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Abstract

We de�ne a technique that is found to be use-
ful when dealing with solution vectors (i.e.,
chromosomes) that must be normalized be-
fore evaluation. Normalized vectors can be
either trivially manipulated or trivially in-
terpreted, but not both. This paper studies
some modi�ed gradient techniques for both
bit and 
oating point representations that
have been successfully used at ARCO on
some real world problems where other opti-
mization techniques have failed.

1 THE PROBLEM

Many problems are formulated as the maximization
(or minimization) of an objective function, f , over the
set of all possible n-dimensional real solution vectors,
x (i.e., f : x ! <n). If f is di�erentiable (contin-
uous), there are numerous techniques available that
can make use of the objective function's derivative, f 0

(e.g., Hagar, 1988). The derivative is also referred to
as the slope, or gradient. Unfortunately, many real
world problems do not have the nice properties of be-
ing continuous and di�erentiable.

For our problem, we de�ne a solution vector of length
n, xi 2 [0:::1], i = 0:::(n�1), broken into m subgroups
of varying cardinality. Let g0 be the index of the start
of the �rst group, and so on, with gm�1 being the
starting index of the last group, and gm = n. Prior to
evaluation using f(x), each subgroup must be normal-
ized. Normalizing a subgroup is simply accomplished
by summing the members of that group together, and
then dividing each member by that sum. The result is
that each subgroup now sums to 1:0.

For example, Figure 1 shows a solution vector of size
n = 7 with m = 2 subgroups. The �rst group contains
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Figure 1: Normalized Vector Example

3 values and the second contains 4, with g0 = 0, g1 = 3
and g2 = 7.

There are at least two possible ways to handle nor-
malized solution vectors. Using the representation de-
scribed above allows the vectors to be trivially ma-
nipulated using standard crossover and mutation tech-
niques. However, a normalization step is required prior
to evaluation, which creates somewhat of a discon-
nect between the genotype (the actual bit or 
oating-
point representation) and the phenotype (the normal-
ized vector). A change to a single genotype value in
group j will actually change all of the phenotype values
in group j.

Referring again to Figure 1, consider changing the :2
value in Group 1 to :3. All Group 1 values after nor-
malization will change (:3125; :5; :1875). While the
shape of the group remains the same, it is clearly a
disruptive operation. Changing multiple values on a
single crossover or mutation is even more disruptive.

A second technique would be to actually preserve the
normalization within the crossover and mutation oper-
ators. In other words, the initial solution vector would
be normalized, and each crossover or mutation step
would produce a properly normalized solution vector.
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Figure 2: Material Balance Example

In addition to requiring highly specialized operators,
this method leaves one uncertain about what sort of
building blocks would be preserved during recombina-
tion, and just how disruptive a mutation might be.

2 MATERIAL BALANCE

We encountered this sort of representational di�culty
at ARCO while working on the Material Balance prob-
lem (McCormack, 1999). The details of this problem
are beyond the scope of this paper, but we will give a
brief description here.

Material Balance is a tool employed by reservoir en-
gineers in developing and e�ciently producing the hy-
drocarbon reserves of an oil �eld. In this process, en-
gineers determine the 
uid saturations and pressure
changes that occur in the reservoir as a result of in-
jecting and producing 
uids, and compare these results
with actual measurements. The oil �eld is broken up
into some number of "patterns", each containing pro-
ducing and injecting wells. The question is simple:
When material is injected into an injection well, where
does it go? Figure 2 shows an example of a pattern
with 4 injection wells and one producer.

The chromosome for this pattern would consist of 4
groups of 4 values each (in general, this can vary). For
each group, the normalized values (called "allocation
factors") represent the percentage of injected material
that 
owed northwest, northeast, southwest or south-
east out of each injection well. A key constraint on this
calculation is the conservation of the total mass of in-
jected and produced 
uids, hence the name "material
balance".

The real world problems we deal with typically have
anywhere from 3000 to 7000 
oating point allocation
factors and hundreds of individual patterns.

3 SOLUTION ATTEMPTS

The initial optimization attempt (as well as all subse-
quent attempts) used the methodology described ear-
lier of using individual values in the range [0::1], clus-
tered into subgroups that must be normalized before
evaluation. The �rst version used a genetic algorithm
with 
oating point strings. It was successful on small
examples (9 patterns), but did not scale linearly in
computation time to the full �eld. A later attempt
using a genetic algorithm with bit strings gained a
signi�cant speedup, and the addition of gray coding
(Wright, 1991) resulted in another signi�cant gain.

