
A Hybrid Genetic Algorithm for the Fixed Channel Assignment
Problem

Mark Ryan, Justin Debuse, George Smith and Ian Whittley
School of Information Systems, University of East Anglia

Norwich, NR4 7TJ. U.K.
Email: {mdr,jcwd,gds,imw}@sys.uea.ac.uk

Tel: +44 1603 592308

Abstract

This paper describes a hybrid genetic al-
gorithm for solving instances of the Fixed
Channel Assignment Problem (FCAP), a
problem that is frequently encountered by
designers of mobile telecommunication net-
works. The hybrid GA manipulates solutions
which model networks directly, allowing it to
provide realistic assignments for highly con-
strained problems. Unfortunately, such so-
lutions can be very expensive to evaluate.
Algorithms such as simulated annealing of-
ten speed up the evaluation process by using
delta evaluation. Whilst such an approach is
not normally adopted by genetic algorithms,
this paper demonstrates that delta evaluation
can be incorporated into a GA, to deliver dra-
matic speed increases. We have found that
delta evaluation can improve the speed of our
GA by a factor of 90. This improved perfor-
mance allows the GA to produce good results
for large and complicated networks in a rea-
sonable amount of time. The results obtained
by the GA are compared to previous GA al-
gorithms proposed for the FCAP and to a
highly tuned simulated annealing algorithm.

1 THE FIXED CHANNEL
ASSIGNMENT PROBLEM

Solving the Fixed Channel Assignment Problem
(FCAP) is one of the major obstacles which must
be overcome by designers of mobile telecommunica-
tion networks. Mobile telecommunication networks
are composed of a number of cells. For the problems
described in this paper, each cell contains a single base
station. Clients of the network rely on the base sta-
tion of the cell in which they are situated, to provide

them with a channel through which they can make a
call. Each cell must be allocated a sufficiently large
number of channels, known as the cell’s demand, to
cope with the level of network traffic it typically ex-
periences. These channels are then delegated by the
cell’s base station to its clients’ calls. In solving the
FCAP, network designers must allocate channels to
all the cells in the network as efficiently as possible
so that the demand of each cell is satisfied and the
number of violations of electro-magnetic compatibil-
ity constraints (EMCs) in the network is minimised.
This paper considers three types of electro-magnetic
constraints:

Co-Channel Constraints (CCCs) Certain pairs
of cells may not be assigned the same channel si-
multaneously.

Adjacent Channel Constraints (ACCs)
Adjacent cells cannot be simultaneously assigned
channels which are adjacent in the electro-
magnetic spectrum.

Co-Site Constraints (CSCs) Channels assigned to
the same cell must be separated by a minimum
frequency distance.

Solving instances of the FCAP is not a trivial exercise.
If we consider a simple network that exhibits just one
of the constraints described above, the CCCs, then the
problem is identical to Graph Colouring. The Graph
Colouring problem is known to be NP-Complete [1]
and consequently it is very unlikely that a polynomial
time algorithm exists that can solve all instances of the
FCAP. Previously, researchers have applied a variety
of heuristic techniques to the FCAP, including Neural
Networks, [2, 3], Genetic Algorithms, [4, 5, 6, 7, 8],
Simulated Annealing [9, 10], Local Search [11] and
various greedy and iterative algorithms [12, 13, 14].
Typically, modern heuristic search techniques, such as

simulated annealing and genetic algorithms, tend to
adopt one of two strategies.

• A direct approach which uses solutions that model
the network directly, i.e. they contain information
about which channels are assigned to which cells.

• An indirect approach whose solutions do not
model the network directly. Typically the solu-
tions represents a list of all the calls required to
satisfy the demand of the network. Algorithms
such as those described by Sivarajan [12] are used
to transform the indirect solutions into real net-
work models which can be used to evaluate the
quality of the proposed solutions.

This paper describes a GA which adopts a direct ap-
proach to solving the FCAP. Previous experiments
with both approaches have demonstrated that the di-
rect approach generally yields better results. See [15]
for details.

