
Automatic Graph Drawing and Stochastic Hill Climbing

Alejandro Rosete-Suárez

CEIS, ISPJAE, Marianao 19390
C. Habana, CUBA

rosete@ceis.ispjae.edu.cu
Tel/Fax: (537) 27.15.75

Alberto Ochoa-Rodríguez

Center of Artificial Intelligence.
La Habana, 10400, CUBA
ochoa@cidet.icmf.inf.cu
Tel/Fax: (537) 33.33.73

Michele Sebag

LMS, Ecole Polytechnique,
91128 Palaiseau Cedex, FRANCE
sebag@cmapx.polytechnique.fr
Tel/Fax: (33) 01.69.33.30.26

Abstract

In the literature of Evolutionary Computation, it
is very strange to find papers where the results of
Evolutionary Algorithms are compared to other
algorithms. Stochastic Hill Climbing is a simple
optimization algorithm that has shown a
competitive performance with respect to many
powerful algorithms in the solution of different
problems. It has also outperformed some
Evolutionary Algorithms in previous papers.
Here we fairly review some of these papers. We
also compare many Evolutionary Algorithms in
the context of Graph Drawing. Graph Drawing
addresses the problem of finding a representation
of a graph that satisfies a given aesthetic
objective. This problem has many practical
applications in many fields such as Software
Engineering, and VLSI Design. Our results
demonstrate that Stochastic Hill Climbing is also
the best algorithm in this context. We give some
general guidelines in order to explain our results.
Our explanations are based on landscape
characteristics.

1 INTRODUCTION

In the literature of Evolutionary Computation, it is very
strange to find papers where the results of Evolutionary
Algorithms (EA) are compared to other algorithms.
Stochastic Hill Climbing (SHC) is a simple optimization
algorithm that has shown a competitive performance with
respect to many powerful algorithms in the solution of
different problems. It has also outperformed some
Evolutionary Algorithms in previous papers. Here we
fairly review some of them. This review (in Section 2)
shows that the niche of problems where SHC is a good
algorithm seems to be wider than the common belief.

This kind of results is somewhat unexpected because
almost everybody thinks that this simple algorithm is not
very useful. In general, it is hard to identify "a priori"

which algorithm will be the best for a specific task. We
hope that this paper will induce the authors of EA papers
to use SHC as a baseline method in order to show EA
power [Juels and Wattenberg, 1994].

In this paper, we also compare many Evolutionary
Algorithms in the context of Graph Drawing (Section 3).
Graph Drawing addresses the problem of finding a
representation of a graph that satisfies a given aesthetic
objective. The representation of a graph is often given by
an embedding of its nodes in a target grid. This problem
has many practical applications in many fields such as
Software Engineering, and VLSI Design. An extended
survey on this topic is [Battista et al., 1994]. Some papers
have explored the suitability of EA in Graph Drawing
problems. Some good examples can be found in [Kosak et
al. 1991; Branke et al., 1997; Rosete-Suárez and Ochoa-
Rodríguez, 1998, Tettamanzi 1998]. Our results
demonstrate that Stochastic Hill Climbing is also the best
algorithm in this context.

In Section 4, we give some general guidelines in order to
explain our results. Explanations are based on landscape
characteristics. Also, Fitness-Distance Correlation factor
is computed. Section 5 contains our principal conclusions.

2 STOCHASTIC HILL CLIMBING AS A
BASELINE METHOD

Stochastic Hill Climbing (SHC) is one of the simplest
optimization algorithms. SHC keeps a population of only
one individual. The initial individual is often selected in a
random way. The most popular SHC strategy consists of
producing a random variation in the current individual in
a similar way as mutation works. Then, the new
individual is compared to the old one. If the new one is
better (or at least equal) than the old solution, then the
new solution replaces the old one. This process is
repeated until a maximum number of evaluations are
done.

Some versions of this simple algorithm have been
developed. For instance, Multiple SHC is a version of
SHC that restarts the search after a given number of
fitness evaluations are completed. An extended discussion

of versions of SHC is in [Baluja, 1995; Jones, 1995; Juels
and Wattenberg, 1994; Yuret, 1994].

Two basic version of SHC are:

• Next Ascent SHC (NA-SHC): It works as it was
explained in the previous paragraph. NA-SHC
explores the neighborhood until a solution equal or
better than the current one is found. Then, the
algorithm takes this new solution as the current one.