Still not satis�ed with the genetic algorithm's perfor-
mance, we used a bit climber (Davis, 1991a) (stochas-
tic gradient technique) and were surprised to see an-
other increase in performance. A bit climber emulates
a gradient search by 
ipping a bit and evaluating the
new solution to see if it is an improvement. Since this
is a "greedy" search strategy, i.e., we never throw away
an improved solution vector (Horowitz, 1978), the bit
climber can get stuck in suboptimal peaks or troughs
called local optima (Davis, 1991b). Various heuristics
were applied to help alleviate this problem.

Two additional modi�cations to the bit climber re-
sulted in even more speedup. When �nished, we had
achieved a factor of 200 speedup over the original code,
allowing us to run full �eld studies on an SGI work-
station overnight (12 to 15 hours).

Such hill climbing strategies are well known in the lit-
erature, and many successful examples of their use
can be found (Ishibuchi, 1997; Land, 1997; Rana,
1997). In addition to hill climbing and bit climb-
ing, these techniques are also referred to as "local
search" (Yannakakis, 1990), "iterative improvement"
(Vaessens, 1992) and "hybrid methods" (when used
together with a genetic algorithm (Goldberg, 1989).
Many variants exist such as steepest ascent and near-
est ascent (M�uhlenbein, 1991; M�uhlenbein 1992) and
random (Davis, 1991a; Forrest, 1993).

In the next sections we will describe our modi�ed gra-
dient techniques for both bit and 
oating point repre-
sentations.

3.1 BIT CLIMBER

We began by using a very simple, very standard bit
climbing technique shown in Algorithm 1. This tech-
nique was successful, suggesting our problem may not
be overly multimodal. Not necessarily unimodal, but
perhaps having only a small number of peaks.
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Figure 3: Bit Flip Probabilities

Generate and evaluate a random bit string
Do until stopping criteria satis�ed:

Randomly select a position on the string
Flip the bit at that position
Evaluate the new string
If the �tness is worse, un
ip the bit
Rerandomize the string if no changes
have occurred lately

Algorithm 1: Standard Bit Climber

3.2 MODIFIED BIT CLIMBER

When considering the fact that we normalized our so-
lution vector before evaluating, it made sense to force
the bit climber to only make small changes to the
string at any one time. This would minimize disrup-
tion in the normalization step.

To accomplish this, we assigned a probability, p̂i to
each bit in the string. In an attempt to avoid some
notational confusion, we will refer to an individual bit's
probability as p̂i, and the array of probabilities for the
entire k'th group as p̂gk .

We used 10 bits to represent each 
oating-point value
(giving us a resolution of approximately :001, which is
more than enough accuracy for the material balance
problem). For each set of 10 bits, we assigned a group
of 10 probabilities that determine how likely we are to

ip a particular bit. Low order bits receive a probabil-
ity of 1:0, while higher order bits receive an exponen-
tially decreasing amount, based on a constant in the
range [0:::1] supplied by the user to the program (we
used 0:25 for most tests). In other words, the second
low order bit had probability of 0:25, the third 0:125,
and so on. Figure 3 illustrates.

Our modi�ed bit climber is shown in Algorithm 2.
This technique forced smaller changes to the normal-
ized vector. While the smaller changes made it climb
more slowly, it resulted in a higher number of success-
ful bit 
ips (i.e., where the �tness improved), and ran

faster than the unmodi�ed version.

Generate and evaluate a random bit string
Do until stopping criteria satis�ed:

Randomly select a position on the string
Randomly generate a number from 0..1
If number < probability for this bit:
Flip the bit at that position
Evaluate the new string
If the �tness is worse, un
ip the bit.

Rerandomize the string if no changes
have occurred lately

Algorithm 2: Modi�ed Bit Climber

3.3 A BIT OF MEMORY?

Our �nal modi�cation to the bit climber involves keep-
ing track of which bits have been 
ipped, and lessening
the likelihood of 
ipping them again (Jones, 1995).
After successfully 
ipping a bit (resulting in an im-
proved �tness), we multiply the probability of 
ipping
that bit by some user-supplied constant (say, 0:5). So
if we successfully 
ip the lowest order bit, which has
a probability of 1:0, we would change its probability
to 0:5, giving us less chance to 
ip the bit again. If
we 
ip it again, we will change it to 0:25, and so on.
As a result, we decrease the mutation amount at each
step (Mahfoud, 1995). The new algorithm is shown in
Algorithm 3.