2 A HYBRID GENETIC
ALGORITHM FOR THE FCAP

Standard GAs, using a direct representation, have
been found to perform quite poorly on the FCAP. A
few genetic algorithms employing a direct representa-
tion appear in the FCAP literature. Papers by Cup-
pini [8] and Lai and Coghill [7] attempt to solve only
reasonably trivial FCAP problems. Ngo & Li [4] suc-
cessfully apply their GA to more difficult problems but
they report run times of over 24 hours for a single run
of some of the simple problem instances. In addition
they also employ a local search algorithm which fires
when the GA gets stuck in local optima. In short, the
literature does not provide much evidence that an ef-
ficient and scalable channel assignment system could
be based on a standard GA.

2.1 THE HYBRID GA

Designing a genetic algorithm for the FCAP using a di-
rect approach that will execute in a reasonable amount
of time is very difficult. The main obstacle to effi-
cient optimisation of assignments using a traditional
genetic algorithm is the expense of evaluating a solu-
tion. Complete evaluation of a solution to the FCAP
can be extremely time consuming. See Section 2.1.5
for details. Neighbourhood search algorithms such as
simulated annealing can typically bypass this obstacle
using delta evaluations. Each new solution created
by the neighbourhood search algorithm differs only
slightly from its predecessor. Typically the contents

of only a single cell are altered. By examining the ef-
fects these changes have on the assignment, the fitness
of the new solution can be computed by modifying
the fitness of its predecessor to reflect these changes.
A complete evaluation of the assignment is avoided
and huge gains in execution times are possible. Un-
fortunately such delta evaluations are difficult to in-
corporate in the GA paradigm. At each generation
a certain proportion of the solutions in a population
are subject to crossover. Crossover is a binary opera-
tor which combines the genes of two parents in some
manner to produce one or more children. The prod-
ucts of a crossover operator can often be quite different
from their parents. For example consider the genetic
fix crossover operator employed by Ngo & Li [4]. So
long as the two parents are quite different from each
other, their children are also likely to be quite dissim-
ilar from both parents. Consequently it is generally
impractical to use delta evaluations to compute the
fitnesses of offspring from their parents. After a child
has been produced by crossover it must be completely
re-evaluated to determine its fitness.

In the light of this shortcoming, a GA using a sim-
ple crossover operator, such as the one employed by
Ngo & Li [4], which requires a large amount of time to
evaluate a single solution and which does not guide the
population towards a speedy convergence, will be com-
prehensively outperformed by a local search algorithm,
such as simulated annealing, which uses delta evalua-
tions. In order to be competitive with local search
techniques a GA must utilise operators that allow it
either to converge very quickly so few evaluations are
required or to explore the search space efficiently us-
ing delta evaluations. Section 2.1.2 describes a greedy
crossover operator which uses delta evaluations to ex-
plore a large number of solutions, cheaply, in an at-
tempt to find the best way to combine two given par-
ents.

2.1.1 Representation

The solution representation employed by the Hybrid
GA is based on the basic representation used by Ngo
and Li [4]. Each solution is represented as a bit-string.
The bit-string is composed of a number of equal sized
segments. Each segment represents the channels which
are assigned to a particular cell. The size of each seg-
ment is equal to the total number of channels available.
If a bit is switched on in a cell’s segment, then the
channel represented by the offset of the bit from the
start of the segment is allocated to the cell. Each seg-
ment is required to have a specific number of bits set at
any one time which is equal to the cell’s demand. Ge-
netic operators must not violate this constraint. The

length of a solution is equal to the product of the num-
ber of cells in the network and the number of channels
available.

