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Abstract

It is shown how the Genetic Algorithm, to-
gether with the Computer Algebra System
Maple can be used to manipulate and sim-
plify large polynomial expressions. Various
parameters of GA: the shape of the �tness
function, the size of the initial population,
mutation and mating rates and others are de-
termined by numerical experiments.

1 INTRODUCTION

In analyzing large mathematical expression the sim-
pler the better is usually the case. The simplest form
of an expression makes it easier for us to see and ap-
preciate it's structure. The rewriting process requires
often many manipulations and transformations, using
various mathematical relationships. Nowadays, Com-
puter Algebra Systems are a great help, but of course
they have their limitations.

For polynomials it is often desirable to present them
in the form of a product of factors (if possible) or at
least a sum of a small number of terms each of which is
itself a product of factors. Computer Algebra Systems
usually contain a function factor which can present a
polynomial as a product of factors (if possible) over
the domain speci�ed by coe�cients. However, if the
polynomial is a sum of two or more products of fac-
tors, the user has to determine how to group the terms
before using the command factor. For instance, if we
have a polynomial

a2 � 2bxa� bx+ 4x2 � 4xa

it takes a certain amount of e�ort to notice that it can
be presented as

(2x� a)2 � bx(1 + 2a) =

factor(a2 � 4xa+ 4x2)� factor(bx+ 2bxa)

The simplest way of tackling the problem would be to
consider all possible groupings of terms of a polyno-
mial, to apply the command factor to each and de-
termine which gives the most desirable outcome. The
problem with this approach is that the number of pos-
sible groupings grows very rapidly with the number of
terms. For 9 terms the number of relevant groupings
is almost 10,000 , for 10 terms - nearly 52,000 and
for 12 terms - nearly 2 million. Although these num-
ber do not seem particularly large, one has to take
into account that the procedure factor has to be ex-
ecuted several times for each possible grouping. The
brute-force approach requires 1300 sec on a Pentium
machine running at 133Mhz for an expression with 9
terms and over 10,000 secs for an expression with 10
terms. Clearly, the brute-force approach becomes in-
feasible for larger expressions and below I present the
use of the Genetic Algorithm to solve the problem.
The Computer Algebra System used here is Maple and
the program is written in the Maple language.

2 SETTING UP THE PROBLEM IN

GA TERMS

The problem we want to solve consist then of �nd-
ing a grouping of terms of a polynomial (from all
possible, relevant groupings) which, when factor-ed,
will produce the simplest, in some sense, form of the
polynomial. The question of course arises: what is
"simplest"? Is, for instance, x2 � y2 simpler than
(x+ y)(x� y) or the other way around? On the other
hand we would all probably agree that (a�2b)3 is sim-
pler then a3 � 6a2b + 12ab2 � 8b3 . Clearly, what is
"simplest" is both a matter of personal taste and of the



context - what we need the expression for. In the par-
ticular case discussed here I have decided on a certain
way of calculating a number which would be smaller
for "simpler" forms of an expression. The details are
perhaps irrelevant here, but an example might be in
order. For

expr0 = (x � 2a)4 � (2ay � xb)3

this number is 17 and for an expanded form of this
expression, i.e. for

expr1 = x4 � 8a3y3 + 12a2by2x�

6ab2yx2 + b3x3 � 8ax3 + 24a2x2 � 32a3x+ 16a4

this number is 65. This number (which I shall hereafter
refer to as the "expression size") is used to calculate
the �tness of an organism (see below) and the way it
is calculated can be adjusted to re
ect the preferences
of the user.

Individual groupings of the terms of the fully expanded
form of the polynomial will be the GA "organisms"
and they are coded in the following way: the terms
of the polynomial are numbered (starting from one)
and a speci�c grouping is represented as a set of sets.
All numbers have to be present in the set, distributed
over the subsets and none of the number can appear
twice. Due to the nature of the problem the set has to
contain at least two subsets. Here are a few examples
of the groupings (organisms) for the case of nine and
twelve term polynomials:

ff5, 7g, f6, 9g, f3, 4g, f1, 2, 8gg

ff9g, f5, 7, 6g, f1, 2, 3g, f4, 8gg

ff10, 11, 12g, f1, 2g, f3, 6, 9g, f4, 5, 7, 8gg

It may be worth noting here that in the above formu-
lation the problem discussed turns out to belong to the
family of grouping problems and that there has been
a number of attempts to apply GA to this area. Dif-
�culties which arise in such applications, as well as a
suggestion how to avoid many of them, can be found in
(Falkenauer 1994). The representation outlined above
inherently takes care of the redundancy which plagued
many previous applications of GA to the grouping
problems (thanks to properties of Maple's set data
structure). Also, the crossover operator proposed be-
low addresses concerns raised in (Falkenauer 1994) in
connection with the crossover operators used in other
applications of GA to grouping problems. It may even
do it better than the operator proposed there.