• Best Ascent SHC (BA-SHC): It is very similar to
Artificial Intelligence’s HC. Best ascent SHC
explores all the neighborhood of the current solution,
chooses the best neighbor solution, and takes it as the
current one.

Now, we will review some papers showing how a simple
SHC algorithm outperforms some EA in different
contexts. Our aim is to show that the set of problems
where this phenomenon occurs seems to be wider than the
common belief. We do not claim that this list of papers is
exhaustive. In spite of this fact, we think that our review
is sufficient for supporting our analysis. If there are other
papers that show this phenomenon, they will support our
objective. Here, we will discuss the results of some
important papers that give theoretical and practical
evidence of the power of this simple method.

We are not trying to state that SHC is better than EA.
According to No Free Lunch Theorem for Search
[Wolpert and Macready, 1995], all algorithms perform
exactly equal when they are averaged over all possible
functions. Therefore, it is incorrect to state that one
algorithm is the best (or the worst) one. Consequently,
SHC has also its niche of functions where it behaves
efficiently. In many papers, the authors explain the
selection of an EA to solve a problem by stating that their
problem is very complex. Frequently, the complexity of
the problem is not well explained. Besides, the
comparisons to easy versions of SHC are rather unusual.
This situation may bias new research to use Evolutionary
Algorithms as the only (or at least the best) possibility. In
spite of this extended creed, many papers have shown that
some of the most popular functions optimized by means
of an EA are easily solved by SHC. Without the intention
to be exhaustive, we will mention some cases.

In [Davis, 1991], Davis shows that in De Jong's test
functions and in two of Schaffer’s functions, a simple
SHC method outperforms two versions of Genetic
Algorithms (GA): generational and steady-state. These
functions cover a wide variety of interesting
characteristics that an optimization method must face. The
SHC method used only flips one bit in each step and
accepts the new solution if its evaluation is equal or better
than the previous one. The author also shows that a shift
of the mapping function that translates the binary
chromosome to the real decoded parameter affects the
performance of all the algorithms. This modification
provokes that GA outperforms SHC. The author claims
that such a kind of analysis may conduct to new test
functions. In a recent paper [Rana, 1998], it is shown that

such a kind of shift of the mapping function alters the
number of local optima. Besides, from the expressions
derived in the same paper it is easy to see that if the
number of neighbors increases, then the probability of
being stuck in a local optimum may be reduced.

A relevant paper is [Juels and Wattenberg, 1994]. The
authors compare SHC to GA. It is shown that SHC
outperforms some GA taken from different papers on
problems such as: maximum cut problem, Koza's 11-
multiplexer problem, Multiprocessor Document
Allocation Problem, and the job-shop problem. In the first
problem, a single-bit-flipping SHC is used. In the other
problems, more sophisticated neighborhood operators are
used. The authors indicate that the size of the
neighborhood affects the search. Some evidences are
given for using a multi-restart SHC in order to improve
the results. The main idea introduced in this paper is that
SHC should be used as a baseline method in order to
demonstrate the convenience of GA. Unfortunately, such
a kind of test is not often used.

In [Ishibuchi et al., 1994], the authors show that Multi-
Descent SHC outperforms GA and Taboo Search (TS) in
many instances of fuzzy flow-shop scheduling problems.
In addition, the performance of SHC is very similar to
Simulated Annealing (SA) which is the best in many
cases. The paper also claims for the convenience of
hybridizing GA by using some local search technique.
Similar observations are expressed in many other papers
in order to obtain a better GA performance [Michalewicz
et al., 1997].

In [Yuret, 1994], the performance of SHC is analyzed. In
this thesis, three heuristics extend SHC algorithm.

1. The search is restarted (when a local optimum is
reached) at a point very distant from the local optima
that have been discovered before.

2. The size of the step of neighborhood operator is
adjusted according to the recent progress of the
search.

3. The directions of the recent success are probed with
preference.

This algorithm is specially designed for exploring
continuous spaces. The resulting SHC is compared to GA
and Simulated Annealing (SA). It outperforms GA in five
De Jong's functions and SA in four of them. In Traveling
Salesman Problem, the performance of SHC is similar to
SA (GA is not considered in this case). In a Refraction
Tomography problem, GA outperforms SHC, but the
hybrid method (combining GA and SHC) outperforms
both. In other problems, SHC is more efficient than some
specialized algorithms.