2.1.2 Crossover

A good crossover operator for the FCAP must cre-
ate good offspring from its parents quickly. Producing
good quality solutions will drive the GA towards con-
vergence in a reasonable number of generations, thus
minimising the amount of time the GA will spend eval-
uating and duplicating solutions. Mutation can be re-
lied on to maintain diversity in the population and pre-
vent the GA from converging too quickly. A research
group at the University of Limburg [15] devised such
a crossover operator for the Radio Link Frequency As-
signment Problem (RFLAP), which proved to be very
successful. In essence, they used a local search algo-
rithm to search for the best uniform crossover that
could be performed on two parents to produce one
good quality child. Once found, the best crossover
was performed and the resulting child took its place
in the next generation. Whilst the FCAP and the
RFLAP problems are significantly different to prevent
this crossover operator being employed in the FCAP,
this research does illustrate how a similar sort of op-
erator may be applied to achieve good results for the
FCAP.

The crossover operator employed here uses a greedy
algorithm to attempt to find the best combination of
genes from two parents to produce one good quality
child. The greedy algorithm is seeded with an initial
solution consisting of two individual solutions to the
FCAP.

The greedy algorithm works by maintaining two solu-
tions. It attempts to optimize only the solution with
the best fitness. It achieves this by swapping genetic
information between the two solutions. Information
can only be swapped between corresponding cells in
each of the solutions. When a swap is performed two
channels, one from each solution, are selected. The
channels are then removed from the solution from
which they were originally selected and replaced by
the channel chosen from the other solution.

The manner in which these swaps are performed is
defined by a neighbourhood. The greedy algorithm
explores a neighbourhood until it finds an improv-
ing swap. When such a swap is found both solutions
are modified and the neighbourhood is updated. The
greedy algorithm continues to explore the remainder
of the neighbourhood searching for more improving
moves. The process continues until the entire neigh-
bourhood is explored. At this juncture the solution

being optimized is returned as an only child.

The neighbourhoods are constructed in the following
fashion. Each solution is essentially a sequence of sets,
one for each cell in the network. Each set contains
a certain number of channels which are assigned to
the cell corresponding to this set. Two new sequences
of sets are created by performing set subtractions on
each of the sets in both parents. These new sequences
of sets, referred to as the channel lists, again contain
a set for each cell. Each set in channel list 1 contains
channels which have been assigned to the cell, repre-
sented by this set, in the first parent but not to the
corresponding cell in the second parent and vice versa
for channel list 2. The neighbourhood is then con-
structed from these lists in the following manner: (See
Figure 1)

for each cell c
for each channel i in cell c in channel list 1

for each channel j in cell c in channel list 2
Generate move which swaps channels i

and j in cell c

Since the parents and the channel lists are represented
as bit-strings the set subtractions can be efficiently
performed as a sequence of ANDs and XORs.

The order in which the greedy algorithm explores the
moves in the neighbourhood is important. Experimen-
tation has shown that the moves are best explored in
a random fashion. Consequently if the crossover op-
erator is applied to the same parents more than once
there is no guarantee that the resulting children will
be identical.

The process of neighbourhood construction is depicted
in Figure 1. Figure 1(a) illustrates the two parents.
These are real solutions to problem 1 as described
in Section 3. This toy problem has only four cells
which have demands of 1, 1, 1 and 3 respectively. The
cell segments are denoted by the numbers appearing
above the solutions. The solutions are not depicted
in bit-string form for reasons of clarity. Performing
the set subtraction operations described above yields
two channel lists which are displayed in Figure 1(b).
Finally Figure 1(c) depicts all the moves which are
generated from the channel lists. These moves define
the neighbourhood.

Computing the channel lists is a very important part
of the crossover operation. It guarantees that each
move in the neighbourhood will alter the two solu-
tions, maintained by the crossover operator, in some

82

1 7 1 3 9

2 8 1 7 104

4

0 1 2 3

Channel List 1

Moves

3 9

7 10

71

0 2 3

Solution 1

Solution 2

(a)

(b) (c)

Cell 0: (1,2)

Cell 2: (7,8)

(9,7), (9,10)
Cell 3: (3,7), (3,10),

Channel List 2

Figure 1: Neighbourhood Construction

way. Hence moves that will not effect the solution
we are trying to optimise will not be generated and
consequently we will waste no time evaluating the so-
lutions they produce. Interestingly, this aspect of the
crossover operator does have an advantageous side ef-
fect. As the size of the neighbourhood depends on the
size of the channel lists, the number of solutions evalu-
ated by a crossover operator depends on the similarity
between the parents upon which it was invoked. As the
population of the GA begins to converge the crossover
operators performs less work and the GA speeds up.

