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Abstract

Genetic programming (GP) is applied to
automatic discovery of full knowledge bases for
use in fuzzy logic control applications.  An
extension to a rule learning GP system is
presented that achieves this objective.  In
addition, GP is employed to handle selection of
fuzzy set intersection operators (t-norms).  The
new GP system is applied to design a mobile
robot path tracking controller and  performance
is shown to be comparable to that of a manually
designed controller.

1 INTRODUCTION

In recent years, increased efforts have been centered on
developing intelligent control systems that can perform
effectively in real-time. These include the development of
non-analytical methods of soft computing such as
evolutionary computation and fuzzy logic.  These
methods have proven to be effective in designing
intelligent control systems and handling real-time
uncertainty, respectively.  In this paper, our efforts are
focused on combining these two paradigms to
accommodate the development of intelligent controllers
capable of performing in “real-world” applications. More
specifically, genetic programming (GP) is employed for
knowledge base learning in the fuzzy logic control
domain.  To date, many researchers have approached this
problem using genetic algorithms (see (Cordon,1995)).
The key difference is that our approach does not require a
transformation from the evolved solution into a usable
solution in the control code.  The GP solution can be
taken as is and executed it in the control code since its
phenotype is already a C-coded subroutine.

This paper addresses the application of GP to the design
of fuzzy logic controllers for mobile robot path tracking.
It has already been demonstrated in (Tunstel, 1996) that
genetic programming can be useful as an approach to
learning fuzzy logic rules for mobile robot control and
navigation.  It has also proven useful for the classical cart-
centering control problem by (Alba, 1996).  However, its
practical utility in such domains is weakened when using

the common implementation in LISP (as in Tunstel
(1996)) due to significant computational costs associated
with simulation-based fitness evaluations.  Therefore, we
have employed a restructured version of the Simple
Genetic Programming in C (SGPC) system (Tackett,
1993), which reduced the required evolution time and
facilitated evolution of larger populations than attempted
in (Tunstel, 1996).  As an additional extension, we
address the full design of fuzzy logic controllers using
GP, i.e. evolution of both the membership functions and
the rule base.  In addition, we incorporate the random
selection of fuzzy logic connectives (t-norms) into the
evolution process.

2 OVERVIEW OF FUZZY CONTROL

A fuzzy logic controller (FLC) is an intelligent control
system that smoothly interpolates between rules.  A fuzzy
set may be represented by a mathematical formulation
known as a membership function. That is, associated with
a given linguistic variable (e.g. speed) are linguistic
values or fuzzy subsets (e.g. slow, fast, etc.) expressed as
membership functions which represent uncertainty,
vagueness, or imprecision in values of the linguistic
variable. This function assigns a numerical degree of
membership, in the closed unit interval [0,1], to a crisp
(precise) number. Within this framework, a membership
value of zero/one corresponds to an element that is
definitely not/definitely a member of the fuzzy set.  Partial
membership is indicated by values between 0 and 1.

Implementation of a fuzzy controller requires assigning
membership functions for inputs and outputs.  Inputs are
usually measured variables, associated with the state of
the controlled plant that are assigned membership values
before being processed by an inference engine.  The heart
of the controller inference engine is a set of if-then rules
whose antecedents and consequents are made up of
linguistic variables and associated fuzzy membership
functions.  Fuzzy set intersection, or conjunction,
operators in the antecedent are generally referred to as t-
norms.  They commonly employ algebraic min  or
product  operations on fuzzy membership values.
Consequents from different rules are numerically
aggregated by fuzzy set union and then defuzzified to
yield a single crisp output as the control for the plant.



3 MOBILE ROBOT PATH TRACKING

The control problem examined in this paper is a path
tracking problem, which was formulated in (Hemami,
1994) for a class of low speed tricycle-model vehicles.
Essentially, the control objective is to successfully
navigate a mobile robot along a desired path in a two-
dimensional environment.  We wish to design a fuzzy
controller that will achieve this objective. The inputs
consist of a measurable position error, εd, and a
measurable orientation error, εθ, associated with path
following in the plane (see Fig. 1).  The output is the
steering angle, δ, which is the corrective control action
that would cause the errors to approach zero and, thus,
force the robot to follow the desired path.  The position
error is taken as the deviation of the center of gravity, C,
or any other desired point of the robot from the nearest
point on the path.  The orientation error is the angular
deviation of the robot from the tangent of the desired path.