To reconstruct an expression corresponding to a given
'organism' above, the command factor is applied to
each subgrouping of terms represented by a subset of
integers in the 'organism' and the results are added
together.

Mutations implemented here come in two varieties -
splitting mutations which cause one of the subsets to
split randomly in two and coalescing mutations which
cause two randomly selected subsets to coalesce into
one. Devising a mating scheme is somewhat more com-
plex. It was set up here in the following way - two
organisms can mate in either of two cases: in the �rst
case one of the candidate organisms has to have a sub-
set with the same terms as two subsets in the other;
in the second case two subsets in one of the organisms
contain the same terms as two subsets in the other,
although perhaps distributed di�erently. Mating con-
sists of an exchange of the subsets containing the same
terms. For instance:

ff8g, f5, 7, 6, 9g, f1, 2, 3, 4gg +

ff5, 7g, f6, 9g, f3, 4g, f1, 2, 8gg

goes into

ff8g,f5, 7g, f6, 9g , f1, 2, 3, 4gg +

ff5, 7, 6, 9g, f3, 4g, f1, 2, 8gg

or

ff5, 7g, f6, 9g, f3, 4g, f1, 2, 8, 10g, f11gg +

ff9g, f5, 7, 6,g, f1, 2, 3g, f4, 8g, f10, 11gg

goes into

ff9g, f5, 7, 6,g, f3, 4g, f1, 2, 8 10g, f11gg +

ff5, 7g, f6, 9g, f1, 2, 3g, f4, 8g, f10, 11gg

It is clear that not every two organisms are able to
mate. For instance, the two following ones have no
material which could be exchanged in the manner de-
scribed above:

ff1, 4, 5, 6g, f2, 3, 7, 8, 9gg,

ff2, 6g, f3, 4, 5, 8g, f1, 7, 9gg

Fine tuning of the parameters of the GA, like the rel-
ative ratios of the contributions of the three outlined
processes (to creating a successive population of the or-
ganisms) and the form of the �tness function, was per-
formed by applying the scheme to polynomials with a
relatively small number of terms which had known con-
cise forms, for instance the expression expr1 above.

The problem was cast as a maximization problem by
de�ning the �tness of an 'organism" (a grouping of



terms resulting in a certain form of the expression) as
the square of the di�erence between the expression size
for the expanded form and for the form corresponding
to the actual grouping of elements speci�ed by the
'organism'. Organisms for which the di�erence above
was negative were taken to have zero �tness.

In the process of �ne tunning the form of the GA to our
particular case it was also discovered that the following
additional features had to be present:

- all organisms in the population should be kept di�er-
ent. Without this requirement the population quickly
becomes quite homogeneous and there is not enough
variety to ensure an exhaustive search for the absolute
maximum. The importance of enforcing uniqueness
has already been stressed by Whitley (Whitley 1989);
see also (Davis 1991).

- the mutation rate has to be quite high, unlike in
typical GA applications, where it is usually kept very
low (Kinnear 1994);

- in light of the high mutation rate it is important that
the "best �t" organism is always copied to the new
population; otherwise, even if the "best" organism is
found, it could be lost in the next generation. This
is usually termed 'elitism' (Davis 1991). Note that in
our case a single mutation may drastically change the
�tness of an organism.

Another important consideration is the size of the pop-
ulation with which one works. If the population is too
small, there may not be enough variation in it to let
the program explore all parts of the solution space. If
the population is too large one life-time cycle (replac-
ing an old generation with a new one) takes a very
long time and the program runs very slowly. In our
case a population of size n2 (where n is the number of
operands in the expression) worked quite well.

3 STRUCTURE OF THE

PROGRAM

The logical structure of the program in a simpli�ed
form is presented in the form of a 
ow diagram in
Fig.1 .

Input to the program is the expanded form of the
expression, a number of iterations to be performed
and the starting population. If the program is called
with two arguments only (the internal variable "nargs"
gives the number of parameters), then the initial pop-
ulation is generated internally. The program outputs
the organisms with the highest �tness. The last pop-
ulation is also saved and can be used to perform more

Figure 1: Flow diagram of the GA program

iterations.

