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ABSTRACT
Infrastructure management offices plan and complete several thousand small construction projects

annually. Effective planning is vital if the public and private sectors are to maintain valuable infrastructure
investments at the least cost to the taxpayer or shareholder. This paper presents the results an application of
Genetic Algorithms (GA) in multi-project resource allocation to minimize the total cost of work order
execution on realistically sized infrastructure management problems. In addition to direct crew costs
indirect costs for set-up, idle time, and travel are included in this model. Results of test cases demonstrate
the effectiveness of the approach when compared to several standard heuristics.

1. Introduction
The typical infrastructure management process begins with

the submission of work orders from customers scattered
across the facility. Work orders may also be created
periodically for equipment and system maintenance. The set
of projects to be accomplished is then distributed to shop
foremen. The number, type, and location of these work
orders are unknown, however, several thousand projects will
be completed at a large facility each year.

Shop foremen are usually responsible for the
specific allocation of crews and equipment to each project.
Crews are composed of groups of workers with similar
skills such as carpenters, electricians, and plumbers. There
may be more than one crew assigned to important activities,
while some other work may be accomplished by outside
contract work crews. As a crew is assigned to complete a
project, that crew must identify the scope of the work and
obtain the materials and equipment necessary to complete
the job.

Several times during the course of a typical
business day, an infrastructure manager may need to re-
prioritize projects based on the nature of incoming projects.
Projects that threaten life-safety have first priority and
require the immediate reallocation of crews, interrupting
ongoing projects and delaying regularly scheduled jobs.
Next highest priorities are those projects that return facilities
to a normal operational state. These projects also require
the ad-hoc reallocation of resources. Meeting scheduled
project milestone dates is the next highest priority, followed
by projects that allow coordination with other crews. If
resources remain available, then additional jobs are assigned
based on crew foreman’s preference.

In most infrastructure management offices resource
allocation decisions are made by individual shop foremen,
without complete knowledge of the actions of other
foremen. Anecdotal evidence, obtained by interviews,
suggests that at least ten percent of the resources available
to the infrastructure manager are wasted due to workers
arriving to the job site when needed prior work has not been

completed. The most common reason for this out-of-
sequence work appears to be miscommunication among
people responsible to allocate crews. Additional
efficiencies could also be gained from sequencing multiple
projects in the same, or related, physical locations to
eliminate duplicated work or re-work required in a
proportion of jobs.

The purpose of this paper is to document the results
of an experiment conducted into the use of Genetic
Algorithms (GA) to solve realistically sized, reduced
complexity infrastructure management problems. The paper
begins with a brief description of previous work. Design of
the test program and processing operators are described.
Comparison of theoretical values for GA parameters are
compared to those used for test runs. The performance of
the GA over a set of randomly created test cases is
described. Finally, run results are compared to solutions
developed using appropriate standard heuristics.

2. Previous Methods
Research into problems related to the infrastructure

management domain has been ongoing for about fifty years.
There are several basic themes in this large body of work.
The first 'theme' is mathematical programming. Application
of Integer Programming approaches to project management
problems began the formal study the construction
management [Brand 1964]. In terms of standard operations
research problems the multi-project resource allocation
problem addressed in this paper might be called a 'traveling
job-shop scheduling problem'.

Unfortunately mathematical programming
techniques have been proven to perform poorly for
problems of modest size [Ullman 1976]. A more general
criticism of mathematical programming is that these
approaches attempt to develop single optimal decisions in
situations where decisions are often anything but objective
[Holloway 1979].

The second 'theme,' heuristics, is a popular
alternative to mathematical programming [Davis 1975]
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[Ozdamar 1995]. Heuristic programming attempts to find a
reasonable answer through the application of 'rules-of-
thumb'. Symbolic heuristics attempt to create 'knowledge-
bases' by coding human experience. Typical heuristic
applications often require prohibitively expensive subject
matter expert and management input, tend to perform poorly
for general problems, and do not support the variety of
constraints needed to solve realistic problems [Vepsalainen
1987].

A third 'theme' attempts to learn an internal
representation based on examples. Applications of one of
these approaches, neural networks, related to construction
planning include selection of equipment for specific types of
construction [Alsugair 1994] and creation of detailed
excavation plans [Chao 1998]. While successes have been
noted in diagnostic/classification problems using machine
learning techniques, the jury is still out on the ultimate
impact of machine learning approaches to generation of
new, innovative resource allocation plans.