In [Baluja, 1995], seven algorithms are compared in
different instances of some popular problems: job-shop
scheduling, traveling salesman, knapsack, bin-packing,
neural network weight optimization, and standard
numerical optimization. In all cases, the algorithms do not
incorporate any problem specific knowledge in order to

improve the results. Three versions of SHC are used.
They differ in two aspects. The first aspect is whether to
accept or to reject the moves to the regions with the same
evaluations. The second aspect is the number of
evaluations that each algorithm made before the search is
restarted. The performance of SHC versions is similar. In
16 of 27 cases, it is found beneficial to accept moves to
regions with equal values. In all function, Gray codes
improved the results. A theoretical explanation of this
result is in [Rana, 1998]. Two versions of elitist GA are
compared (the main difference is in term of parameters
and operators used). In seven of 27 functions, one of the
SHC is better than both GA versions. These seven
functions are four instances of Traveling Salesman
Problem (of four), one instance of bin-packing problem
(of four), one instance of Neural Network weight
optimization (of four), and one numerical function
optimization (of six). In 14 of 27 functions, one instance
of SHC is better than one of the instances of GA. In
addition, SHC outperforms PBIL in some cases. PBIL is
the best performing algorithm in general sense. SHC
always uses one-bit flipping as neighborhood operator.

In [Whitley et al., 1995], one-bit flipping SHC is
compared to some versions of GA in some numerical
optimization functions. In this case, SHC is better than
both an Elitist GA and Genitor GA when no interaction
exists between the variables. This interaction depreciates
the performance of SHC. This result is to be expected
because only one bit is changed for exploring the
neighborhood of the current solution and the variables are
coded in many bits. It is also reported that a SHC that
changes on average 2 bits does not perform better than the
simple SHC. Because of the difficulty created by the
codification and the interaction, this result is not very
rare. The best algorithm is CHC; a GA that uses a very
disruptive crossover that tries to recombine a selected
individual with a very different one. Following the
discussion in [Jones, 1995], this recombination operator
may be acting as a form of macro-mutation. That seems to
be convenient for problems where many interactions exist
between the variables. In the paper [Whitley et al., 1995],
the authors state that more complex local-search methods
would perform better. In addition, the convenience of
some hybrid methods is discussed.

In a recent paper [Sebag and Schoenauer, 1997], a study
on socializing the action of many HC is conducted. In this
paper the similarities between using many HC and using
Evolution Strategies (ES) are discussed (despite the main
interest in ES is devoted to continuous spaces and its
performance in integer spaces is not very well
guaranteed). In this paper, two types of SHC are
developed: Natural Societies and Historical Societies.
Both work as ES when many individuals performing SHC
compete to become a member of the next generation. In
addition, Historical Society uses a binary vector to guide
the search. This is very similar to Baluja's PBIL [Baluja,
1995]. In the paper, the experiments conducted in [Baluja,
1995] are extended by introducing these new algorithms
in the comparison. The new algorithms outperform (or at

least are equal) in five of six 900-bits functions. The
authors stated that these methods were run with different
number of bits allowed to flip. In many cases, they
outperform ES. However, they cleverly say that a great
perturbation may distort the search.

As can be seen, SHC and other more complex algorithm
based on local search have outperformed other
Evolutionary Algorithms in many problems. In many
cases, the SHC used is a very trivial algorithm where no
attempt is done in order to improve it. According to these
results, it is to be expected that the parameters that control
the type of neighborhood used may affect drastically SHC
performance. For instance, [Kingdom and Dekker, 1996]
present a SHC algorithm that varies the codification used
during the search process. The resulting algorithm is
tested with very good results.

3 STOCHASTIC HILL CLIMBING IN
GRAPH DRAWING

Graph Drawing is a very important task in many fields of
research and development. Graph Drawing addresses the
problem of finding a representation of a graph that
satisfies a given aesthetic objective. The representation of
a graph is often given by an embedding of its nodes in a
target grid. This problem has many practical applications
in many fields such as Software Engineering, VLSI
Design and plant layout. An extended survey on this topic
appears in [Battista et al., 1994].

Some papers have explored the suitability of EA in Graph
Drawing problems. Some good examples can be found in
[Kosak et al. 1991; Branke et al., 1997; Rosete-Suárez
and Ochoa-Rodríguez, 1998, Tettamanzi 1998]. Examples
of the aesthetic criteria that the objective function takes
into account are minimizing line crossing, minimizing the
global length of the lines representing edges, etc. Many
good heuristic algorithms have been developed, but they
are often specific to a certain kind of graph, a given
aesthetic criteria, etc.

