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Abstract

The mid-1998 troubles between India and
Pakistan are used to demonstrate that a real-
valued Genetic Algorithm (GA) can find
workable solutions to Richardson’s Theory of
Arms Races. This theory, developed in the late
1940s, needs such a big search space that it was
never very useful — until the arrival of GAs.
Rough ‘starter’ values for the rate-constants in
Richardson’s equations are gleaned from
International Monetary Fund statistics. The
resulting GA found, first, that very small changes
in percentage defence expenditure made all the
difference between stability and instability;
second, that although there are dangerous
pockets of potential instability in the developing
arms race, nevertheless there are large areas of
stability as well; and third, that it is possible to
predict when instabilities will occur. Properly
refined, such predictions could give early
warning of ‘flashpoints’ and might even be used
to prevent an arms race from escalating into open
war. The conclusion includes comments on the
practicalities of using GAs in this type of
application.

1. INTRODUCTION.

The ability to analyse stability and equilibrium is vital to
all models of the real world and is based on principles
established in the eighteenth century by Le Chatelier and
Gibbs. More recently, however, the credit for pioneering
the application of mathematical logic to international
politics belongs to the meteorologist Lewis Fry
Richardson DSc FRS (1881 - 1953). Richardson was
convinced that the understanding which grew from the
systematic analysis of the events which were known to
lead to war would contribute more to advancing the cause

of peace than the intuitive and emotive reasoning of
statesmen, politicians, soldiers and diplomats. His
principal work on this subject is Arms and Insecurity
published posthumously in 1960. This contains his Theory
of Arms Races.

2. RICHARDSON’S THEORY OF ARMS
RACES.

Let the annual defence expenditures of India and Pakistan
respectively be US $ x billion and US $ y billion
respectively. Richardson’s theory says that defence
expenditures will increase at the following rates:
                   dy/dt = ax - by + h             and
                   dx/dt = cy - fx + g....................................(1)
where  a and c are called defence coefficients,   b and f
are the fatigue and expense coefficients, while g and h  are
grievances when positive, goodwill when negative.
Richardson [1960] had assumed :
• that in a two-nation arms race each country would

attempt to increase its armaments over the other
• that economic factors impose constraints that tend to

diminish the rate by an amount proportional to the
size of the existing friendly forces, and

• a nation will build arms motivated by ambition and
hostility even if the other nation poses no threat to it.

Richardson also showed that stability occurs when (in
Equations 1) the product ac < the product bf ;  more
interestingly, instability occurs when
                                               ac > bf.........................(2)
Any potential solution is required :
• To establish arms race contours for India and

Pakistan.
• Having established a particular value for one side, to

determine the corresponding value for the other.
• To seek the ‘fittest ‘ solution which in context means

minimising the defence expenditures.

The original Richardson equations were further
developed and extended by Mayer-Kress [1989] who



decided to work in terms of finite steps, (ie deriving xt+1

from xt etc, rather than in rates of growth, dy/dt) and came
up with the following 3-agent solution :
   xt+1  =  xt + (k11 (xs - xt) +  k23 (yt+ zt)) (xm - xt)
    yt+1  =  yt  + (k22(ys - yt)  +  k13 (xt - zt)) (ym - yt)
   zt+1  =  zt + (k33(zs - zt)  +  k12 (xt - yt)) (zm - zt)..........(3)

Equations (3) assume that Nations Y and Z are allied
together against X, and have neatly got rid of the
grievances g and h on which it is never possible to put
numerical values. Reducing Equations (3) to two agents
gives :
        xt+1  =  xt + (k11 (xs - xt) +  k12 yt) (xm - xt)
         yt+1  =  yt  + (k22(ys - yt)  + k21 xt ) (ym - yt)...........(4)
where :
• xt and yt  are the expenditures of the two countries on

arms this year. [The initial settings of xt and yt are
called x0 and y0 as they can be used as the basis for
iteration]

• xs and ys are the intrinsic arms expenditures (how
much each country spends on defence irrespective of
competitive spending by its neighbours). These are
essentially the ‘standing costs’ of the Armed Forces.

• xm and ym respectively represent the economic
constraints on countries X and Y, i.e. the fraction of
the country’s total resources (known as the Gross
Domestic Product (GDP) available to be spent on
arms.

• k... are the four rate-constants.  These have the
dimensions of (time)-1 , and are largely a measure of
how fast a nation can react to changing threats.