The fourth 'theme' has been techniques that use
selection and recombination to manipulate problem-sub
structures to progressively find better solutions. Such
Genetic Algorithms (GA) have proven successful in the
related traveling salesman and job shop scheduling
problems [Whitley 1998]. General single project allocation
problems and related applications in other domains have
been addressed by a number of authors [Cheng 1994]
[Tanomaru 1995]. Multiply constrained resources for single
projects has also been investigated [Ramat 1997]. Use of
GA in the construction management domain has been
demonstrated in applications of single project resource
allocation problems [Chan 1996], simultaneous resource
allocation and leveling problems [Grobler 1995], and the
time-cost tradeoff problem [Feng 1997].

GA research has demonstrated the effectiveness of
GA's to solve many canonical operations research problems
and small construction management test projects. Results of
GA research in construction management resource
allocation problems have not included multiple projects,
realistically sized data sets, or realistic constraint sets. Such
is the 'meat' of the investigation currently being conducted
by the author, the first course of which is provided below.

3. Test Program Design
The test program was developed using the Microsoft,

Visual Basic (v 6.0 service pack 1) programming language.
This programming language was chosen to take advantage
of legacy source code. Programming was accomplished on
a Pentium 166 MHZ lap top computer running Windows 95.

The test program includes a number of plug-in
applications that handle the display of schedule, processing,
and reporting data. For display of projects and activities in
a bar chart format the AddSoft Gantt control was used. For
iterative display of GA processing results Olectra Chart was
employed. Report data was formatted using Seagate's
Crystal Reports.

3.1 Chromosome Representation
While results from literature are insufficient to define a

general 'best' representation for scheduling problems, order-
based representations appear to capture an "essential"
qualitative feature of scheduling domains [Mattfeld 1996].
An order-based chromosome is used to represent projects in
the test program. Each chromosome represents one
complete plan for scheduling all projects. Each locus in the
chromosome represents a project. The alleles provide the
relative order of that project compared to other projects.

Order-based representations often allow alleles to
take on integer-only values. Such representations require
specialized operators to ensure feasible solutions [Murata
1996]. Alleles in the test program take fractional values, or
'random keys' [Norman 1997]. The relative order of the
allele value specifies the order of the projects.

3.2 Fitness Function
The objective of practicing infrastructure managers is to

accomplish the most work within the available budget to the
satisfaction of the majority of the office's clients. In this test
program that objective was simplified to minimize cost of
the projects to be scheduled. Every chromosome, or project
plan, is evaluated to determine the cost of performing that
plan.

The fitness function begins by decoding the project
ordering data contained in the chromosome using a Critical
Path Method (CPM) scheduling algorithm. This algorithm
allocates the first available crew to activities, according to
the activities' early start dates. Alternate allocation
assignments based on late start date or total float dates are
possible, however, on projects with crew-sequential
activities, as is the general case in the infrastructure
management domain, there is no difference between method
of the activity allocation.

Once a project plan has been decoded into a
resource allocation plan the direct and indirect cost may be
developed and summed to determine the plan's total cost.
The direct cost of the selected crew for an activity (with a
specific work type) is found from a lookup table and
multiplied by the number of days for each specific activity.
It is assumed that the cost of material, labor, and equipment
are included in the daily cost of the allocated crew.
Activities requiring large equipment or material components
are decomposed into separate parallel activities to represent
each of the 'driving' resources.

The test program allows multiple crews to perform
the same work type. Using such an arrangement the cost of
individual crews may be modeled on the specific make up,
experience, or historical performance of the crew with
specific work types. The test program does not allow more
than one crew to be allocated to a given crew. Shift work
was not included in the test program.

Since the direct costs to perform a set of work with
a single crew per work type will be the same regardless of
the ordering of the projects, indirect costs must be
considered to assess the relative value of project plans.
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The first indirect cost considered is that associated
with crew retooling and restocking. Such 'set-up' or
mobilization costs are required when crews change work
types. This cost represents the cost of restocking vehicles
with needed materials and/or tools. The result of this penalty
is that resource allocations that allow crews to focus on
specific types of work for longer periods of time should be
preferred to crews that daily change work types. It is
assumed that restocking is accomplished at the beginning of
each workday and does not impact the duration of given
activities.

