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Abstract

An optimised 
ight route is sought for an air-
craft conducting aerial surveillance of a given
geographical region using synthetic aperture
radar. Two models for solving this problem
will be discussed; the �rst utilising Integer
Programming and the second, Genetic Algo-
rithms. Model e�ciency and solution opti-
mality of the two techniques will be compared
to identify conditions under which it is appro-
priate to use each model.

1 INTRODUCTION

The Defence Sciences and Technology Organisation
(DSTO) at Salisbury, South Australia, has developed
Ingara, a technique whereby high resolution images
of ground targets can be obtained using a Synthetic
Aperture Radar (SAR) device. Ingara has obvious
military and strategic usefulness as well as the po-
tential for various civilian applications, for example,
aerial mapping. Aerial surveillance is conducted over
rectangular strips referred to as swaths, typically 24
kilometres (km) wide. However if higher resolution im-
ages are required, the width of the swath is reduced.
The length of each swath can vary, provided it remains
within operational limits. Surveillance is accomplished
by the aircraft 
ying at 3048 metres (10,000 feet) above
surface level, at a distance of 27 km from the side of the
swath, and on a heading parallel to the orientation of
the swath. As the aircraft maintains a steady altitude
and heading, a radar beam is continuously projected
across the width of the swath being tracked. Topologi-
cal features lying within the swath a�ect the direction
and intensity of the radar echo re
ected back to the

aircraft, so that an accurate picture of the surface
topology of the swath can be constructed. The aircraft
commences a mission from a given starting base and
ends possibly at some other speci�ed ending base. The
purpose of this paper is to describe the problem of re-
gional surveillance; formulating a mission to cover and
scan an entire geographical region using swaths of �xed
width and variable length. Typically, a surveillance
region will be non-convex, and may contain certain
no-
y-zones over which an aircraft cannot 
y. This
problem is dissimilar to the mission planning problem
discussed in Panton (1999), since an entire region must
be scanned, rather than a set of isolated swaths at des-
ignated locations. Regional surveillance incorporates
another complication, namely that of ascertaining how
to �nd a suitable cover for the region. Furthermore,
the process by which a particular cover is selected is
incorporated into the tour e�ciency. The complication
arises because of the dependence between the selection
of an appropriate cover for a region and the optimal-
ity of the mission tour. Thus, developing a mission
to completely scan a region is an order of magnitude
harder than the problem discussed in Panton (1999).
There are certain features of providing coverage and
surveillance of a given region, namely:

� Complete Coverage: An appropriate selection of
swaths must completely cover the region.

� No-Fly-Zones: The geographical region may con-
tain areas which cannot be 
own over (no-
y-
zones). No-
y-zones are de�ned by a sequence
of up to eight coordinate sets which together de-
�ne a convex polygon with up to eight edges, as
discussed in Panton (1999). The aircraft scan-
ning the region may pass through any corner or

y along any edge of a no-
y-zone.



� Disconnected Regions: Regions that are discon-
nected in a mission are considered as isolated re-
gions, and are therefore scanned individually.

This paper will discuss issues associated with provid-
ing cover for a region, describe an Integer Program-
ming (IP) model and introduce a Genetic Algorithm
(GA) used to obtain regional surveillance, and present
computational results.

2 SWATH AND REGIONAL GRID

STRUCTURE

Locating a suitable cover for a region is a matter of
selecting a swath set according to certain optimisation
criteria and subject to appropriate constraints. The
geometry associated with a swath is displayed in Fig-
ure 1.
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Figure 1: A swath and its associated tracks. Each of
the four tracks is indexed by i. H and I represent the
swath's centre line.

As discussed in Panton (1999), there are a number of
de�nitions and tasks associated with the scanning of a
swath, these being

1. The points H and I de�ne the swath centre line.
During surveillance the aircraft track is parallel
to but displaced by up to 27 km either side of the
swath.