3. SETTING UP THE GA: ESTABLISHING
A BASIS OF FACT.

Equations (4) contains a lot of constants and variables ;
initially, we know nothing about any of them, so we are in
no position to set up a GA. Table 1 is based on
International Monetary Fund Statistics [1998] and Hunter
[1992-8] and establishes a basis of fact for the GA,
enabling us to derive rough ‘starter values’ for the rate-
constants k. All Table 1’s figures are shown as billions of
US dollars, using the conversion rates from Indian rupees
or Pakistani rupees applicable during the month when the
various figures were published.  The US dollar has held
more or less steady over the past few years, so this act of
currency conversion takes account of local inflation.
Hence like can be compared with like.

A set of (almost empirical) formulae were based on
Equations (4) :

xt+1  =  xt + (( k11  / 10  *  0.46  *  xt ) +
( k12  / 50 * yt  )) * Gx  / 1000;

yt+1  =  yt  + (( k22  / 10  * 0.21  *  yt) +

(k21 / 50 * xt )) * Gy  / 1000; ........................................(5)

and the GDPs and percentage defence expenditures for
1993 were inserted.  By manipulating the constants and
the scaling factors by hand, it proved possible to obtain a
reasonable fit to the live data for subsequent years, see
Figure 1 below. In particular, rough values could be put

on the four rate-constants. It is stressed that the curves of
Figure 1 represent the iterated and extrapolated output of
Equations 5, and not the result of a curve-fitting exercise
on the IMF data. This worked well; the fit was so good
for Pakistan (y) that it was not thought necessary to seek
another formula to accommodate India (x) where the fit in
the middle reaches was not so good.

Equations (3) and (4) may be conceptually correct but
they make little numerical sense. xs will always be less
than xt  (typically 80% of it) so their difference will be
negative; (xm - xt) is the difference between a percentage
and money measured in billions of dollars. To make these
equations dimensionally consistent and numerically
usable they have, therefore, to be scaled. For instance,
(100 xm - xt ) results in  reasonable figures, and this was
used in Equations (6).

Equations (5) used too few genes and too many set values
to form a GA, but they did generate  some scaling factors
and starter values.  Using these in a  pragmatic variant of
Equations (4) we can now write some workable
evaluation equations as a basis for a ‘proper’ genetic
algorithm, which we call GA - 37a :

                         xt+1  =  xt + (k11  / 100 * (xs / 100) * xt  +
k12 / 100  * yt  ) ((100 * xm -  xt ) / 85)
                        yt+1  =  yt  + (k22  / 100 * (ys / 100) * yt  +
k21 / 100  * xt  ) ((100 * ym  -  yt) / 85)........................... (6)

Equations (6) are broadly similar to Equations (4) but are
distinct from them in two ways :  In the chromosome all
the rate constants k  are defined as integers lying between
0 and 99 so have to be divided by 100 ;  and, second,
while Equations (4) had a term in k11 (xs - xt ) it was better
expressed, not as in Equations (6) [where it was  k11 *
0.46 * xt , implying that xs is a fixed proportion of xt ] but
as  k11 * (  xs / 100) * xt. Therefore xs does have a say but
its numerical effect is not crucial;  much more important
is the fact that it introduces two more genes into the
genetic algorithm. A GA treats all its genes equally, no
matter what scaling factors are ultimately put on them.
[Mitchell, 1996] Equations (6) worked, and provided
stable convergent solutions. The first result was that very
small changes in defence expenditure have a marked
effect on the stability of the outcome, and that there are
‘pockets’ of instability. See Figures 2, 3, and 4 in
sequence; an extra 0.1 % defexp can make the system
oscillate between stable / unstable / stable.

A PROBLEM OF INTERPRETATION

To be of practical use, the Richardson’s conceptually
accurate but rather vague equations need to be replaced
by (or transformed into) something more precise and
expressed in terms of the information available! It is all
very well to be able to prove theoretically from Equations
(1) that instability occurs when ac > bf and, later in this
paper, it will be shown that the sign of the difference (a-
c) indicates the direction of the curvature of the limit
cycle and is crucial in predicting when instability is likely
to occur.



 Table 1.    International Monetary Fund Statistics 1992 to 1998.      All figures are billions of US dollars.