Since infrastructure projects occur in physical
space the travel time between jobs is another indirect cost
included in the test program. The result of such a travel
penalty is that resource allocations that allow workers to
complete several projects in one work area before moving to
a different site should be preferred over allocations that have
crews move to different work areas every day. As with the
retooling fee, travel time in the test program does not delay
the completion of a task but simply adds indirect cost to a
work plan. Such an assumption is valid for relatively
compact geographical regions such as a single college
campus or military base.

One management consideration applied to each
project plan measures the idle time. The result of the idle
time penalty is that crew allocations that are 'level' are
preferred over crew allocations that contain work that starts
and stops. Consistent resource allocations allow managers
to assign crews with idle time to other special projects and
may provide clues about the crews that may be outsourced.

3.3 Selection Mechanism
To ensure that a consistent selection pressure is applied

throughout a test program run, a pair-wise tournament
selection procedure was used in the test program.
Processing in the test program proceeds through each
generation by (1) evaluating population fitness and
calculating descriptive statistics, (2) performing elitist
selection, (3) creating the remainder of the next generation,
(3) performing cross over on the new generation, and (4)
performing mutation on the new generation.

3.4 Population Seeding
In order for the GA to take advantage of existing heuristic

methods users of the test program may elect to seed the
initial population with heuristic solutions. Heuristics
included in the test program were the First-In-First-Out,
Last-In-Last-Out, Maximum Resource Utilization and
Minimum Resource Utilization heuristics. The inclusion of
other heuristics was not appropriate since data on which to
generation solutions, such as project due dates, was not
included in the test sets. For example weighted tardiness
heuristics could not be included since the relative priority of
projects, and subsequent due date assignment, is not a
component of the current test program.

Restricting the list to the four selected heuristics
also has some value since the first two heuristics (along with

user-defined priority assignment) are the heuristics used in
commercial infrastructure management software.

3.5 Elitism
GA's are stochastic processes that may, on occasion, ignore

good solutions. To combat this problem methods that allow
for overlapping populations have been developed. In these
methods, a percentage of the best chromosomes from the
current generation are copied, as is, to the next generation.
The test program provides a single, the best, member of the
current population to be copied to the next generation. Such
a single-individual procedure is referred to as an 'elitist'
selection strategy.

In the test program, the use of the elitist strategy is
an option that the user may apply if desired. In the test
program, the elitist selection does not protect the best of
generation from cross over or mutation in the current
generation.

3.6 Cross Over and Mutation Operators
The test program allows the user to select from one of four

types of cross over and between two mutation operators.
The cross over operators implemented in the test program
are: left- and right-handed one-way cross over, inside and
outside two-way cross over. A random selection of one of
the four cross over operators is also an option. Good
building block of shorter length are best preserved with one-
way cross over, those of longer length best preserved with
two-way cross over. Since there may be multiple levels of
building blocks being identified and refined during GA
operations on realistically sized problems one cannot
determineapriori the best cross over operator to be used.

The test program implements a random allele
swapping and adjacent allele swapping procedures for
mutation operators. As with the cross-over option the user
may also select to randomly choose either the random or
adjacent swapping procedure.

4. Test Case Description
Test cases were developed by refining a set of

representative test projects from data provided by the
University of Illinois Operations and Maintenance
Department and the Department of Public Works from the
U.S. Army base at Fort Gordon, GA. Both data sets
contained two types of projects service order projects and
work order projects. Service order projects were typically
single crew, single day activities. Work order projects
contained multiple, single crew, activities that were to be
completed in sequence. Nine work order-only cases and
nine mixed work order and service order cases were
developed by randomly selecting projects from the
appropriate set of generic test projects.

Projects within test cases were distributed among
one of three types of geographical layouts each containing
five nodes. The 'linear' procedure assigned jobs to work
areas along a straight line. The 'cross' procedure assigned
jobs to work areas in an 'x' layout. The 'grid' procedure
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assigned jobs to an 'x' layout then connected the adjacent
nodes of the 'x'.