There is one huge advantage of using the neighbour-
hood described above. Each new solution explored dif-
fers only slightly from its predecessor. Consequently
it is entirely practical for the greedy algorithm to em-
ploy delta evaluations allowing it to search its neigh-
bourhoods incredibly quickly. So rather than perform-
ing one slow evaluation on two solutions as a normal
crossover operator would do, it performs quick evalua-
tions on many solutions. The GA can now search the
solution space cheaply in the fashion of a local search
algorithm.

The effect that delta evaluation has on our hybrid GA
is dramatic. Some experiments were performed on the
first problem set, described in Section 3, to assess the
impact of delta evaluation on the genetic search. The
results of these experiments demonstrated that the GA
runs about 90 times faster when using delta evalua-
tions. This result illustrates the most important fea-
ture of the hybrid GA presented in this paper. Its

ability to explore the search space very efficiently al-
lows the GA to produce effective assignments for large
and complicated networks in a reasonable amount of
time.

Finally, relatively low crossover rates of 0.2 and 0.3
have been found to work well with this crossover oper-
ator. Due to the greedy nature of the operator, higher
crossover rates cause the GA to converge prematurely.

2.1.3 Mutation

The nature of the crossover operator described above
tends to cause the GA’s population to converge very
quickly. Mutation plays an essential role in the hybrid
GA by maintaining sufficient diversity in the popu-
lation, allowing the GA to escape from local optima.
Mutation iterates through every bit in a solution and
modifies it with a certain probability. If a bit is to be
modified, the associated cell is determined. A random
bit is then chosen in the same cell which has an op-
posite value to the original bit. These bits are then
swapped and the process continues. The mutation op-
erator cannot simply flip bits because this would vio-
late the demand constraints of the cell. A maximimum
of 100 mutations is permitted per bit-string. Without
this limit, mutation would cause the GA to execute
very slowly on some of the larger problems.

2.1.4 The GA

The hybrid GA is loosely based on Goldberg’s sim-
ple GA [16]. Each generation the individuals in the
population are ranked by their fitnesses. Solutions are
selected for further processing using a roulette wheel.
A certain proportion of solutions for the next gener-
ation will be created by the crossover operator de-
scribed above. The remaining slots in the next gen-
eration are filled by reproduction. Mutation is only
performed on solutions produced by reproduction. Al-
lowing mutation an opportunity to mutate the prod-
ucts of crossover was found to have a negative impact
on the genetic search. Due to the highly epistatic na-
ture of our representation even a single mutation can
have a very detrimental impact on the fitnesses of the
solutions produced, after considerable effort, by the
crossover operator. If mutation were applied to all so-
lutions, an excellent assignment produced by crossover
could be corrupted completely before it found its way
into the next generation.

2.1.5 Fitness

The fitness of a solution to the FCAP is determined
by the number of EMCs that it violates. It does not
include any information as to whether the network de-
mand is satisfied because this constraint is enforced by
the representation. More precisely the fitness may be
defined as follows:

F (S) =
n−1∑
i=0

m−1∑
p=0

n−1∑
j = 0
j 6= i
Cij > 0

p+(Cij−1)∑
q = p− (Cij − 1)

0 ≤ q < m

Sjq

Sip (1)

+
n−1∑
i=0

m−1∑
p=0

 p+(Cii−1)∑
q = p+ 1
0 ≤ q < m

Siq

Sip (2)

where S is a solution, Sij is 1 if channel j has been as-
signed to cell i, otherwise it is 0. Cij is the minimum
separation between a channel assigned to cell i and a
channel assigned to cell j. The letters n and m repre-
sent the number of cells and the number of available
channels in the network, respectively.