Year Category I      N      D      I      A P  A  K  I  S  T  A  N

1992 GDP 219 38.79
Defence Expenditure 4.20 1.79
(Defexp : GDP) % 1.9% 4.6%

1993 GDP 195 35.25
Defence Expenditure 3.57 2.24
(Defexp : GDP) % 1.8% 6.3%

1994 GDP 204 33.69
Defence Expenditure 3.68 2.32
 (Defexp : GDP) % 1.8% 6.8%

1995 GDP 213 33.97
Defence Expenditure 4.41 2.59
(Defexp : GDP) % 2.1% 7.6%

1996 GDP 202 31.56
Defence Expenditure 5.59 3.19
(Defexp : GDP) % 2.7% 10%

1997 GDP 202 29.37
Defence Expenditure 13.51 3.37
(Defexp : GDP) % 6.7% 11.5%

1998 GDP 190 29.03
Defence Expenditure 22.61 3.6
(Defexp : GDP) % 14% 12.4%

k ‘starter values’ k11 = 46 k12 = 6 k22 = 2 k21 = 2

Figure 1 :  The Arms Race Between India and Pakistan,  from 1993 onwards.

But the relationship between the coefficients a, b, c & f
and Equations (6) is never fully clear. To be valid,
evaluation equations must always mirror Richardson’s
intentions.

4. THE GENETIC ALGORITHM

 Ten genes representing  the parameters  k11, k22, k12, k21,
xs, ys, xm, ym, xt   and yt from Equations (6) above were set
up to appear as one integer in a chromosome.  A multiple
population (typically 100) of  these chromosomes were
initially filled from a (constrained) random number
generator.  Every chromosome is a point in the search

space of candidate solutions, so the genes from each one
could be used in the two evaluation equations.   The
‘best’ solution was chosen by a reciprocal ‘least squares’
fitness function

             fitness = 2
1

2
110000 ++ + tt yx� ........... (7)

 whose role is to highlight those chromosomes which offer
minimum values of  xt+1  and yt+1 simultaneously.
 The resulting fitnesses are sorted and  normalised, and
‘roulette-wheel’ selection is then applied, giving the
‘better’ chromosomes (ie those with smaller fitness) a
chance to reproduce more frequently than the poorer
ones.  Put formally, this is weighted random pairing,

Light Grey

Dark Grey



[Haupt and Haupt, 1998] the weighting being by ‘cost’ —
hence the linear normalisation without which superfit
chromosomes might get too big a reproductive advantage.
The reproduced chromosomes are then mutated, crossed-
over once, reassembled, and then taken into use as the
new generation replacing the old.  In practice, if the
figures converge at all, they do so quite quickly, so it
never proved necessary to run more than twenty
generations.  The space being implicitly searched is
enormous, in fact 1024. Inasmuch that chromosomes
representing the parameters of the problem are applied to
the problem in the evaluation equations, rated by the
fitness function, selected for ‘parenthood’ by virtue of
their fitness, mutated, crossed-over, re-combined, applied
again to the evaluation functions etc., hopefully getting
better each generation, the algorithm (called GA-37a) is
an entirely conventional GA, [Davis, 1991]  except that
the chromosomes are real-valued, i.e. the alleles are
decimal and not binary.  Although historically a
‘conventional‘ GA [Holland, 1973] uses binary alleles,
there is now sufficient experience of (and published
material on) real-valued GAs  [Eshelma and Shaffer,
1993] [Montana and Davis 1989] [Adewuya, 1996]
[Michalewicz, 1992] to make further discussion
unnecessary here.
 
 “Generation”  is used in four discrete contexts :
• the normal stage-by-stage completion of a GA
• annually, see Figure 1
• from budget date to budget date
• to mark the end of any definite stage (in which case

generations may not be equally spaced in time).

REDUNDANCY IN CHROMOSOMES

When GA - 37a was first run, it was convenient to use an
existing vector  developed previously for a 3-Agent
situation whose chromosome contained fifteen genes.  As
the current 2-Agent situation used only ten genes there
was, therefore, some redundancy.   Numbers were still
generated for the five redundant genes (and mutated and
crossed-over with all the others) but they were never used
in the evaluation equations.  Later, a fully-occupied, non-
redundant ten-gene chromosome was developed
specially, only to find that in use it was far less flexible
than the redundant chromosome, and much more prone to
epistasis, i.e.  swapping the location of the genes in the
chromosome made a difference to the results obtained.
The Effects of Redundancy in Chromosomes is  the
subject of a separate paper [Hackworth, 1999] .