The procedure of assigning jobs to locations also
considered if the distribution of the projects should be
evenly distributed among the nodes, centrally distributed, or
distributed more to the outside points of the locations.

Eighteen test cases of 50 projects each were used to
evaluate the performance of the Resource Manager. The 50
project set was selected be similar to the number of projects
that need to be concurrently scheduled under actual
conditions. Each test set of had a total of 3*1064 possible

orderings. Test cases characteristics are provided in the six,
left-most columns of Table 1.

The 'Project Statistics' columns in Table 1 identify
the number of activities in each of the sets of 50 projects.
Mixed work order and service order test cases have on
average 2/3 fewer activities than those test cases that were
solely comprised of work order projects. The connectivity
of activities only slightly increased between the two types of
project sets since the order among work order projects is
typically sequential

Table 1. Test Cases, Description & Result.

Run Results

Job Type Layout Distribution Activities Priors Time (h:m) Difference Percent

1 Mixed Linear Distributed 137 88 0:48 $23,049 16%

3 Mixed Linear Dispersed 125 79 0:46 $21,303 18%

4 Mixed Linear Central 140 92 1:45 $25,228 19%

6 Mixed Cross Central 127 82 0:46 $11,493 10%

8 Mixed Cross Distributed 117 72 0:42 $13,930 13%

10 Mixed Cross Dispersed 137 89 0:50 $21,351 16%

11 Mixed Grid Central 126 82 0:46 $18,805 18%

13 Mixed Grid Distributed 130 82 0:46 $20,805 17%

15 Mixed Grid Dispersed 148 104 0:52 $31,765 22%

2 Work Orders Linear Central 216 170 2:18 $29,778 15%

5 Work Orders Linear Distributed 220 176 2:22 $47,821 22%

7 Work Orders Linear Dispersed 228 184 2:25 $37,419 15%

9 Work Orders Cross Central 215 171 2:25 $37,438 17%

12 Work Orders Cross Distributed 199 152 1:27 $30,017 15%

14 Work Orders Cross Dispersed 229 185 2:38 $43,864 18%

16 Work Orders Grid Central 230 186 2:44 $66,575 23%

17 Work Orders Grid Distributed 207 161 1:13 $28,118 15%

Project Set Descri ption Pro ject Statistics

4.1 Population Sizing and Parameters
Each test was run for 50 generations. The length of the run

was set to provide a consistent comparison between runs.
Typically, convergence occurred within the first thirty
generations. The population size was initially set to 100
members to provide data on initial population distribution
and signal difference from which the theoretical population
sizing model could be evaluated.

Theoretical results have provided a 'signal to noise'
formulation for population sizing shown in Equation 1
[Harik 1996]. In applying the population-sizing model, a
number of the terms must be estimated or derived from data.
The first term to be estimated based on general knowledge
about the project is that the size of building blocks. Crews
will, in general, be assigned to 5 projects per week since the
typical duration for tasks is one day. If this domain
knowledge is used to set the building blocks, then the size of
the building blocks,k, is 5. For a chromosome composed of
50 projects the number of building blocks in the population,

m, is 10. Them' term is one less than the total number of
building blocks.

Equation 1. Population Sizing Model.

d

m
n BBk

'
1 )ln(2

πσα−−=

Theα term is the chance of error in the model. For
a 95% chance of success,α is set to 0.05. Results from the
first generation of the 18 test cases allow us to estimate the
signal difference,d and the standard deviation of building
block fitness,σBB. The average fitness difference in the 18
test cases was 4,702. The standard deviation of building
blocks may be estimated by taking the square root of the
population variance divided by the number of building
blocks,m. Data from the first generation of all 18 test cases
was again used to develop the initial population variance
resulting in aσBB of 5766.
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Applying these estimated values to the population
sizing model yields a suggested population size of 117. The
theoretical estimate of population sizing is very close to the
100 member population size used in the 18 test cases
documented above.

Experiments with population sizes of 200 and 500
were conducted but did not yield results that appeared to be
significantly different from those results provided by the
100 member population. As a result, runs using these large
populations were not documented in this paper.

