about 0.25 × 106 as shown
in Fig.4(a). At this time, the performance curves
are at around the evaluation value of 7.0 as shown in
Fig.3(a) and (c), which means that parents distribute
on the parabolic valley. The curve of the Continuous
Rosenbrock function rise higher than that of the Mixed
Rosenbrock function since the Continuous Rosenbrock

1In this situation, the UNDX cannot make improved off-
springs and cannot find the direction of the parabolic valley
in the Discrete Rosenbrock function and the Mixed Rosen-
brock function because the landscape of the area around
the origin is flat. This is the reason the UNDX+EMGG
and the UNDX+MGG fail in finding the optimum in these
functions.



function has a smoother parabolic valley.

In the Continuous Rastrigin function, the Mixed Rast-
rigin function and the Continuous Schwefel function, it
is advantageous to choose the UNDX after parents dis-
tribute on the hollow where the global optimal point
exists. As shown in Fig.4, the curves of P apply

UNDX ris-
es around the number of evaluation at which the best
individual lies in the hollow where the global optimal
point exists.

In the Continuous and Mixed Rotated-Rastrigin func-
tions, it is recommended to choose the UNDX from
the early search phases. As shown in Fig.4(c), PUNDX

is large from the early search phases.

[Effects of the new selection scheme]

As shown in Fig.3 and Fig.5, the EMGG always out-
performs the MGG, comparing the UNDX+EMGG
with the UNDX+MGG. The EMGG always not on-
ly obtains the same solution or a better one but also
finds it faster. It is thought that this is because the
new selection scheme works successfully.

7 Conclusions

In this paper, we proposed a robust real-coded GA
named (UX,UNDX)+EMGG. The GA employs both
the UNDX and the UX, complementary crossover
operators. To choose crossover operator efficiently,
(UX,UNDX)+EMGG has a self-adaptive mechanism
of crossover probabilities. Through some experiments,
we showed the robustness of the proposed method by
demonstrating that the proposed method can solve
more various functions than a GA using only the
UNDX. We also confirmed that the self-adaptive mech-
anism of crossover probabilities worked successfully by
examining the changes of probabilities of the UNDX
during the search.

In this paper, we used the UX as a complementary op-
erator to the UNDX for exploration. From this view
points, the generalized discrete recombination (GDR),
used in ESs [Bäck 96], may be better than the UX
since the GDR can produce more kinds of offsprings.
We have a plan to try the GDR. Furthermore, we have
a plan to apply the proposed method to practical ap-
plications such as the lens design problem known as a
very difficult real-world problem.
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