5. IS RICHARDSON’S STABILITY
CRITERION BORNE OUT IN
PRACTICE?

Inequality (2) above said that the system would be
unstable if ac > bf, but stable if not. [Richardson 1960]
Hence, according to the theory,  the equality condition  ac
= bf  must signal a change.  But does it ?   It is not
feasible to work this out for the two Equations (6) —
because neither can be made explicit for xt and yt —  but it

can be done for Equations (5).  Using the same a, c, b, f
nomenclature as in Equations (1)  and Inequality (2) and
setting the defence expenditures for both sides to a
maximum of 6.5 % the transforms become :   

a = k21 x Gy  =  2 x 6.5 =  13 ;
c = k12 x Gx  =  6 x 6.5  =  39 ;                     So ac = 507
b =  1 +  (k22 x 0.21 x Gy ) = 1 + (2 x 0.21 x 6.5)  =  3.73
f  = 1 + (k11 x 0.46 x Gx ) = 1 + (46 x 0.46 x 6.5)  = 138.5
bf = 512 , hence  ac < bf, situation stable  (Fig 2)

Using similar reasoning, for ‘defexp’ set to a maximum of
6.6 % :
a = k21 x Gy  =  2 x 6.6 =  13.2 ;
c = k12 x Gx  =  6 x 6.6 =  39.6 ;                  So  ac = 523
b = 1 + (k22 x 0.21 x Gy ) =  1 + (2 x 0.21 x 6.6) = 3.7
f  = 1 + (k11 x 0.46 x Gx ) =  1 + (46 x 0.46 x 6.6)  =
140.6     bf  = 518   so ac > bf, situation unstable (Fig 3)

Hence Richardson’s stability criterion does work for the
India / Pakistan arms race.

6. STABILITY.

A new program GA - 37e puts GA - 37a inside two
additional  for-loops, so that  it is possible to  examine the
behaviour of the GA as any two  parameters (such as
defexp% and x0 ,  defexp% and any of the rate-constants
k,  or defexp%India and defexp%Pakistan) are varied 25
times, over the whole of their likely range. The output is a
square matrix of 625 tiny coloured squares, each one
representing a whole family of iterations. The question is
simple. Is each family of iterations (i.e. each tiny square)
stable (light grey) or is it not (dark grey) ?

To obtain the ‘Stability Diagram’ at Figure 5, two
decisions had to be made :
• How were each of the 625 families of iterations to

be represented?  Rather than using the stability
condition of the square at the extreme right-hand
end of the last generation —  which, in the
circumstances was more likely than not to be
‘unstable’ if the parameters were stretched  —  it
was decided to take a ‘bottom-line consensus’
approach, i.e. the number  of stable and of unstable
squares in the last row (the last generation) were
accumulated and a ‘majority vote’ was taken.

• What dictated whether a particular iteration had
become unstable ? It was noted that in a stable,
convergent series xt or yt   rarely exceeded 3000.    It
was therefore decided that if at any time | xt |  or | yt |
exceeded 5000  the iteration would be deemed
unstable.  The decision was imprecise, but it  worked.

Figure 5 is a Stability Diagram generated by GA - 37e.
The rows, the percentage defence expenditures (defexp%
India), vary from 5.8% to 8.2% in 25 steps of 0.1.  The
columns, (defexp% Pakistan),  vary in the same way.  The
other rate constants are ‘free’, i.e.  are chosen by the GA.



Figure 2 : Defence expenditure limit  6.5 %.  Only just stable!   Now see Figure 3 below.

Figure 3 :   Defence expenditure limit 6.6 %  Too far!

Figure 4.   Defence Expenditure Limit  6.7 %  Calming down after the explosion of Figure 3.
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One had been led to expect [Forrest and Mayer-Kress,
1996] diagonal ‘walls’ i.e. there would be large well-
defined, contiguous and clearly-separated areas of dark
grey and light grey. Walls never did occur; despite
running GA-37e varying  a large number of parameters
(including all the rate-constants in turn)  the effect was
always ‘patchy’, as if there was a significant noise
problem.