The upper limit for cross over rate is that which
ensures that good building blocks, over the population as a
whole, are kept in the population. This boundary shown in
Equation 2, derived from the Schema Theorem assumes that
we want to not have every cross disrupt each of building
block we want to keep [Goldberg 1998]. Application of the
upper bound cross over operator with pair-wise tournament
selection, and single member elitist selection yields a
selection pressure,S, of 3. The upper bound on cross over
should, therefore, be 0.6.

Equation 2. Cross Over Upper Bound.

S

S
pc

1−≤

The cross over rate was set to 0.6 based on an
evaluation of the theoretical upper bound on the cross over
rate. The theoretical lower bound for cross over was not
calculated since the upper bound value was used. The cross
over type was randomly selected from the four cross over
operators implemented in the test program.

The mutation rate was set to an average of two
mutations per 100-member generation. Such a mutation rate
is less than that which disrupts good building blocks while
adding some alternative solutions. Given that there is no
information to choose between the adjacent and non-
adjacent mutation operators, mutation operators were
randomly selected during the run.

4.2 Experimental Results
A complete program trace file and 'GA Results Per

Generation' report were produced for each of the 18 test
cases. The results of the runs, extracted from the trace files,
are provided in Table 1 and Table 2. The GA was able to
better all initial solutions an average of 17% over the initial
solutions for both the mixed and work order test sets.

The time of processing columns in Table 1 shows
the time required to process each of the test runs. Two
different machines were used for the test runs. Both
machines were Intel Pentium II, single processor systems,
running Windows NT 4.0 (service pack 3). Runs 1, 3, 6, 8,
10, 11, 13, 15, 12, 17, and 18 were processed on a machine
with a 450MHZ processor only running the test cases. Runs
2, 4, 5, 7, 9, 14, and16 were executed on a 400MHZ
processor simultaneously running a variety of business and
computer programming applications.

The data provided in Table 1 demonstrates that the
GA is 'innovative' on the initially random solutions set.
These results are of little value to the project manager unless
the solutions are much better than standard, and immediate,
heuristic solutions.

The costs of project plans from each of the four
heuristics are shown in Table 2 along with the resulting GA
solution. The difference between the best heuristic, shown
in italic typeface, and the final GA solution after 50
generations is shown in dollars and percentage difference.
The GA solution cost, on average, about 1/4 less than the
least costly heuristic solution. In terms of costs the GA
solution costs, on average, $52,000 less than the best
heuristic solution.

Using the initially randomized GA population
alone, the savings over heuristic method averaged to over
$24,000 per project plan. During the first third of the GA
runs, after which users would normally have stopped the
run, there was an average saving of $1,000 per minute of
GA processing.

5. Critique and Discussion
There are a variety of outstanding issues and possible

critiques that could be raised by the results described in the
previous section. These issues include: (1) inability of the
current work to allocate resources for multiple large
construction projects, (2) inadequately representation of
realistic infrastructure management domains, (3) unrealistic
test cases, (4) uninformed GA processing, and (5)
inadequate heuristics operators used for comparison. A
discussion and proposed resolution of each of these critiques
is provided in the following paragraphs.

While the results provided in this paper can
provide hope for infrastructure managers these results may
not be applicable to more general construction management
scheduling problems. In the infrastructure management
domain the ratio of activities to projects is no greater than
10. The average value may be closer to 5 activities per
project. In the general contractor multi-project resource
problem the number of activities per project may exceed
1000 activities per project.
The next critique of the current work is that the current GA
model does not adequately represent the infrastructure
management domain. Since the results presented in this
paper appear positive extensions to the current work are
planned. First, a means to allocate multiple crews to
individual activities will need to be considered. This is
important to address production 'bottlenecks' or idle work
'sinks'. Shift work may also be considered as part of this
first enhancement. Given that multiple crews will be
assigned, planed activity duration will need to be
dynamically assigned. In addition, the 'grain-size' of task
duration will be reduced to the typical one-hour unit of crew
charge time.



Real-World Applications

East 6 of 7

Table 3. Comparison of Heuristic and GA Results.