In a previous paper [Rosete-Suárez and Ochoa-Rodríguez,
1998] we show the convenience of using a general-
purpose search method like Genetic Algorithms in order
to solve this problem in a robust and general way. This
robust and general approach it is necessary due to the
growing number of applications that uses diagrams. In our
previous study, GA permits to search for good solutions
of different aesthetic criteria with a similar efficiency. A
survey of theoretical and practical aspects of Graph
Drawing is in [Battista et al., 1994].

Here, we present a comparison of some general-purpose
algorithms. We compared the performance of Evolution
Strategies, Genetic Algorithms [Michalewicz et al., 1997],
Univariate Marginal Distribution Algorithms
[Muhlenbein, 1998], and Stochastic Hill Climbing in the
task of minimizing line crossing. No general algorithm
has been developed for solving this problem [Battista et
al., 1994]. Now, we will explain the experiments.

3.1 CODIFICATION

In our experiments, two codifications were used.

• Conventional Codification (CC): Each coordinate of
the nodes is directly coded in an integer gene.
Therefore, each individual consists of a string of
integers like X1, X2, ... Xi ... Xn, Y1, Y2, ... Yi ... Yn

where each Xi and Yi represents the position of the i-
th node in X and Y-axis. The number of nodes of the
graph is n. For each gene we allow n alleles. Thus,
each n-node graph will be embedded in a n x n grid.

• Order Codification (OC): Each individual represents
two permutations. These permutations establish the
ordering of the nodes in each axis. Both permutations
can be translated to CC by assigning a position to
each node according to its position in the
permutation. This translation is done for each axis. In
this codification, each individual consists of a string
like OX2, ... OXi ...OXn, OY2, ... OYi ...OYn. Here, n
is also the number of nodes. Each gene OXi

represents the relative position in X-axis of the i-th
node amongst the first i nodes. Therefore, OXi has i
possible values. That is the reason why the first node
is not coded (i.e., values for OX1 and OY1 are not
given). If i=1, only one value is possible for this
node. The translation process is done node-by-node
from the second node to the n-th. Each step of the
algorithm consists of the insertion of one node in the
partial ordering of its previous nodes. This process
will systematically produce partial orderings in each
axis. This process is done for each coordinate
independently.

Now, we give an example in order to illustrate OC. See
Figure 1. If n=3, the individual "1321" (that is, OX2=1,
OX3=3, OY2=2, OY3=1) can be translated into the
individual "213231" using CC (that is, X1=2, X2=1, X3=3,
Y1=2, Y2=3, Y3=1). The partial orderings are represented
in Figure 1 in gray boxes. In X-axis, the first ordering is
"21" because OX2=1 (i.e. node 2 will be placed in the first
position between the first two (i=2) nodes). After, the
third node is inserted in the third position (as OX3=3).
This produces the final ordering in X-axis "213". This
ordering is then translated to the absolute positions X1=2
(the second in the ordering), X2=1 (first) and X3=3 (third).
The same process is done in Y-axis obtaining the final
ordering "312". This algorithm is taken from [Ordoñez-
Reinoso and Valenzuela-Rendón, 1992].

We use this code in order to alleviate the "competing
conventions" problem. This problem was observed in
[Branke et al., 1997]. It consists of the many ways where
it is possible to code similar drawing. For instance, if the
positions of all nodes of a graph are shifted the same
amount in any direction, then the resulting drawing will
have the same quality (in aesthetic criteria evaluation)
despite the difference in the coordinates values.

The "competing conventions" problem in CC arrives
when a recombination operator is used. For instances, two
identical solutions, only differing in shifts or rotations, are

very different in terms of chromosomes. Figure 2 show
how a shift and reflection of a drawing provoke a very
different chromosome. Consequently, it may cause an
overlapped diagram in the offspring after crossover. This
overlapped diagram is often worse than its parents are.

We hope that OC alleviates this problem because the
drawings that only differ due to shifting will be
represented in the same way. This is caused by the fact
that all these cases are represented by the same
permutation.

In [Branke et al., 1997], this problem is partially solved
by using a modified crossover operator that aligns two
drawings before recombining them. As we will use a
recombinative algorithm as UMDA where many parent
are used for producing new children, it is difficult to use
such a kind of modified recombination operator. That is
the reason why we use OC.