Figure 1: Tracking control and error variables

Hemami et al derived a state-space kinematic model for
this robot where the state vector was comprised of the
pose errors described.  The resulting kinematic model is
repeated herein for clarity in the discussion that follows.
The reader is referred to (Hemami, 1994) for details of the
derivation, which culminates in the following:
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where Vu is forward linear velocity of the robot, and dη
and θη  are rates of change of the effects of path
curvature.  In (Hemami, 1994) it is concluded (based on
dynamic analysis) that for small steering angle, δ (tan δ =
δ), (1) approximates the slow dynamics of the vehicle
when its forward velocity is low.  In the simulations
presented later, we have simplified the kinematic model
by taking this approximation into account.  Furthermore,
we apply the controller to straight-line path following and,
therefore, neglect the model effects of path curvature.

To allow for control of the mobile robot, some means of
measuring the input information is needed to feed into the
system in order to generate a desired output.  Thus the
system under control is assumed to have some suitable
sensory apparatus.  For our implementation, we assume
that the robot has odometry sensors that provide access to

the error states at all times, or permit calculations thereof.
This sensory input data is then mapped to control outputs
according to the desired control policy.

4 GP FORMULATION
In this work, the primary focus is on applying GP for
simultaneous evolution of fuzzy membership functions
and rule bases.  We also examine the performance of the
evolved controllers relative to that of a fuzzy controller
designed by engineers through the usual manual process
of trial-and-error with iterative refinement.  One such
controller was presented in (Tunstel, 1996) and is used
here as a basis for comparison.

4.1 FUNCTION AND TERMINAL SETS

One of the advantages of the GP paradigm, in this context,
is that it allows the elements of the function and terminal
sets to be taken directly from the terminology of the
manipulated problem.  More specifically, the same fuzzy
linguistic terms and operators that comprise the genes and
chromosome persist in the phenotype (fuzzy rule base).
As such, encoding/decoding of numerical representations
of chromosomes is not required.  The following function
and terminal sets are used for the path following problem:

F = { f_OR, IF_THEN, ANT, CONSQ, f_AND,  (2)

MEM_FUNC, INPUT_1, INPUT_2}

T = {εd, εθ, δ, pNB, pNS, pZ, pPS, pPB, oNB,  (3)

 oNS, oZ, oPS, oPB, NB, NS, Z, PS, PB,

1, 2, 3, 4, 5}

The functions represent different parts of rule bases and
membership functions.  f_OR represents an entire
individual or rule base and serves as an aggregation
operator.  It occupies the root node of every parse-tree in
the population of rule bases. Each rule that fires in a fuzzy
rule base returns an output fuzzy set as a result of the rule
consequence.  The f_OR function operates on the output
fuzzy sets by taking their fuzzy union to produce a
resultant fuzzy set representing the overall output of the
rule base.  The IF_THEN function represents individual
rules within the rule base.  For a given rule, it returns the
rule firing strength and the fuzzy set of the output. More
specifically, it returns an output pair containing the ANT
value and the CONSQ value.  The ANT function represents
a single fuzzy proposition in the antecedent portion of
individual rules.  It returns a numerical value in the closed
unit interval [0,1] representing the membership value, or
degree of truth, of the proposition.  The CONSQ function
represents the consequent portion of individual rules, and
returns the output fuzzy set designated in the rule
consequence.  The f_AND function represents a
conjunction operator (fuzzy set intersection) that can be
defined using any t-norm.  It is limited to the conjunction
of two propositions with the idea that conjunctive forms
of higher order can be constructed by recursive calls to the
function (the level of recursion is bound by a specified
maximum depth of a rule base parse tree).
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Rule 1: IF εθ is oPS and εd is pPB THEN δ is NB
Rule 2: IF εθ is oNS and εd is pZ and εθ is oZ THEN δ is Z
Rule 3: IF εθ is oPB and εd is pPB THEN δ is NB