4 THREE EXAMPLES

The results of three runs of the gp tot program are
presented below. Please note that in order to better
monitor the convergence process, at the end of each
iteration a number of parameters characterizing the
population is printed out. These parameters, in the
order in which they are printed, are:

- "best" organism (see below);

- iteration number;

- number of organisms in the population (this number
may slightly exceed the number of operands of the
expression, squared);

- average �tness of the population;

- lowest value of the expression size in the population;

- highest value of the expression size in the population;

- average number (over the current population) of sub-
groups in an organism;



- number of new organisms, as compared with the pre-
vious population;

The �rst two examples show that independent runs
on the same problem may di�er drastically and it is
always advisable to repeat runs. We also �nd that even
for a polynomial with 9 elements, the program based
on the genetic algorithm may be more economical than
the brute force approach of going through all possible
groupings of terms. For larger polynomials it is of
course the only practically feasible approach.

The Maple code for the procedure gp tot can be found
on the anonymous ftp site ic-unix.ic.utoronto.ca in the
subdirectory pub/scienti�c/maple/GA, together with
other �les containing the code for auxiliary procedures.

The runs presented below come from a pentium ma-
chine, 133MHz, running Maple V R5 under linux. For
the sake of brevity, portions of the output in the runs
below are removed.

expr0 = (x � 2a)4 � (2ay � xb)3

expr1 = x4 � 8a3y3 + 12a2by2x� 6ab2yx2+

b3x3 � 8ax3 + 24a2x2 � 32a3x+ 16a4

This is a Maple command to execute the program

fff := gp tot(expr1; 5);

And here is the output

{{2,3,4,5}, {8}, {6,9}, {1,7}}

0, 81, 95.198, 37, 65, 3.9

Time of one cycle 28.560

{{2,3,4,5}, {6,9}, {1,7,8}}

1, 83, 151.69, 36, 64, 4.0, 63

Time of one cycle 35.350

{{2,3,4,5}, {1,6,7,8,9}}

2, 84, 228.80, 17, 63, 3.9, 52

........................................

Time of one cycle 32.810

{{2,3,4,5}, {1,6,7,8,9}}

5, 83, 400.33, 17, 65, 3.5, 43

The three best forms of the expression found by the
program are

(x � 2a)4 � (2ay � xb)3

�(2ay � xb)3 + x4�

8a(�a+ x)(2a2 � 2xa+ x2)

�(2ay � xb)3 + 16a4+

x(�4a+ x)(8a2 � 4xa+ x2)

Here we have been very lucky - the procedure found
the optimum form of the expression in the second it-
eration. Since the starting population is created ran-
domly, another run might require a greater number of
iterations to �nd the same solution.

fff := gp tot(expr1; 5);

{{6}, {4,5,2}, {1,3}, {7,8,9}}

0, 81, 96.914, 48, 67, 3.9

Time of one cycle 25.420

{{1,3}, {7,8,9}, {4,6}, {5,2}}

1, 84, 145.82, 42, 62, 3.9, 62

..........................................

Time of one cycle 36.379

{{8,9}, {4,1,3}, {6,7}, {5,2}}

5, 82, 279.88, 41, 61, 4.0, 44

Here it seems that the procedure has not converged
after 5 iterations. We can add more iterations, noting
that the most current population is stored in the global
variable new pop.

fff := gp tot(expr1; 5; new pop);

{{8,9}, {4,1,3}, {6,7}, {5,2}}

0, 82, 279.88, 41, 61, 4.0

Time of one cycle 36.370

{{4,6,7}, {3}, {8}, {5,9,1,2}}

1, 82, 296.04, 34, 61, 3.8, 39

Time of one cycle 35.880



{{4,6,7,8}, {3}, {5,9,1,2}}

2, 82, 326.99, 30, 60, 3.8, 35

Time of one cycle 37.830

{{4,6,7,8,3}, {5,9,1,2}}

3, 83, 384.39, 17, 65, 3.9, 44

........................................

Time of one cycle 29.580

{{4,6,7,8,3}, {5,9,1,2}}

5, 82, 446.15, 17, 63, 3.8, 43

It may be worth noting here that solving the same
problem using the brute-force approach (testing all rel-
evant groupings of the terms) took almost 1300 secs on
the same machine. The GA program took less then 600
secs to run through 10 iterations.

Now we try the procedure on a more ambitious case -
an expression with 12 terms. As noted previously, for
12 terms there are nearly 2 million combinations which
would have to be tried using the brute-force approach.
The computing time required make this approach in-
feasible, since the estimated time for brute-force search
is over 500,000 secs. As can be seen below, the genetic
algorithm program can solve the problem in a reason-
able time.

expr0 := (x� 2a)2 � (2ay � xb)3+

(b2y + a2x2)2 + x2y2(a� b);

Expression size for this form is 36

When expanded, this expression has the form (I have
deliberately shu�ed the terms around):

expr1 = ay2x2 � by2x2 + a4x4 � 8a3y3+

12a2by2x+ 2b2a2yx2 � 6ab2yx2 + b3x3 +

b3x3 + b4y2 + x2 � 4ax+ 4a2

and the expression size is now 89.