Figure 1: An example of a translation from OC to CC

OC: Order Codification = 1 3 2 1

OX2=1 OX3= 3 OY2=2 OY3= 1

1

OX2=1

_2_1_
OX2=2

12

OX3=1

321
OX3=2

231
OX3=3

213

1

Permutation in

X-axis = 2 1 3
X2=1
X1=2
X3=3
Positions in X-axis
X1=2 X2 =1 X3=3

Permutation in

Y-axis = 3 1 2
Y3=1
Y1=2
Y2=3
Positions in Y-axis
Y1=2 Y2=3 Y3=1

CC: Conventional Codification= 2 1 3 2 3 1

OY2=1

21

OY2=2

_1_2_

OY3=3

123

OY3=2

132

OY3=1

312

Figure 2: An example of competing conventions problem.

Despite its advantages, OC does not solve the "competing
conventions" problems produced by reflection and
rotation.

3.2 ALGORITHMS

In the experiments, we compared the following
Evolutionary Algorithms:

• Evolution Strategies (ES) [Michalewicz et al., 1997].
Here, we used ES without recombination, as is the
common practice in ES community. As we use
integer genes, we can not use Gaussian real-value
mutation. Mutation is performed by randomly
selecting one of the possible allele values. In each
mutation, only one gene is changed. Preliminary
experiments augmenting the number of genes
allowed to be mutated provoke worse results. We use
(µ+λ)-ES, with four different parameter settings:

• µ=1, λ=1 what it is exactly equal to SHC with
next ascent strategy (NA-SHC)

• µ=1, λ=5 what it is very similar to SHC with
best ascent strategy (BA-SHC)

• µ=7, λ=50

• µ=10, λ=100

• Univariate Marginal Distribution Algorithms
(UMDA) [Muhlenbein, 1998]. This algorithm is one
of the first members of the Marginal Distribution
Algorithms. UMDA generates the next population by
setting each allele in a probabilistic way. Each allele
will be selected according to its frequency in the pool
of individuals obtained in the selection process from
the N individuals in the population. Selection is
performed by Truncation Selection (only the T best
individuals will be deterministically chosen).

Advantages of UMDA over GA are discussed in
[Muhlenbein, 1998]. Two types of UMDA were
compared:

• UMDA as was previously described, with T
parameter equal to 20 and N equal to 100.

• UMDA modified in such a way that the selected
individuals are picked from the current
generation and the parent pool. This modification
is very similar to (µ+λ)-ES compared to
(µ,λ)-ES [Michalewicz et al., 1997]. T parameter
is 100, and N is 100. This setting selects all the
individuals in the first generation, but after the
selection pressures becomes effective.

The third and fourth parameter settings in (µ+λ)-ES are
very commonly used. For UMDA, the settings used were
obtained through a comparison of the results with the
combination of N=50, 100, 200 and 400; and T= 10, 20,
50 and 100 for both versions.

We also conducted experiments with a simple GA with
elitism and many parameter settings, but in all cases it
performs worse than UMDA. We do not show these
results here.

The Evolutionary Algorithms described represent an
acceptable range of the Evolutionary paradigm, including
recombinative algorithms (UMDA and GA) and
mutation-based algorithms. Two population-free
algorithms are included (1,1)-ES and (1,5)-ES. The
second perform a greater exploration of the neighborhood
of the current solution before changing it. As (1+1)-ES is
equal to NA-SHC, and (1+5)-ES is similar to BA-SHC,
we are using ES as a framework for evaluating SHC
performance.

3.3 BENCHMARK

The size of the possible instances of the problem is
infinite due to the infinite number of aesthetic criteria that
can be defined [Battista et al., 1994,Rosete-Suárez and
Ochoa-Rodríguez, 1998], and the infinite number of
graphs

Therefore, we must restrict our comparison. As our main
goal is to develop a graphical tool for solving graph
drawing tasks, we compared the algorithms in the context
of the most widely used aesthetic criterion: minimizing
line-crossing. In spite of only using this aesthetic criterion
(minimization of line-crossings), the problem remains
hard (NP-Hard [Battista et al., 1994]).

We define three sets of graphs: graphs with 10 nodes,
graphs with 20 nodes, and graphs with 30 nodes. These
numbers of nodes are very common in graphical
interfaces context. We generate 20 random graphs in each
set.

In Graph Drawing problem for interactive applications, it
is very important to achieve results in very short time
intervals, then we stop each algorithm after a few number
of fitness evaluations. We compared the performance of

0 1 2 3 4 0 1 2 3 4

0

1

2

3

4

2

3 1

3

2

X1=4 X2=1 X3=2

Y1=0 Y2=2 Y3=4

1

X1=3 X2=0 X3=1

Y1=4 Y2=2 Y3=0

4 1 2 0 2 4 3 0 1 4 2 0≠

each one of these algorithms after 1000, 2000, and 3000
evaluations.