The first part of the fitness equation is responsible for
computing ACC and CCC violations. The second part
calculates CSC interference.

2.2 HEURISTIC ENHANCEMENTS

A number of problem specific enhancements can be
made to the basic genetic operators, described in the

previous section, to improve the performance of the
GA on the FCAP problem instances. These enhance-
ments are described below.

2.2.1 Ignore Good Channels

An important enchancement can be made to the
crossover operator in an attempt to improve its effi-
ciency. During its execution, the crossover operator
constructs a neighbourhood which defines the work
that it is to perform. However, this neighbourhood
is going to be used by a greedy algorithm which will
only perform an improving move. Since we are just
optimizing the first solution, we do not need to bother
considering channels which are assigned to it without
violation. Replacing these channels cannot possibly
lead to an improvement in the solution as they were
not responsible for any interference in the first place.
Thus we can omit these channels from the list of chan-
nels that can be swapped out of the first solution. De-
termining which channels in the first channel list are
involved in violations is actually quite expensive and
involves a partial evaluation of the first solution. How-
ever if it can prevent the crossover operator performing
more than a few swaps, some performance gains might
be made. It should be noted that, even though delta
evaluation is used to recompute the value of solutions
after a swap has occurred, the process is still quite
slow.

2.2.2 Eliminating CSCs

Ngo & Li [4] demonstrate that it is possible to elim-
inate CSCs completely from the search process for
some problems. They achieved this by modifying their
representation so that CSCs could not be violated.
The hybrid GA attempts to employ a similar heuris-
tic without altering the representation. It constructs
an initial population which does not contain any CSC
violations. This can be achieved by ensuring that for
each solution all the channels assigned to a single cell
are separated from each other by the CSC frequency
separation for that cell. The GA then ensures that
neither the crossover nor the mutation operator can
perform a swap that can violate a CSC. This heuristic
allows us to effectively reduce the size of the search
space for certain problems.

3 PROBLEM INSTANCES

The performance of the hybrid GA has been evaluated
on two problem sets. The first set has been compiled
from the FCAP literature and contains 11 problems
of varying difficulty. The second problem set consists

of four benchmark problems presented at the NCM2

Workshop on Optimization methods for Wireless Net-
works [17]. These problems represent some very large
real world networks. More information about the
problem instances is presented in Table 1. Problems 1
to 11 constitute problem set 1, problems 12 to 15 form
the second problem set. In Table 1, Cells indicates the
number of cells in a network, Ch represents the total
number of channels available and D is the total de-
mand of a network. The column entitled, Source, pro-
vides references to various papers in the FCAP litera-
ture where these problems have previously appeared.

Table 1: Problem Instances
Problem Source Cells Ch D
1 [2, 4, 12] 4 11 6
2 [2, 3, 7, 4, 11] 25 73 167
3 [2, 4, 12, 11] 21 221 470
4 [2, 4, 12, 11] 21 309 470
5 [2, 12, 11] 21 533 481
6 [2, 12, 11] 21 533 481
7 [2, 12, 11] 21 381 481
8 [2, 12, 11] 21 309 470
9 [12, 11] 21 414 481
10 [12, 11] 21 258 470
11 [12, 11] 21 529 470
12 [17] 100 373 677
13 [17] 170 373 1231
14 [17] 214 373 1221
15 [17] 718 373 5101

4 EXPERIMENTATION

The results of a number of experiments conducted to
assess the performance of the hybrid GA are presented
in Table 3. Table 3 also places the GA’s performance
in perspective by presenting the results obtained by
a highly tuned simulated annealing algorithm, which
is discussed briefly below. The outcome of these ex-
periments are analysed in Sections 4.2 and 4.3. Ten
separate runs of both the GA and the SA were per-
formed on each problem1. Table 3 presents the best
and the average fitnesses obtained by each algorithm.
The average time taken to converge, in CPU seconds,
is also reported. All experiments were performed on
a 433Mhz DEC Alpha. Unless otherwise stated in the
sub sections below, the parameters detailed in Table 2
were used to guide the genetic search.