Generate and evaluate a random bit string
Do until stopping criteria satis�ed:

Randomly select a position on the string
Randomly generate a number from 0..1
If number < probability for this bit:
Flip the bit at that position
Evaluate the new string
If �tness is worse, un
ip the bit
Decrease probability for this bit

If no recent improvements, rerandomize,
reset probabilities and start over

Algorithm 3: Adding Memory

As stated a number of times, these techniques worked
well, but they are not without problems. The worst
problem is that they tend to get stuck searching for
a better solution after a while, because all of the low
order bits have been 
ipped, but the probabilities are
too low to be able to 
ip any of the high order ones very
often. With the addition of memory, the problem is
compounded. As the probabilities decrease, it becomes
more di�cult to �nd a bit that will allow itself to be

ipped.



Decimal Binary Gray Code
0 000 000
1 001 001
2 010 011
3 011 010
4 100 110
5 101 111
6 110 101
7 111 100

Table 1: Table 1: Decimal and Binary codes

Numerous heuristics have been applied to alleviate
this problem. For example, we keep a count of how
many times you have been disallowed from 
ipping
bits, together with an occasional resetting of the prob-
abilities when you reach a preset threshold (losing
one's memory, so to speak). After doing this sev-
eral times, we eventually set all probabilities to 1:0
and continue without memory (losing one's memory
and preferences). After some time, we simply give up,
rescramble the bits, reset the probabilities and start
anew.

However, a detailed analysis of these bit climbers leads
us to other, more attractive alternatives, as shown in
the next section.

4 MODIFIED BIT CLIMBER

ANALYSIS

A mathematical analysis of the modi�ed bit climber
allows us to de�ne a 
oating-point version of the al-
gorithm that runs much faster. For reference, Table 1
shows decimal and binary values with corresponding
gray codes.

Consider what happens to the decimal value when you

ip a binary bit using the standard binary to decimal
encoding. We de�ne a function, �(i), which gives us
the decimal change when bit i is 
ipped. Table 2 shows
what happens. Likewise, Table 3 shows what happens
to the decimal values when you 
ip a gray coded bit.

Note that on average, for the binary encoding, 
ipping
bit 0 results in an average absolute change of 4. Bit 1
averages 2, and bit 2 averages 1. These correspond di-
rectly with powers of 2 as shown in Equation 1. Since
we are dealing with groups, we can more generally de-
�ne the function as shown in Equation 2. Note that the
same function also applies for Gray coded bits, when
considering an absolute average (the average of the ab-
solute values, which tells us the average net change in
the decimal value).

Binary �(2) �(1) �(0)
000 +4 +2 +1
001 +4 +2 -1
010 +4 -2 +1
011 +4 -2 -1
100 -4 +2 +1
101 -4 +2 -1
110 -4 -2 +1
111 -4 -2 -1

Avg Chg 22 = 4 21 = 2 20 = 1

Table 2: Table 2: Binary Bit Flip E�ects

Gray �(2) �(1) �(0)
000 +7 +3 +1
001 +5 +1 -1
010 +3 -1 +1
011 +1 -3 -1
100 -1 +3 +1
101 -3 +1 -1
110 -5 -1 +1
111 -7 -3 -1

Avg Chg 22 = 4 21 = 2 20 = 1

Table 3: Table 3: Gray Code Bit Flip E�ects

�(i) = 2l�1�i (1)

�k(i) = 2gk+1�1�i (2)

What we see from this analysis is that the absolute av-
erage decimal change for a particular bit position is the
same for binary and gray coded bits. This means that

ipping the lower order gray coded bits will, on aver-
age, still produce relatively smaller decimal changes,
and thus smaller 
oating point changes in our normal-
ized solution vector the same as with regular binary
encoding.

Consider the probabilities in the modi�ed bit climber.
We generate higher probabilities for the lower order
bits, and lower probabilities for the higher order bits.
Recall that we represent the array of probabilities for
each group gk as p̂gk . In order to compute the statistics
of the actual e�ect of a bit 
ip (i.e., the mean and
standard deviation of the absolute change), we must
normalize these values for each individual group, which
will give us an actual probability distribution.