Figure 2: Example of a syntactically valid program when evolving rule bases

The MEM_FUNC function represents the membership
function definitions for both inputs of the FLC.  The
INPUT_1 and INPUT_2 functions represent any of the
individual fuzzy set definitions for position error and
orientation error respectively. The terminals within the
terminal set represent the actual inputs and the output, their
respective membership functions, and integers used to
designate the fuzzy set overlap for the evolving membership
functions (explained in more detail below). In (3), notations
NB, NS, Z, PS, and PB represent fuzzy linguistic terms of
“negative big”, “negative small”, “zero”, “positive small”,
and “positive big”, respectively.  Terms describing the
position error and orientation error are preceded with the
prefix “p” and “o” respectively.  Terms describing the
steering control are labeled without prefixes.

Selection of t-norms is automated, thereby, giving the GP
system greater control of the evolutionary design.  Since the
two most commonly used t-norms for fuzzy control are min
and product , we focus on selection of these two alone.
One of the t-norms, for each conjunctive rule, is selected at
random by GP for rule bases in the initial population, and
propagated based on fitness through successive generations.

4.2 SYNTAX CONSTRAINTS: FULL DESIGN

To achieve the goal of evolving fuzzy rule bases, the GP
system must conform to strong syntactic constraints when
breeding individuals. Special rules of construction were
introduced by (Tunstel, 1996) to ensure that the function
and terminal sets satisfied the closure property of GP
defined in (Koza, 1992). The syntactic rules for evolving
fuzzy rule bases are:

• The aggregation function must occupy the root node
of an individual.

• The rule function must occupy the nodes immediately
below the root node.

• A left child of the rule function must be the
conjunction or antecedent function.

• A right child of the rule function must be the
consequent function.

• A child of the conjunction function must be the
conjunction or antecedent function.

• Children of the antecedent function must be input
linguistic variables & fuzzy sets.

• Children of the consequent function must be output
linguistic variables & fuzzy sets.

An individual that could potentially evolve from the
designated function and terminal sets in accordance with
these rules can be expressed as a rooted, point-labeled tree
with pre-ordered branches.  An example of a syntactically
valid rule tree is illustrated in Fig. 2.  Individuals
constructed using these rules are subject to an additional
constraint on the depth of their tree structures, i.e. the
longest sequence of branches from the root node to a
terminal (leaf node).  The individual in Fig. 2, for example,
has a depth of five.  The maximum allowable depth is
specified as a parameter of the GP run.

In order to accommodate evolution of membership
functions, in addition to the rule base, the allowable syntax
must be extended.  Genes representing membership
functions must be added to the chromosomes of individuals
in the population.  This is achieved by adding three more
syntactic rules and modifying the second rule from the
previous set.  The additional rules are stated below, and an
example of a syntactically valid knowledge base
conforming to these rules is illustrated in Fig. 3; the absent
rule portion of the tree can be taken from Fig. 2.

• (Modified Rule) The function that specifies a
membership function definition must occupy the left-
most child of the nodes immediately below the root
node.  The rule function must occupy the remaining
nodes immediately below the root node.

• The function that specifies the fuzzy sets for the first
input must occupy the left child of the function
specifying membership function definitions.
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• The function that represents the fuzzy sets for the
second input must occupy the right child of the
function specifying membership function definitions.

• Children of functions that specify input membership
function definitions must be fuzzy set values.

Figure 3: Parse tree for full FLC design

4.3 GENETIC OPERATORS

All rule bases in an initial population are randomly created
using the constrained syntax but descendant generations are
created using the reproduction, crossover, and mutation
operators.  Fitness-proportionate reproduction is used and
offspring modified by crossover and mutation conform to
the syntactic structure.  Structure-preserving crossover
prohibits the mating individuals from transferring
information at different non-root points.  The only exception
is the valid crossover between ANT and f_AND function
nodes, provided violations do not occur with respect to
specifications on the maximum depth of the parse trees of
resulting offspring.  Selecting (at random) a non-root point
and eliminating all the information succeeding it constitutes
structure-preserving mutation.  The discarded information is
replaced by a random subtree that maintains conformance to
the syntactic regulations.