1Due to time constraints, only one run was performed
for the GA on problem 15

Table 2: GA Parameter Settings

Parameter Value
Population Size 50
Crossover Rate 0.2
Mutation Rate 0.01
Selection Method Roulette Wheel

4.1 SIMULATED ANNEALING

Simulated annealing (SA) is a modern heuristic search
method which is often applied to combinatorial opti-
misation problems, such as the FCAP. The reader is
referred to [18] for a description of the SA algorithm.
The SA uses the same representation employed by the
GA. It uses a neighbourhood operator which randomly
selects a channel that has been allocated to a cell and
attempts to replace it with the best unused channel
that is not currently assigned to the cell in question.
Delta evaluation is used in the SA.

4.2 PROBLEM SET 1

The results obtained by the hybrid GA for the first
problem set are very encouraging. It can produce
interference free solutions to nine out of the eleven
problems after only a couple of minutes. These run
times are admirable, especially when compared to pre-
vious GAs that adopted a direct method for solving
the FCAP. For instance, Ngo & Li [4] report average
run times of 20, 000 and 90, 000 seconds for problems
3 and 4 respectively. Problems 3 to 8 and problem 11
are described as being CSC limited, i.e. it is the pres-
ence of CSCs constraints in the network that make
these problems difficult. The GA finds them easy be-
cause it does not permit CSC violations in its solu-
tions. The SA does not employ such an approach and
consequently it has difficulties with these problems.
On the other hand problems 9 and 10 are made dif-
ficult by the presence of ACC and CCC constraints.
The SA outperforms the GA on these problems.

4.3 PROBLEM SET 2

Problem set 2 contains some very large problems. An
interesting feature of these problems is that the aver-
age demand per cell is much lower than it is for the
first problem set. Since it is the demand of the network
that determines the number of bits set in a solution,
these problems require a larger population size to en-
sure that the GA has enough information available to
perform its search effectively. Interestingly, whilst you
might suspect that the low demand of these networks

Table 3: Results
GA SA

Problem Best Fit Avg Fit Time Best Fit Avg Fit Time
1 0 0 0 0 0 0
2 0 0 13 0 0 1
3 0 0 22 1 1.4 176
4 0 0 84 1 1.2 415
5 0 0 1 1 1.5 202
6 0 0 25 4 4.7 324
7 0 0 4 3 3.6 134
8 0 0 6 1 1 71
9 16 17.6 401 9 10 553
10 3 5.4 631 0 0.3 442
11 0 0 19 1 1 77
12 0 0 474 0 0 14
13 0 0 2155 0 0 216
14 57 59.6 10564 25 26.9 14610
15 12 n/a 36011 0 0 1439

would make these problems easy to solve, it actually
makes them very difficult for the GA. We are forced
to increase our population size to provide sufficient di-
versity. Unfortunately doing so has a rather negative
effect on the speed of the GA. We are forced to main-
tain relatively large populations which contain very
large solutions. Population sizes of 150 solutions are
required to obtain reasonable results for this problem
set. With these population sizes the GA is capable
of solving the first and second problems. Although
the GA is outperformed by the SA on the remaining
two problems, insufficient time was available to tune
the GA to work well with this problem set. We sus-
pect that a more suitable parameter configuration will
yield better results for these problems. Problem set
two has been included in this paper to demonstrate
that the GA can tackle large networks.

5 CONCLUSION

This paper describes a hybrid GA which we believe
has made significant advances in the field of channel
assignment through genetic search. The most distin-
guished quality of the hybrid GA is its ability to ex-
plore the search space of FCAP problems very effi-
ciently. Consequently, the GA can be applied to large
and complicated networks, producing good results in
a reasonable amount of time. However, whilst the GA
does compare very favourably with previous GA solu-
tions to the FCAP problem, it is not as efficient as a
well tuned SA algorithm on really large problems. Fur-
ther research is required if the GA is to compete on

a par with the SA. Possible enhancements to the GA
might include a distributed version or the introduction
of a pyramid architecture as described in [15].