Run

LIFO FIFO MinRes MaxRes Value Difference %Better

1 $168,444 $176,465 $175,874 $162,589 $121,450 $41,139 25%

3 $158,667 $149,842 $136,037 $144,801 $98,371 $37,666 28%

4 $162,875 $172,889 $165,807 $158,950 $109,948 $49,002 31%

6 $114,445 $138,474 $147,856 $136,086 $102,952 $11,493 10%

8 $154,356 $135,080 $115,861 $127,915 $91,320 $24,541 21%

10 $191,454 $161,224 $172,896 $156,884 $116,063 $40,821 26%

11 $140,806 $147,581 $146,116 $126,346 $84,731 $56,075 40%

13 $149,572 $159,972 $151,517 $147,787 $101,732 $46,055 31%

15 $167,134 $218,184 $180,249 $165,879 $110,479 $55,400 33%

2 $249,994 $291,322 $234,247 $265,953 $175,379 $58,868 25%

5 $299,108 $301,475 $223,635 $245,568 $170,112 $53,523 24%

7 $342,589 $447,836 $341,544 $282,059 $217,890 $64,169 23%

9 $220,311 $409,248 $238,502 $301,470 $182,873 $37,438 17%

12 $225,055 $290,297 $245,050 $300,291 $172,803 $52,252 23%

14 $286,098 $351,344 $327,629 $316,445 $205,316 $80,782 28%

16 $335,888 $514,993 $310,430 $369,658 $227,817 $82,613 27%

17 $200,003 $211,162 $198,599 $191,509 $155,394 $36,115 19%

18 $329,648 $414,039 $313,718 $380,724 $227,393 $86,325 28%

Heuristic Results (best is bold ) GA Soln

Addition of heuristics to consider multiple crew
allocations is possible. Such a hybrid GA-heuristic system
may choose, for example, to allocation multiple crews if
additional crews are idle for longer than the cost of travel to
the job. Other rules may determine if 'outside', more
expensive crews should be used to clear bottlenecks. The
decision of which rules to apply may be a feature of a
revised GA representation or a user-specified user specified
value.

The second change needed to provide a better
reflection of the actual infrastructure management domain is
that of project priority. Priority is needed to distinguish
between emergency and non-emergency projects. Use of
project priorities is expected to simplify GA processing
since priority sets will partition the solution space. Other
changes planned are to add budgetary constraint to show the
cut-off point for planned work and penalties for starting or
finishing work outside required milestone dates.

The next critique of the work presented in this
paper is that the test cases used are unrealistic. Since the
test projects and activities were developed from actual
infrastructure management databases such a critique could
only be based on the random assignment of the projects to
work areas. In a realistic infrastructure management setting
it is likely that projects will not be created in a random order
but have some underlying patterns. Since GA's are able to
exploit such underlying patterns the randomly generated
cases used in the tests should be more difficult than the
project sets presented in an actual infrastructure
management setting. Consideration of the 'unrealistic test

case' critique asserts that if the problem were easier, the GA
would produce better results.

The fourth critique of the GA design is that the GA
processing procedure could be improved. If heuristic
operators were used to group projects according to
similarity of work type and location, then better results
should be expected. Such a heuristic seeding procedure is
planned for the next version of the test program. Alternative
formulations to improve the linkage will also be included in
the next prototype. Such a formulation will more tightly
couple, or link, groups of projects that should be completed
in a relative sequence to one another. A temperature-based
method for varying mutation rates will also be implemented.

Finally, additional heuristics should be used to test
the results of this work. The addition of new heuristics,
once the test program has sufficient depth to accommodate
such heuristics, should assist in validating the planned
future changes.

6. Summary
The objective of this paper was to document the results of

an experiment conducted into the use of Genetic Algorithms
(GA) to solve a realistically large but simplified subset of
the infrastructure management problem. The paper began
with a brief description of previous work. Design of the GA
and processing operators were described. The performance
of the GA over a set of 18 randomly generated test cases
was described. Theoretical bounding values for adequate
population sizing compared favorably with the values used
during test runs. Finally, run results were compared to a



Real-World Applications

East 7 of 7

small set of heuristic solutions and the results of the work
were critiqued.

7. Conclusions
Based on the results of the experiment presented in this

paper, GA's have been shown to provide good solutions to
realistically sized but simplified multi-project resource
allocation problems in the infrastructure management
domain. Processing times are such that infrastructure
managers may develop daily plans that take into account
new projects and changed resources. Proposed
enhancements promise to provide resource allocation tool
that may be applied to realistic infrastructure management
problems.
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