Note that the original bit climber is equivalent to the
modi�ed bit climber with all p̂i = 1:0. The probability
distribution for the group is the normalization of each
group's probabilities, as shown in Equation 3.



pgk = normalize(p̂gk) (3)

For our 4-bit case with the original bit climber, we have
(0:25; 0:25; 0:25; 0:25). In general, given any pgk for a
single group, the average decimal change is described
in Equation 4.

gk+1�1X
i=gk

pi�k(i) =Mgk (4)

We can now compute the average integer change for a
bit 
ip on any group. But since we are converting these
into 
oating-point values, we need to �nd out what
our 
oating-point resolution is. In other words, �nd
the smallest 
oating-point number we can represent
with our bit string. In a 4-bit example, it is simply
1

24
= 1

16
. In general, Equation 5 de�nes our epsilon


oating point resolution for using subgroups consisting
of l bits.

� = 1

2l
(5)

While this assumes we are storing values in the range
[0:::1] with identical precision for each 
oating-point
value, it can trivially be adapted to stings of varied
range and precision. Now we only need to multiply
this epsilon to our integer mean to get a 
oating point
mean as shown in Equation 6.

�Mgk = �gk (6)

Lastly, we can compute a standard deviation as shown
in Equation 7.

Sgk =

vuut
gk+1�1X
i=gk

[pi(�k(i)�Mgk)
2] (7)

And Equation 8 completes the analysis by converting
our standard deviation to its 
oating-point counter-
part.

�Sgk = �gk (8)

5 FLOATING POINT GRADIENT

TECHNIQUE

Now that we can easily calculate, from the provided
probabilities, a 
oating-point mean and standard de-
viation for each subgroup, we can construct a 
oating-
point version of the modi�ed bit climber. Unlike the
bit climbers, the 
oating point version never gets stuck

not being able to make a change to the string, as it only
has to select a position on the string, and then gen-
erate a mutation value normally distributed around
the mean and standard deviation (� = N(�; �)). As
a result, it runs around 10 times faster than the bit
version. Algorithm 4 outlines the process.

Randomly generate a 
oating point string
Evaluate the string
Untilstopping criteria satis�ed:

Select a single string position, i
Generate a mutation value N(�; �)
Add mutation to the value at position i

Evaluate the new string
If �tness is worse, undo the mutation

Algorithm 4: Floating Point Technique

Adding memory to this technique is a bit more cum-
bersome, but worth the e�ort. You must convert the
mutation value into its integer counterpart (as if you
were using encoded bit strings) and locate the near-
est power of two. The base 2 log of this value is the
probability that needs to be reduced. Once it has been
reduced, then the mean and standard deviation must
then be recalculated. The overall e�ect is that the
means and standard deviations continue to get smaller
and smaller. This has the nice e�ect of larger muta-
tions at the beginning, and smaller ones at the end.
The result is a self-tuning system. The technique is
the same as in Algorithm 4, except that you update
the mean and standard deviation after a successful mu-
tation.

6 CONCLUSIONS

It is di�cult to make honest claims about one tech-
nique being superior to another. The fact that the
original gray-coded bit version of the genetic algo-
rithm outperformed the 
oating-point version is a sim-
ple matter of di�erences of implementation techniques
(e.g., crossover and mutation operators, generational
vs. steady state model, bit vs. 
oating point). There
were far too many variables to make such a call.

Tests on numerous optimization problems at ARCO
have shown that these modi�ed gradient techniques
often outperform both the genetic algorithm and evo-
lutionary programming. This suggests that either the
technique is robust, or that our problems are not as
complicated as we once thought, or perhaps both. We
have also encountered situations where the bit climber
does not perform well, and then the genetic algorithm
and evolutionary programming techniques are neces-
sary (e.g., Stoisits, 1999).



The optimization tests performed at ARCO strongly
suggest that minimizing changes during recombina-
tion, together with avoiding undoing recent changes,
have signi�cant advantages when dealing with nor-
malized solution spaces. The gradient techniques de-
scribed above are the fastest and most reliable meth-
ods we have found to date for solving such problems.

Additional research is required to explore the dynam-
ics of these normalized search spaces. Further planned
ARCO research includes a test function generator and
additional enhancements to the 
oating-point gradient
technique with memory. Of particular interest is the
self-tuning nature of the algorithm, and how well it
performs on future ARCO optimization problems.
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