3.4 RESULTS

In Table 1, 2 and 3 we show the result of the comparison
of the six algorithms (with CC and OC) in terms of their
results after 1000, 2000 and 3000 fitness evaluation. We
did 20 independent runs for each algorithm trying to solve
each graph.

Table 1: Ranking of the algorithms after 1000 evaluations

ALGORITHMS CC OC

(1+1) - ES (SHC) 1 3

(1+5) – ES 2 4

(7+50) – ES 5 6

(10+100) – ES 7 8

UMDA (100, 20) 12 11

UMDA (100, 100) 10 9

Table 2: Ranking of the algorithms after 2000 evaluations

ALGORITHMS CC OC

(1+1) - ES (SHC) 1 5

(1+5) – ES 2 6

(7+50) – ES 3 4

(10+100) – ES 7 8

UMDA (100, 20) 12 11

UMDA (100, 100) 10 9

Table 3: Ranking of the algorithms after 3000 evaluations

ALGORITHMS CC OC

(1+1) - ES (SHC) 1 6

(1+5) – ES 2 7

(7+50) – ES 3 5

(10+100) – ES 4 9

UMDA (100, 20) 12 11

UMDA (100, 100) 10 8

We compare the algorithms in terms of the average of the
numbers of line-crossings in the best drawing obtained (in
each run). The ranking of each algorithm is computed in
each graph. Then, algorithms are ranked according their
rankings in all the set of graphs. The resulting ranking in
the set of 20-node graphs is shown in Table 1, 2 and 3.

Similar results were obtained for the set of 10-node and
30-node graphs. In the set of 10-node graphs all
algorithms perform very well. Besides, these rankings are
almost regularly obtained in each specific graph.

According to the results obtained, we can draw some
conclusions:

• The algorithms compared herein may be grouped
according to their performance in three sets:

• Winner set: (1+1)-ES, (1+5)-ES, both with CC
are remarkably the winners.

• Intermediate set: (7,50)-ES (both codes); (1+1)-
ES and (1+5)-ES, both with OC; and (10+100)-
ES with CC.

• Loser set: (10+100)-ES with OC, UMDA and
GA (with both codes)

• A fair glance at the rate of line-crossing reduction
achieved by the "winners" and "losers" with respect
to the maximum possible value is shown in Table 4.
It shows the average of this rate. For the
"intermediate" set of algorithms, the values are in the
range between the "winners" and "losers". As graphs
were generated at random, we do not know which is
the optimum in each case. For example, non-planar
graphs can not be drawn without crossing. Then,
rates of 0% are often impossible.

Table 4: Reduction of the number of line-crossings by the
winners and the losers.

20-nodes
graphs

30-nodes
graphs

Thousands
of
evaluations

1 2 3 1 2 3

Winners 5 4 4 8 7 7

Losers 13 10 10 16 13 10

• SHC permits to obtain the better results using CC. As
OC is principally developed for overcoming a
problem of crossover, it is expected that OC does not
improve the results of SHC. The same conclusion is
valid for the other ES variants. Results validate this
statement.

• OC improves the results obtained by using
recombinative algorithms (the two UMDA versions).

• In this problem, ES does not improve its results by
augmenting the size of µ and λ. On the contrary,
results become worse when µ and λ increase.

• Other remarkable result (partially shown in Table 4)
is the comparative performance of SHC with respect
to other algorithms with more evaluations. Results
obtained by SHC with 1000 evaluations and using
CC are better than all other algorithms and codes
with 2000 evaluations. In addition, results of SHC
with 1000 evaluations are better than many of the
other algorithms with 3000 evaluations. ES with CC
is the only exception.

4 DISCUSSION

As it is correctly stated in [Wolpert and Macready, 1995],
there is no best algorithm for solving all types of
problems. Furthermore, if one algorithm outperforms
other algorithms in a given problem, it may be expected
the opposite results in other problems.

In spite of the reasons given in [Juels and Wattenberg,
1994], and of the practical results described in Section 2,
many authors make no effort in order to know whether
their problems may be solved using a simple method like
SHC. As it was explained in Section 3, in our experiments
we obtain these unexpected results. Therefore, here we
will outline some reasons in order to explain them.