2. The swath may be scanned from H to I or I to H,
and from either side of the swath. However, only
one track may be scanned for any given swath.

3. As a result of items 1 and 2 there are four aircraft
tracks along which the swath may be scanned.
Figure 1 indicates all four possible 
ight tracks.

4. Points such as AA or D are referred to as way-
points on the 
ight tracks.

5. Prior to surveying a given swath, the aircraft
heading must be aligned with the side of the swath
from which scanning is to take place. The distance
over which alignment is achieved is referred to as
the pre-record distance. For example, A ! B

is the pre-record distance for alignment prior to
scanning B ! C.

6. Each swath is de�ned by four sets of nodes
(A;C; D;B; AA;CC; DD;BB), each pair be-
ing a possible candidate in an optimal solution.
Note that once the �rst member in a pair is se-
lected (e.g. A), then the second member (C) is
automatically selected since the aircraft must 
y
along the track A! C in that case.

Dependent on the mission being 
own, swaths can be
considered to be of �xed width, but variable length
and orientation. This variability in length and ori-
entation produces an inordinate number of swaths to
select from. In order to reduce the number of swaths
to something more manageable it is useful to discretise
the length and orientation of a swath, thus producing
a �nite selection of available swaths. This could be
achieved in a multitude of ways. The technique used
here is to overlay the region to be scanned with a �-
nite rectilinear grid, the squares of which are denoted
as pixels. This is illustrated in Figure 2.
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Figure 2: A region and its associated rectilinear grid.
Each active pixel is allocated a number.

The size of the pixel is chosen so that the �xed swath
width is an integer number of pixels. In the consequent
models a swath is one pixel in width. Each swath must
now also be an integer number of pixels in length. As
the grid is rectilinear there are now only two possible
orientations for each swath, either perpendicular or
parallel to a given side of the grid. For each swath
there still exist four possible scanning tracks.

Using this technique, pixel size determines the total
number of swaths (now �nite), and the complexity of
�nding a good cover from the swath set. Grid orien-
tation is initially chosen arbitrarily.



The extent of the grid may well exceed that of the
survey region which results in regions of the grid lying
outside the bounds of the survey region. In order to
di�erentiate between those pixels that constitute the
survey region and those that do not, they will be re-
ferred to as active and inactive respectively. A swath
may include inactive pixels. Although this represents
an area unnecessarily surveyed it may be convenient to
do so in order to survey active pixels. At present, the
genetic algorithm approach described in section 5 does
not incorporate swaths that contain inactive pixels.

3 NOTATION

Following is a list of notation to be used in the ensuing
model development.

� s - the total number of potential swaths associated
with a regional cover,

� SWq - the set of swaths associated with active
pixel q in the de�ning grid,

� Yk - a 0-1 variable which is 1 if swath k is used in
the cover, and 0 otherwise,

� n - the number of nodes associated with the swath
set, including the starting and ending base. The
total number of nodes in the resultant network is
given by n = 4s+ 2,

� Sk; k = 1 : : : s - subsets of the node set N =
f1; 2; : : : ; ng. For example S1 = f2; 3; 4; 5g and so
forth,

� xij - a 0-1 variable indicating whether or not the
edge from i! j is used in the optimal tour,

� wij - the length of edge i! j,

� t - the number of active pixels associated with a
geographical region,

� v - the number of nodes associated with the active
pixel set. The total number of active pixel nodes
in the resultant network is given by v = 8t,

� Tl; l = 1 : : : p - subsets of the active pixel
node set V = f1; 2; : : : ; vg. For example T1 =
f1; 2; 3; 4; 5; 6; 7; 8g and so forth.

The Integer Programming model deals with the swath
set generated from the grid and active pixels associ-
ated with the region. However, the genetic algorithm
initially employs the structure and orientation of the
active pixels as can be seen in section 5. Thus, in the
genetic algorithm approach a region is represented by
two node sets, N and V .