5 MEMBERSHIP FUNCTIONS
The GP system presented in (Tunstel, 1996) evolved fuzzy
rule bases only, assuming that the membership functions
were fixed.  Herein, we address full design of fuzzy
controllers by extending the former approach using an
algorithm introduced in (Homaifar, 1995).  In this case, the
membership functions are also allowed to vary dynamically
during the evolution process.  We utilize a unique integer
based subtree structure to represent the membership
functions.  Consider the first branch of the f_OR function in
Fig. 3.  This subtree denotes the membership function
specifications for that particular individual.  The terminals
of this subtree represent the values that will be converted to
the base lengths (supports) of the triangular fuzzy sets
describing FLC inputs.  The peaks of the triangles
(height=1) representing membership functions are fixed and
taken from the nominal set in (Tunstel, 1996); thus we are
only concerned with evolving the supports of the fuzzy sets.
The calculation of the supports is done using a modified

version of the algorithm proposed in (Homaifar, 1995).  The
modified algorithm proceeds as follows:

1. Subtract 1 from the allele (terminal) value and divide
by 10 (making the range 0-0.4).

2. Subtract this value from 1 (The value of 1 is the
distance between the peaks in the original, thus the use
of a scaling factor must be incorporated.)

3. Double each of the resulting values to provide a product
between 1.2 to 2.0.

4. Multiply each value by independent scaling factors
(Note: The scaling factors refer to distances between
peaks of a nominal set of membership functions).
Multiply by 0.3m for position error fuzzy sets.  For
orientation error, multiply by 0.2618 radians for fuzzy
sets 1 and 5, 0.3927 radians for fuzzy sets 2 and 4, and
0.5236 radians for fuzzy set 3.  These values represent
the base lengths for each of the individual triangles.

5. Divide the 1st and 5th allele values by 2.
6. Add the new 1st allele value to the peak of fuzzy set 1.

Subtract the new 5th allele value from the peak of fuzzy
set 5.  This designates the inner end-points for the NB
and PB fuzzy sets.

Following this method, the remainder of the branches of the
f_OR function, which represent the actual rule base, are
evaluated using the translated input membership function
definitions.  Output membership functions are fixed as
defined for the hand-derived controller.

6 SIMULATION
We apply GP to evolve fuzzy controllers that will direct the
robot’s motion from initial locations near the desired path to
final locations on the path such that steady state and final
pose errors are minimized.  This involves frequent
simulation of robot motion throughout the evolution
process. The simulated robot is based on (1) with
dimensions taken from a Hero-1 mobile robot, which has a
tricycle wheel configuration in which the front wheel is
driven by a DC motor and steered by a stepper motor.  Its
two rear wheels are passive.  Dimensions are 0.3m for the
wheelbase, and 0.2m for the offset from the rear axle to the
front wheel.  Referring to Fig. 1, the wheelbase refers to the
constant length 2d and the offset refers to the constant
length MP.  All simulations were conducted assuming a
controller sampling rate of 20 Hz and run for a maximum of
ten seconds.  In each case, the robot travels at a constant
nominal forward speed of 1.5 m/s.

6.1 CONTROLLER FITNESS EVALUATION

During the GP process, each rule base is evaluated by
simulating the robot’s motion from each of a finite number
of initial conditions (fitness cases) until either the goal state
is achieved or the allotted time expires. For this problem we
use eight different initial conditions based on the pair-wise
symmetry of the possible error categories:

(a) dε = 0, θε < 0;          (b) dε < 0, θε = 0;

 (c) dε < 0, θε < 0;          (d) dε > 0, θε < 0.
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Consider error category (d), which represents a case where
the robot is located on the left of the desired path with a
negative heading orientation.  There also exists a symmetric
case where the robot is located on the right of the desired
path with a positive heading orientation.  These symmetric
cases are each represented by category (d).  The same holds
for category (a), (b) and (c), yielding a total of eight fitness
cases that fully describe the possible combinations of errors
with respect to the path.  In (Hemami, 1994), it was shown
that error category (d) is the most general for studying path
tracking by tricycle-type vehicles.