As it is explained in [Jones, 1995], the concept of
landscape depends on the fitness function and the
operators (or codification) used. Line-crossing landscape
seems to be highly multimodal. Despite the fact that a
more theoretical study must be done for accepting or
rejecting this statement, we believe that this expected
difficulty is alleviated in this case (SHC, with CC in line-
crossing minimization) due to two reasons.

First, in the space there are many points with equal
evaluations that are neighbors, because not all the changes
in the coordinate produce a new crossing or eliminate it.
This kind of region is usually called a "plateau" [Jones,
1995]. Such regions allow SHC to have access to better
points to continue its improvements. Such regions are
caused by the redundancy introduced by CC for this
problem. Examples of these regions are those of the
drawings only differing in one coordinate if the difference
in the node positions does not alter the evaluation. We
think that it may be the cause of the poor performance
introduced by OC in SHC. OC reduces such a kind of
region because many redundancies of CC are eliminated.

The second reason is the existence of many local optima
that are equally good. The principal problem of
multimodality is that of trapping SHC in local optima. We
think that many global optima exist in line-crossing
landscape. For example, whether an optimal drawing is
shifted, rotated or reflected it will be optimal. Besides, it
is expected that the same kind of "plateau" as explained
before must exist in the neighborhood of each optimum.
In addition, because of the great size of the neighborhood

defined by the mutation operator in this context, it will be
expected that the number of local optima be drastically
reduced. This relationship is theoretically studied in
[Rana, 1998]. In this case, mutation landscape in CC is
defined by n*(n-1) points, because we can mutate one of
the n genes to one of the remaining n-1 alleles.

In addition, it would be expected that the remaining local
optima would have very good values. Thus, these local
optima will serve also for our purposes. In real-world
graph-drawing applications, a good (not optimal) solution
is also useful if it is obtained in a short time.

In order to give a further evidence of the characteristics of
the fitness landscape we calculated the Fitness Distance
Correlation (FDC). FDC was originally developed to
serve as a predictive measure of GA performance.
However, it must be better for mutation-based algorithms
because FDC considers the distance in mutation
landscape. FDC consists of the correlation factor between
the distance from a solution to the next optimum and its
fitness value. If both are very correlated then the search
will be easy. See [Jones, 1995] for a further discussion on
this subject.

Here, in order to compute FDC we performed a random
sampling in the search space defined by CC. Then, for
each solution we computed the number of different genes
between this solution and the best of the solutions
obtained in the sampling. This value is used as a distance
measure. We performed many random independent
random sampling and we averaged these results of FDC.
The average value of this FDC is -0.34 what says that the
landscape is easy for the mutation operator used.

In addition, this result may be still better. In this case, the
existence of reflections, shifts, and rotations of the best
solution may produce some equally good solution with
different chromosomes. It must be expected that one of
these chromosomes be closer to the other solutions than
the best solution considered. As we did not consider this
possibility, the value of FDC is affected. Also, "plateau"
regions affect the correlation factor as they represent
regions where distance varies but fitness remains
constant. However, they do not affect the search because
of the reasons previously explained. We believe that FDC
confirms the suitable characteristics of this fitness-
operator landscape for SHC.

Here, we are not claiming for using SHC for obtaining the
global optimum for this kind of problem. The small
number of fitness evaluations may be a further cause of
why SHC outperforms other algorithms in this problem.
SHC exploits its current state sacrificing a wider search.
Here, our experiments sustain the convenience of such a
local search for obtaining good solutions very quickly. As
this is our benchmark, we try neither to extend nor to
reject the convenience of SHC for different objectives.

In future works, we will study the convenience of using
non-random initialization methods. In addition, we think
that it must be necessary to make experiments with other
kinds of mutation operators. Besides, it must be studied

whether it is convenient to restart the search from
different initial positions.

5 CONCLUSIONS

In this paper, we compared many evolutionary algorithms
in a very popular graph drawing problem: line-crossing
minimization. Experiments conducted with random
graphs of different size show that a simple Stochastic Hill
Climbing algorithm outperforms very efficient and
popular population-based optimization algorithms such as
Evolution Strategies and Genetic Algorithms. We
discussed our results based on the characteristics of the
landscape defined by the combination of codification,
operator, and fitness function. We also outline some
directions for future research. In addition, an introductory
section describes early works where Stochastic Hill
Climbing has outperformed some Evolutionary
Algorithms. We hope that our experience will serve to
understand the necessity of comparing Evolutionary
Algorithms to simple algorithms in order to demonstrate
the convenience of a method in a specific problem. Such a
comparison is very useful in real world applications.