4 INTEGER PROGRAMMING

MODEL

We now consider an Integer Programming model (IP-
model) as presented in John et al (1998) to address
the factors discussed in section 1, and simultaneously
determine an optimal cover and an associated optimal
tour.

Our problem is to minimise the length of the tour
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Constraint (1) requires that exactly one edge leaves the
starting base (node 1), while (2) requires that exactly
one edge enters the ending base (node n). Constraint
(3) ensures that if swath k is used then exactly one
node in its swath set is selected (e.g. node 3 in S1 =
f2; 3; 4; 5g). Constraint (4) ensures that every active
pixel q in the de�ning grid is covered by exactly one
swath. Constraint (5) ensures that once a node in
a swath set is selected, that node must connect to a
node in another swath set (or node n). Constraints (6)
and (7) ensure that xij is a 0� 1 variable. Constraint
set (8) ensures that no subtours occur in the optimal
solution.

There are several potential versions of the subtour
elimination constraints. Most of these possibili-
ties however are not useful, because the number of
constraints grows exponentially with the number of
swaths. As discussed in John et al (1998) we have em-
ployed an alternative set of constraints due to Miller-
Tucker-Zemlin (M-T-Z) given by:

ui � uj + s� xij � s� 1 2 � i 6= j � s



where ui � 0. Since we need only prevent subtours
between swaths, a reduction in the number of con-
straints is possible with an aggregated version of the
above constraint set:
X
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ui�
X
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uj+s�
X

i2Sl;j2Sm

xij � s�1 2 � l 6= m � s

The model was implemented using the GAMS (Brooks,
1992) software package with CPLEX (CPLEX, 1998)
as the solver.

5 USING A GENETIC

ALGORITHM FOR REGIONAL

SURVEILLANCE

The aforementioned IP model provides a global op-
timal solution for the surveillance of a geographical
region. However, it is necessary to note that as n in-
creases generally the amount of constraint formation
and branching also increases, therefore causing large
CPU times. Furthermore, genetic algorithms have
been applied successfully in �nding relatively good
solutions to the Travelling Salesman Problem (TSP)
which is NP-hard (Davis, 1991; Michalewicz, 1996).
One could view the original mission planning problem
as a type of TSP with an important di�erence related
to the way in which swaths are to be scanned. The
Regional Surveillance Problem incorporates an addi-
tional spatial characteristic.

Additionally, the traditional genetic algorithm is con-
sidered to be a robust optimisation procedure. In this
section we introduce a genetic algorithm (RSGA) to
the regional surveillance problem incorporating a sim-
ple feasible cover and e�cient mission tour. The algo-
rithm is e�ective and robust and able to handle non-
convex regions of varying sizes.

5.1 REPRESENTATION OF CANDIDATE

SOLUTIONS

The fundamental problem with �nding a suitable rep-
resentation of the candidate solutions (chromosomes)
is �nding a representation that can be manipulated by
genetic operators. In the Regional Surveillance Prob-
lem the chromosomes are permutations of the list of
active pixels associated with the given region. Each
chromosome is of a �xed length (t), and is always a
feasible solution to the problem. Thus, there are t!
possible solutions for a region consisting of t active
pixels. An example of a possible chromosome for a
region consisting of 8 active pixels (t = 8) is

�
6 3 7 8 4 2 1 5

�
:

Each active pixel consists of eight nodes and has eight
alternative paths. An active pixel and its eight alter-
native paths is illustrated in Figure 3: a! b (1), b! a

(2), d! c (3), c! d (4), e! h (5), h! e (6), f ! g

(7), g ! f (8).
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Figure 3: A pixel, its associated nodes (from V ) and
paths.

It is necessary to note that: selecting node b for exam-
ple automatically leads to the selection of path b! a;
and paths such as a ! b (1) and b ! a (2) are con-
sidered as two completely independent paths, although
their length is identical. Each active pixel in a chromo-
some succeeds another, with the exception of the �rst
pixel which is automatically connected to the start-
ing base. Any path from the preceding pixel connect-
ing with a ! b or b ! a would return two di�erent
\ costs ".