fff := gp tot(expr1; 20);

{{1,7}, {2,5}, {4,12}, {8,10,11}, {3,6,9}}

0, 144, 164.75, 55, 89, 4.7

Time of one cycle 119.790

{{1,7}, {2,5}, {4,12}, {8,10,11}, {3,6,9}}

1, 146, 246.02, 55, 87, 4.9, 113

Time of one cycle 159.680

{{1,7}, {2,5}, {4,12}, {8,10,11}, {3,6,9}}

2, 147, 306.07, 55, 83, 5.0, 100

Time of one cycle 206.690

{{1,5}, {2,7}, {4,12}, {8,10,11}, {3,6,9}}

3, 145, 393.97, 53, 84, 5.1, 91

....................................

Time of one cycle 245.049

{{4}, {10,11,12}, {1,5}, {3,6,9}, {2,7,8}}

10, 145, 687.72, 52, 85, 5.1, 79

................................

Time of one cycle 214.830

{{1}, {10,11,12}, {2}, {3,6,9}, {4,5,7,8}}

15, 146, 744.89, 42, 89, 5.0, 85

Time of one cycle 206.881

{{10,11,12}, {1,2}, {3,6,9}, {4,5,7,8}}

16, 147, 812.26, 36, 83, 5.2, 83

..........................................

Time of one cycle 211.109

{{10,11,12}, {1,2}, {3,6,9}, {4,5,7,8}}

20, 145, 896.01, 36, 89, 4.9, 78

The three best forms of the expression found in this
run are:

(x� 2a)2 � (2ay � xb)3 + (b2y + a2x2)2 + x2y2(a� b)

x2y2 (a� b) + x2 � 4 a (�a+ x)+

(b2 y + a2 x2)2 � (2 a y � x b)3

x2 y2 (a� b) + 4 a2 + x (x � 4 a)+

(b2 y + a2 x2)2 � (2 a y � x b)3



I have run the program 18 times for a 12 term expres-
sion and the average number of iterations required for
convergence was 25. This corresponds to an execution
time of about 8,000 secs. As mentioned above, the
estimated time for the brute-force approach is about
500,000 secs.

5 GENERALIZATION OF THE

PROGRAM

As described above, the program can only work in sit-
uations in which none of the terms from the factorized
groups add up or cancel when these groups are ex-
panded. For instance, the program is unable to �nd
that

8x6 � 12x4by + 12x4 + 6x2b2y2 � 12x2by+

6x2 � b3y3 + 3b2y2 � 3by � 1

can be written as

(2x2 � by + 1)3 � 2

because of the cancellation of the constant terms.

In case of addition or cancellation of the constant
terms, the program can be easily modi�ed to take this
into account, to some extent. Any constant term (we
only consider factorization over integers) can be rep-
resented as a sum of 1's and the expression can be
padded with a certain equal number of +1's and -1's.
How many would be up to the user to decide. Too
few may not be enough but too many results increases
considerably the number of terms in the expression
and consequently the program consumes more time.
However, this is the price to pay for solving the more
di�cult problem.

The programmodi�ed as described above had no prob-
lems �nding the simpli�cation above. I have run this
case 7 times (padding the expression with integers
1,1,1,-1,-1,-1 which leads to 17 terms) with an aver-
age 15 iterations required for convergence. Finding
that

8a3x3� a3x2 � 12a2x2 + a2b�

ax2 � 2a2 + 6ax+ b� 3

can be written as

(2ax� 1)3 � (ax2 � b+ 2)(a2 + 1)

turned out to be more di�cult, in the sense that on
a few occasions the program would get stuck in a cer-
tain region of the solution space. This was presumably
due to the fact that the range of �tness values for this
expression was only 529, whereas for the former ex-
pression it was 2500. When the way of calculating the
expression size was modi�ed so that the range of �t-
ness values increased to 2209 in the above case (and to
10404 in the previous case), there was no problem with
convergence. This new way of calculating the expres-
sion size worked also very well for all cases considered
previously. One might extend the program in a simi-
lar way to the case of addition or cancellation of other
(than constant) terms.

6 CONCLUSIONS

It has been shown here how the Genetic Algorithm can
be used within a Computer Algebra system to perform
additional simpli�cations of polynomials. GA was also
used previously inside a di�erent CAS, Mathematica,
(Nachbar 1995) in a di�erent context. It can be ex-
pected that GA can provide users of CAS systems with
additional tools for dealing with certain mathematical
problems. Data structures built into the Computer
Algebra System make the CAS environment very con-
venient for applying GA to grouping problems (Falke-
nauer 1994).
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