Acknowledgements

This research was partially developed when the first
author was at LRI, University of Paris-Sud (XI), France.
The authors would like to thank the suggestions and
comments of the anonymous reviewers.

References

Baluja, S.: An Empirical Comparison of Seven Iterative
and Evolutionary Function Optimization Heuristics,
Technical Report CMU-CS-95-193, Carnegie-Mellon
University, 1995.

Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.:
Algorithms for drawing graphs: an annotated
bibliography, Discrete Geometry: Theory and
Applications, 4:235-282,1994.

Branke, J., Bucher, F., Schmeck, H.: A genetic Algorithm
for drawing undirected graphs, Proceedings of Third
Nordic Workshop on Genetic Algorithms and their
Applications, Alander, J.T. (editor), pp.193-206, Vaasa,
1997 (available at ftp://ftp.aifb.uni-
karlsruhe.de/pub/br/gagd.ps.gz)

Davis, L.: Bit-Climbing, Representational Bias, and Test
Suite Design, Proceedings of the 4th International
Conference on Genetic Algorithms, pp.18-23, Morgan
Kaufmann, San Mateo, 1991.

Ishibuchi, H., Yamamoto, N., Murata, T., Tanaka, H.:
Genetic Algorithms and neighborhood search algorithms
for fuzzy flowshop scheduling problems, Fuzzy Set and
Systems, 67, pp.81-100, 1994.

Jones, T.C.: Evolutionary Algorithms, Fitness Landscapes
and Search, Ph. D. Thesis, University of New Mexico,
Alburquerque, 1995.

Juels, A., Wattenberg, M.: Stochastic Hill-climbing as a
Baseline Method for Evaluating Genetic Algorithms,
Technical Report, University of California at Berkeley,
1994.

Kingdom, J., Dekker, L.: Morphic Search Strategies,
Proceedings of First IEEE International Conference on
Evolutionary Computation, ICEC'96, Nagoya, 1996.

Kosak, C., Marks, J., Shieber, S.: A Parallel Genetic
Algorithm for Network-Diagram Layout, Proceeding of
the 4th International Conference on Genetic Algorithms,
pp.458-465, 1991.

Michalewicz, Z., Hinterding, R., Michalewicz, M.:
Evolutionary Algorithms, Fuzzy Evolutionary
Computation (Chapter 2), Pedryczs, W. (ed.), Kluwer
Academic, 1997.

Muhlenbein, H.: The equation for Response to Selection
and its Use for Prediction, Evolutionary Computation, 5,
pp. 303-346, 1998.

Ordoñez-Reinoso, Y., Valenzuela-Rendón, M.:
Optimización de Permutaciones con Algoritmos
Genéticos - El Problema del Vendedor Viajero,
Proceedings of 3rd Congreso Iberoamericano de
Inteligencia Artificial, Habana, pp. 271-282, Noriega
Editores, 1992.

Rana, S., Whitley, L.D.: Search, Binary Representation
and Counting Optima, Proceedings of Workshop on
Evolutionary Algorithms, Sponsored by the Institute for
Mathematics and its Application, (in press), GENITOR
Group, Colorado State University, 1998.

Rosete-Suárez,A., Ochoa-Rodríguez,A.: Genetic Graph
Drawing, Proceeding of the 13th International Conference
of Applications of Artificial Intelligence in Engineering,
Galway, pp.37-41, 1998.

Sebag, M., Schoenauer, M.: A Society of Hill Climbers,
Procedings of the 4th IEEE International Conference on
Evolutionary Computation, ICEC'97, Indiana, 1997.

Tettamanzi, A.G.B.: Drawing graphs with Evolutionary
Algorithms, Proceedings of 1998 Conference on Adaptive
Computing in Design and Manufacture, ACDM'98,
Plymouth, April 1998 (to appear).

Whitley, D., Beveridge, R., Graves, C., Mathias, K.: Test
Driving Three 1995 Genetic Algorithms: New Test
Functions and Geometric Matching, Journal of Heuristics,
1: 77-104, 1995.

Wolpert, D.H., Macready, W.G.: No Free Lunch Theorem
for Search, Technical Report SFI-TR-95-02-010, Santa Fe
Institute, 1995.

Yuret, D.: From Genetic Algorithms To Efficient
Optimization, M. Sc. Thesis, Department Electrical
Engineering and Computer Science, MIT, 1994.