A chromosome is decoded to determine the swaths an
aircraft should scan, in order to survey a region. Pix-
els that share an edge are considered to be adjacent,
for example in Figure 2, active pixels 6 and 8. Ad-
jacent active pixels using the same type of path (e.g.
two adjacent pixels using path type (1)) are then com-
bined to form a swath, with a chosen track that can
be scanned.

A chromosome does not directly represent a cover and
mission tour. Converting the ordering of active pixels
into a cover and tour is accomplished by the evaluation
function described in section 5.2.

The initial population consists of randomly generated,
dissimilar chromosomes; alternative permutations of
the active pixels associated with the given region.

5.2 CHROMOSOME EVALUATION

The evaluation function calculates the \ cost " of any
chromosome related to the Regional Surveillance Prob-
lem. The cost of each chromosome is then employed
in the selection function.

Regional Surveillance includes two optimisation cri-
teria that are incorporated into the evaluation func-
tion. The entire geographical region must be com-



pletely covered, that is each chromosome must con-
tain exactly one of each active pixel from the region.
The second optimisation condition is to minimise the
mission tour length.

It is evident that searching for the optimal cover and
associated tour of a chromosome is very time consum-
ing. The evaluation function used in RSGA imple-
ments Dijkstra's Shortest Path Algorithm. Standard
Dijkstra's Algorithm is employed, however it is impor-
tant to note that edge connections only exist for nodes
connecting the pixels as listed in the chromosome.

As discussed in section 5.1 a chromosome does not
directly represent a cover and tour for the region. Di-
jkstra's algorithm takes each chromosome and locates
the shortest feasible path connecting the pixels from
that permutation; using the node set associated with
each pixel.

Note that RSGA does not store each chromosome's as-
sociated cover and tour, only the �nal \ best " solution
to the surveillance of a given region.

5.3 SELECTION

To create children using the genetic operators in sec-
tion 5.4, we require parents to be selected from the
present population. The RSGA uses Roulette Wheel

Selection (Davis, 1991). Each chromosome in the pop-
ulation is allocated a sector of the roulette wheel. The
size of the sector for each chromosome is determined
by its \ cost "; the smaller the cost the larger the size
of the sector. In order to select a parent chromosome,
the wheel is in e�ect spun.

5.4 GENETIC OPERATORS

Genetic operators are executed on chosen parent chro-
mosomes to construct improved child chromosomes.
Applying a genetic operator in the RSGA depends on
the probability of crossover parameter (Pc). For each
generation of the genetic algorithm, a random number
(rn) is generated, if rn < Pc then crossover is per-
formed, otherwise mutation is performed. A child is
evaluated and its \ cost " is compared to that of the
parent(s) used to produce it. A child replaces a par-
ent if it has a smaller \ cost " and is not a duplicate
of any chromosome in the current population. This
technique of reproduction is known as \ Steady-State
Without Duplicates " (Davis, 1991).

5.4.1 Mutation

The mutation operator incorporated into the RSGA
provides diversity in the population of candidate solu-

tions, in order to attempt to prevent premature con-
vergence. A single parent is selected using the roulette
wheel discussed in section 5.3. Two members of the
parent chromosome are randomly selected and inter-
changed producing a new child chromosome as de-
scribed in Goldberg (1989).

5.4.2 The Recomb Operator

Typically a genetic algorithm's connection with the
problem is the evaluation function. However, RSGA
incorporates knowledge of the problem into an opera-
tor. Experimentation with the IP-model indicates that
the optimal solutions start from a particular pixel and
continue to link adjacent pixels. The recomb operator
is created to assist in the production of improved chro-
mosomes, incorporating the adjacent pixel knowledge.
The operator forms a contiguous pixel set within a
chromosome, which is then preserved in the crossover.