Acknowledgements

This research was sponsored by Nortel, Harlow, UK.

References

[1] M. R. Garey and D. S. Johnson. Computers
and intractability: a guide to the theory of NP-
completeness. Freeman, New York, 1979.

[2] N. Funabiki and Y. Takefuji. A neural network
parallel algorithm for channel assignment in cel-
lular radio networks. IEEE Transactions on Ve-
hicular Technology, 41(4), 1992.

[3] D. Kunz. Channel assignment for cellular radio
using neural networks. IEEE Transactions on Ve-
hicular Technology, Vol. 40, No. 1:188–193, 1991.

[4] C. Y. Ngo and V. O. K. Li. Fixed channel assign-
ment in cellular radio networks using a modified
genetic algorithm. IEEE Transactions on Vehic-
ular Technology, 47(1):163–172, 1998.

[5] C. Crisan and H. Mühlenbein. The breeder ge-
netic algorithm for frequency assignment. In
Eiben et al. [19], pages 897–906.

[6] C. Valenzuela, S. Hurley, and D. Smith. A permu-
tation based genetic algorithm for minimum span

frequency assignment. In Eiben et al. [19], pages
907–916.

[7] W. K. Lai and G. Coghill. Channel assign-
ment through evolutionary optimization. IEEE
Transactions on Vehicular Technology, 45(1):91–
95, 1996.

[8] M. Cuppini. A genetic algorithm for channel
assignment problems. Communication Network,
5(2):157–166, 1994.

[9] D. Kunz M. Duque-Antón and B. Rüber. Chan-
nel assignment for cellular radio using simulated
annealing. IEEE Transactions on Vehicular Tech-
nology, 42(1):14–21, 1993.

[10] T. Clark and G. D. Smith. A practical frequency
planning technqiue for cellular radio. In G. D.
Smith, N. C. Steele, and R. F. Albrecht, edi-
tors, Aritifical Neural Networks and Genetic Al-
gorithms. Springer, 1997.

[11] W. Wang and C. K. Rushforth. An adaptive local-
search algorithm for the channel assignment prob-
lem. IEEE Transactions on Vehicular Technology,
45(3):459–466, 1996.

[12] K. N. Sivarajan, R. J. McEliece, and J. W.
Ketchum. Channel assignment in cellular ra-
dio. Proc. of the 39th IEEE Vehicular Technology
Conf., pages 846–850, 1989.

[13] F. Box. A heuristic technique for assigning fre-
quencies to mobile radio nets. IEEE Transactions
on Vehicular Technology, VT-27:57–64, 1978.

[14] A. Gamst and W. Rave. On frequency assignment
in mobile automatic telephone systems. Globe-
com ’82, IEEE Global Telecommunications Con-
ference. Miami. Paper B.3.1.1-7, pages 309–315,
1982.

[15] G. D. Smith, A. Kapsalis, V. J Rayward-Smith,
and A. Kolen. Report 2.1: Implementation and
testing of genetic algorithm approaches. Techni-
cal report, Euclid CALMA radio link frequency
assignment project, 1995.

[16] D. E. Goldberg. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-
Wesley Publishing Compnay, Inc., 1989.

[17] Pascal Labit. Frequency assignment test prob-
lems.
http://www.crt.umontreal.ca/∼brigitt/
telecom/test probs/prob1.html, 1998.

[18] K.A. Dowsland. Simulated annealing. In Mod-
ern Heuristic Techniques, chapter 2, pages 20–69.
Blackwell Scientific, 1993.

[19] A. E. Eiben, T. Bäck, M. Schoenauer, and H.P.
Schwefel, editors. Parallel Problem Solving from
Nature - PPSN V. Springer, 1998.