It only then became apparent that the ‘patchiness’ of
dark grey was not (or not significantly) due to noise,
but to definite regions of instability some of which were
quite local.   See, in sequence, Figures 2, 3 and 4 which
plot the values of  Evaluation Equations (6) xt and yt

against the generations.  A quiet period was working up
to the violent instability of Figure 3, and then quietening
down again, the difference of defence expenditure
between each of the diagrams being only 0.1%.   Thus
we have stable states lying either side of  unstable ones,
a  phenomenon well known to chemical engineers.

There are no general areas of stability in the India /
Pakistan situation; the system lurches from one
instability to another with periods of respite in between.
One cannot therefore say simplistically  that  war will be
averted if, say, India’s percentage defence expenditure
drops below  xx %,  of if rate-constant k21 is more than
yy, or if  Pakistan’s defence budget exceeds US $zz
billion. It is more complex than that.

7. CANARD EXPLOSIONS —
A DIGRESSION

It was suggested1 that instabilities in the model of a
certain industrial chemical process —  the Edblom-
Orbán-Epstein (“EOE”) Reaction — bear a striking
resemblance to those modelled by the two-agent
Richardson arms race equations.  The EOE reaction
involves very rapid changes from stable to unstable
states in a liquid mixture of ions used in the manufacture
of plastics, and often results in what is called a ‘canard‘
explosion.  Such behaviour is most unwelcome
commercially, and, understandably,  much effort has
been put into preventing it.   The EOE reaction, as
modelled by  Peng, Gáspár and Showalter [1991] on
previous work by Benoit et al [1981] and later
developed by Brøns and Bar-Eli  [1994]   is
characterised by two non-linear ordinary differential
equations which look remarkably similar to
Richardson’s equations (1), i.e. they are of the form
dy/dt = ........,    dx/dt = .......,  and contain rate-constants
and a stack of dependent  variables.

By analysing the path of what Peng called the ‘limit
cycle’               d { dy/dt  / dx/dt } / dt = 0.......... ........(8)
Peng et al showed that  explosions always occurred  just
after [a Hopf bifurcation where] the direction of
curvature of the limit cycle had changed. Furthermore,
such changes were quite easy to forecast.
                        
1 Professor George Loizou, personal
communication.

8. APPLYING CANARD EXPLOSION
THEORY TO RICHARDSON’S
EQUATIONS.

Let us now  apply these ‘canard’ arguments to
Richardson’s equations for arms races between nations,
superficially a very different application from  processes
in the manufacture of plastics.   It can be shown  that the
curvature of the limit cycle, d { dy/dt  / dx/dt } / dt = 0
in Richardson’s  Equations (1) has the sign of  (a - c).
If  a > c the limit cycle revolves counter-clockwise ;   if
a < c, clockwise.   Put another way, if  a overtakes c
numerically,  there will be a change of sign (and of
direction of curvature).     The mathematics indicate that
instability does not occur at the precise point of change
of sign, but just after it.

9. CAN INSTABILITY IN
RICHARDSON’S EQUATIONS BE
PREDICTED?

Can these changes of sign be used to predict  the
approach of an unstable point? It was decided to modify
GA - 37a  to calculate the approximation a  ( ≈  k12 *
xm) and c ( ≈  k21 * ym)   and to print (a - c) but only for
the fifteen best chromosomes on display.    The modified
program was called GA - 37aa.

In context, the significance of the difference (a - c) lies
not in its value but in the number of changes of its sign
at each iteration. Figure 6 plots the number of negative
signs in (a - c) (maximum 15) at increasing values of
defexp%. Each instability is prefaced by a sudden
plunge from a high number of minus signs  to a small
number of minus signs.  For (a - c) to be negative c > a,
and for it to be positive a > c.  Analysing this and other
charts, if a overtakes c very rapidly (normally denoted
by a change of ten or more signs from minus to plus at
one step) then instability is imminent. [Curiously,  c
overtaking a does not seem to have the same
destabilising effect ]. A lesser number of sign changes,
say eight, does not have this effect. Perhaps a more
useful indicator of impending active hostilities would be
a high level of minus signs; unless it is above ten there
is no likelihood of instability.

10.  USING GENETIC ALGORITHMS IN
THIS TYPE OF APPLICATION.

• Any GA attempting to model the real world must  be
based on some live data from that world. At least
some of the multitude of variables must be fact.

• The real-valued GA used was fairly standard. Both
crossover and mutation were varied dynamically.
Crossover started high but reduced while mutation
started low but increased, albeit neither by much;

• once convergence starts then the search for better
solutions is led by mutation.