There are two forms of this operator, recomb without

order and recomb with order. The following is a de-
scription of the recomb without order using chromo-
some1 from the region illustrated in �gure 2 as an ex-
ample.

1. Randomly generate an element (ap), say position
2, from the chromosome, on which to build an
adjacent pixel set.

chromosome1 =
�
6 3 7 8 4 2 1 5

�

2. Search chromosome1 from position (ap + 1), (3),
until a pixel that is adjacent to chromosome1 [ap],
(3) is allocated. If a pixel is found, (pixel
4 in position 5) then it is swapped with
chromosome1 [ap+ 1] and (ap + 1) becomes the
new ap.

chromosome1 =
�
6 3 4 8 7 2 1 5

�

This step is repeated until no adjacent pixels to
the present chromosome1 [ap] can be found, or the
end of the chromosome is reached.

chromosome1 =
�
6 3 4 2 1 8 7 5

�

If recomb is included in the genetic algorithm it is ap-
plied immediately before crossover, on the two selected
parents. The initial randomly generated ap is the same
for both parents and is considered as crossover point1.



Once step 2 is carried out on both parents, the maxi-
mum of the �nal ap from parent1 and the �nal ap from
parent2 is considered as crossover point2.

The recomb with order consists of the same steps, with
one alteration; the pixels must not only be adjacent,
but must all lie in the same grid row or column. Con-
sider chromosome1 with initial ap = 2. Active pixel
4 is adjacent to 3 and pixel 2 is adjacent to 4, but it
does not lie in the same row as pixels 3 and 4. There-
fore, pixel 2 is not moved alongside 4, whereas pixel 5
is, since it is both adjacent to 4 and in the same grid
row as pixels 3 and 4. Therefore, chromosome1 would
become:

chromosome1 =
�
6 3 4 5 7 2 1 8

�
:

There are three forms of the RSGA; RSGA 1 which
does not include a recomb operator, RSGA 2 which
includes recomb with order and RSGA 3 incorporating
recomb without order.

5.4.3 OX Crossover

The OX crossover operator as described in Michalew-
icz (1996) constructs two child chromosomes from two
parent chromosomes selected using the roulette wheel.
In RSGA 2 and 3 the parents are initially manipulated
by the recomb operator incorporated in the algorithm.
A section of a chromosome from one parent is selected
and replicated in the child chromosome (step 1), while
the relative order of active pixels from the other parent
is preserved (step 2). In RSGA 1 the section is ran-
domly chosen. However, in RSGA 2 and 3, the section
is selected according to the two crossover points estab-
lished in the relevant recomb operator.

Consider the following two parents from the region il-
lustrated in Figure 2, with t = 8. Both parents have
been manipulated by \ recomb without order ".

parent1 =
�
6 3 4 2 1 8 7 5

�

parent2 =
�
1 4 5 6 8 3 7 2

�

Using the two crossover points selected in \ recomb
without order " (i.e. 2 and 6) and step 1, the chosen
section of parent1 and 2 is replicated in child1 and
child2 respectively.

child1 =
�
o 3 4 2 1 8 o o

�

child2 =
�
o 4 5 6 8 3 o o

�

Applying step 2 completes the crossover operation.
Beginning from the second crossover point, the order of
the active pixels (that do not already exist in child1(2))
in parent2(1) are replicated in child1(2). Note that the
�rst element of the chromosome follows the last.

child1 =
�
6 3 4 2 1 8 7 5

�

child2 =
�
1 4 5 6 8 3 7 2

�

6 RESULTS

A number of experiments were conducted on a diverse
range of regions of varying sizes; using the IP-model
and the three forms of the RSGA. Experimental re-
gions and their corresponding data were generated to
be consistent with aircraft ranges. A �nal cover and
tour for a region is known as a mission.

Summarising the results of the three RSGA's applied
to various regions, we found that RSGA 2 produced
more e�cient missions than RSGA 1 and 3. Mission
e�ciency is measured by the total distance the aircraft
travels in the �nal mission and the amount of CPU
time the algorithm requires to produce the mission.

Consider a region with a 5 by 4 pixel grid; region1,
illustrated in Figure 4. The region consists of 14 active
pixels. All missions associated with this region begin
and end at the same base.

24km

x (Starting and ending base)

1        2         3 

12                13     14

8        9        10     11

6                            7
120km

4                   5

Figure 4: Region1, its associated 120km by 96km rec-
tilinear grid, 14 active pixels and starting and ending
base.

The IP and RSGA models were implemented on re-
gion1 to investigate their e�ciency. All the RSGA
models use a crossover probability of 0:953 and main-
tain a population of 30 chromosomes. These parame-
ters were selected by experimentation.

Each execution of the three RSGA's employed an al-
located total number of generations (gen). For every



set number of generations, each RSGA was executed
�ve times with di�erent random seeds. The mean dis-
tance and CPU time over the �ve executions were
recorded as the �nal mission distance and required
CPU time respectively, for each generation. Table 1
exhibits the performance of the genetic algorithms and
the IP-model on region1. The two columns displayed
represent the �nal mission distance and the required
CPU time.

Table 1: Performance comparison of RSGA 1, 2 and
3 with di�erent generations (results averaged over �ve
executions) and the IP-model.

MODEL DISTANCE CPU TIME

(km) (hrs:mins:secs)

IP-Model 2870.502 2:34:24.9

RSGA 1:
gen=100 3801.90 0:0:27.22
gen=200 3661.62 0:0:54.50
gen=500 3426.67 0:2:16.92
gen=1000 3236.26 0:4:41.42

RSGA 2:
gen=100 3510.06 0:0:30.70
gen=200 3244.50 0:1:03.36
gen=500 3059.06 0:2:43.26
gen=1000 2951.16 0:5:30.20

RSGA 3:
gen=100 3608.18 0:0:29.80
gen=200 3378.46 0:1:03.80
gen=500 3179.61 0:2:33.84
gen=1000 3100.53 0:5:45.22

The results demonstrate that for each RSGA the dis-
tance of the �nal mission decreases gradually as the
number of generations increase. Additionally, it can
be seen that the placement of adjacent pixels using
RSGA 2, produces a smaller mission distance and em-
ploys less CPU time than RSGA 3. This, indicates
the interdependence between the placement of adja-
cent pixels that also belong to the same grid row or
column, and the quality of the mission.

RSGA 2 and 3 force adjacent pixel sets to form within
chromosomes from the �rst execution of the crossover
operator, and then continue as part of the crossover
to preserve these sets. This enables the genetic al-
gorithm to produce a shorter mission in less CPU
time. RSGA 1 which incorporates the OX crossover
alone takes more generations to compile and preserve
adjacent pixel sets. Consequently, RSGA 1 produces
longer �nal missions using more CPU time.

Although the IP-model allocates the optimal mission

for a region, the CPU time required to obtain \ good "
suboptimal missions from the genetic algorithms is
considerably less, which is an operational advantage.

7 CONCLUSION

In this paper we have described and analysed three
variations of a genetic algorithm for the Regional
Surveillance Problem (RSP). The objective was to in-
troduce a genetic algorithm to the RSP and to inves-
tigate its performance. The major problem was to es-
tablish a representation for the problem that operators
(existing and future) could manipulate. The results in-
dicated that the genetic algorithms produced \ good "
suboptimal tours for the problem within reasonable
time. Although the magnitude of the experimental re-
gion described in section 6 is of realistic proportions
(around 100km x 100km), the number of active pix-
els can increase. Results from region1 and additional
experimentation on simulated regions; consisting of a
larger number of active pixels, indicated that the ge-
netic algorithms are operationally superior to the IP-
model. Future work will include executing the genetic
algorithms for a set number of generations greater than
1000, and developing and comparing a simulated an-
nealing model to the genetic algorithms.
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