 
 Figure 5 :  A Stability Diagram.

 
 Figure 6 :   Instabilities actually occur at 6.5 - 6.6% and at  8.2 - 8.3%

 
• GAs must never be forced, but they can be coaxed.

A good way to coax is to constrain the initialising
random number generator to a likely limit for each
parameter.  If it is known that a certain parameter
never exceeds, say, 45 then to set random(99) is a
waste of both time and resources.  In other words,
the search space should  be controlled and it should
be feasible.

• Some of the genes were integers, some were real
numbers, some had two digits and others three.
When concatenated in a chromosome, however, it
all looked like one big integer!  The downside of
this is that at crossover, some chromosomes get
split mid-gene. No noise was apparent from these
loose ‘bin-ends’.

• Different forms of crossover were tried, including
Uniform Crossover [Syswerda, 1989] but, on

balance, single crossover appeared to be best for
this application.

11. CONCLUSIONS.

This paper set out to investigate the arms race between
India and Pakistan by making use of a GA to search the
large spaces needed by Richardson’s Arms Race Theory.
It used real-world IMF data to generate the constants
and scaling data needed in two workable evaluation
equations. The resulting real-valued GA did vindicate
the theoretically-derived stability criteria. It also found
that, far from the expected ‘seas’ of stability and
instability divided by clearly marked ‘walls’ that there
were large areas of stability separated by quite local but
violent pockets of instability. A comparison was made
with the Peng model of canard explosions and it was



found that the two models are very similar; the
advantage of this approach was that the mathematics of
the canard model — and in particular changes in the
direction of curvature of the path of the limit cycle  —
allowed instabilities (i.e. explosions) to be predicted.
It would seem that the lessons of the canard model can
be applied successfully to arms races. Known and likely
instabilities between India and Pakistan seem always to
be prefaced by a sudden change in the limit cycle.
This change is very simple and is expressed by the sign
of (a - c), two coefficients from Equations (1). If the
sign of (a - c) of two-thirds of the GA’s population
changes in successive iterations from minus to plus, then
it seems that an instability will occur at the next
timeframe.

For this hypothesis to be useful in the real, political
world we need better means of deriving a and c. The
simple expressions used here are too crude, besides
which the information is not readily available or easily
updated on a daily basis. Something more pragmatic,
some better transform, is needed.

Some would argue that it is not valid to extrapolate from
mechanistic cause and effect (the certainty that certain
concentrations of ions will explode) to the vagaries of
human interaction. Nations go to war, not because of
their percentage defence expenditures but because their
leaders believe that they should, and that they will be
backed in that decision by their people.  Equally, those
same leaders  like to believe that they have free will and
are not pre-destined or pre-programmed automatons.
On the other hand, the humorist Frank Muir has claimed
that mankind has as much freedom of decision as a
plastic duck in a Jacuzzi! The truth may lie somewhere
in between these extremes. Had the First World War not
been ‘waiting to happen’, as historians now claim, the
assassination of Arch-Duke Ferdinand by Bosnian
nationalists at Sarajevo would never have plunged the
world into four years of appalling bloodshed.  Sarajevo
was only the final detonator, the last straw. It has been
shown in this paper that the situation between India and
Pakistan contains large areas of stability and only
pockets of instability. No matter how belligerent their
leaders, no matter how much sabre-rattling is done, it
will not physically be possible to start a war when all
other parameters are stable. The danger comes when
the parameters are unstable, for at that point almost
anything — such as one inflammatory speech — can
trigger a conflict. It follows that it is worth predicting
the pockets of instability providing it is appreciated (and
hoped) that a trigger may never materialise and the
potentially unstable situation may quietly revert into
stability.

AFTERNOTE

Crucial to this paper was the selection of the ‘least
squares’ fitness function at Equation 7. Do India and
Pakistan really want to minimise the combined cost of
their armaments? If the answer is ‘yes’, then both
governments are indulging in sabre-rattling and vote-

catching for internal purposes. To launch a nuclear war
against one’s immediate geographical neighbour, and to
risk fallout from one’s own weapons, would be suicidal.
Assuming that there was a serious risk of conflict in
1998, Figure 6 shows that, on present forecasts, the next
flashpoint is not likely for another seventeen years,
which means that it may not happen at all.
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