We compute path tracking performance by summing the
Euclidean norms (normalized) of the final error states plus
the average control effort (δ ) over all eight fitness cases.
The following fitness function drives the evolution process

Raw Fitness = ∑
=

++
8

1
)222(

i id δθεε     (4)

where dε  and θε  are the position error and orientation
error existing at the end of each fitness case simulation.  The
objective of this fitness function is to minimize final path
tracking errors as well as the control effort expended.  A
perfect fitness score is zero and, in general, lower fitness
values are associated with better controllers.  Path tracking
success is also based on ability to minimize the error states
to within the following specified tolerances, || dε <0.15m
and | |θε <0.26 rad., for each fitness case.  A fitness case
simulation in which these tolerances are satisfied is
considered a hit, or successful trial.  Thus, each individual
has the potential of receiving a total of eight hits during
fitness evaluation for this path tracking problem.

7 EVOLVED CONTROLLER RESULTS
All GP runs for the path tracking problem were executed
using a restructured version of SGPC (Tackett, 1993) on a
260 MHz MIPS DECstation.  The GP system was executed
for five consecutive runs on a population of 200 individuals
for a maximum of 50 generations. Reproduction, crossover,
and mutation probabilities used for these runs were 0.399,
0.6, and 0.001 respectively. Maximum depths for new trees,
trees after crossover, and mutated trees were set at 5, 7, and
4 respectively.  About one hour of computation time was
required for a run of this magnitude.   A rule base of 25
rules emerged as the fittest among all five runs. The co-
evolved membership functions associated with the best rule
base are shown in Fig. 4, and the rules are listed in Table 1
with t-norms indicated for conjunctive rules.  Support
widths of the evolved input membership functions differ
slightly from those specified for the hand-derived controller.
Although the rule base size is identical, the evolved rules
differ significantly. Observation of the evolved rules
suggests possible coherence problems in the rule base.  Such
outcomes are possible since the system does not guarantee
intuitive (much less, coherent) GP solutions.  Rather, it
allows such possibilities in order to avoid non-discovery of

innovative solutions that may be counter-intuitive to the
designer and, consequently, overlooked.

Figure 4: Co-evolved membership functions

The fully-designed controller received a raw fitness of
0.1091 with 8 hits.  In comparison, the original hand-
derived complete rule base received a raw fitness of 0.08
with 8 hits.  Figure 5 illustrates the temporal responses of
position error, orientation error, and control effort for the
evolved controller and for the hand-derived controller.  This
result corresponds to category (d), the most general error
category.  The resulting controller achieved comparable
response characteristics to those of the hand-derived
controller in the remaining error categories as well.

Table 1: Co-evolved Rule Base with T-norm Selection

1 IF oZ THEN NS
2 IF pPB THEN Z
3 IF pNB THEN Z
4 IF pPS THEN NB
5 IF pNS and oPS THEN NS (min )
6 IF pNB THEN PB
7 IF oNS THEN Z
8 IF oNB THEN PS
9 IF pNS THEN NS
10 IF pNS and oZ THEN PB (prod )
11 IF oPB THEN NB
12 IF pNS and oPB THEN NB (prod )
13 IF pPS THEN NS
14 IF oNS THEN PB
15 IF pPB THEN NB
16 IF oZ THEN PS
17 IF oNB THEN PB
18 IF pNS and oNS THEN PB (min )
19 IF pNS THEN Z
20 IF oPS THEN NB
21 IF pZ THEN PS
22 IF pPB and oZ THEN Z (min )
23 IF pPB THEN PS
24 IF oPS THEN PS
25 IF oNS THEN PS

0 0.27-0.27 0.36 0.6-0.3-0.54 1.0-1.0

pNB pNS pZ pPS pPB

µεd

εd (meters)

µεθ

εθ (rad)
0 0.17-0.13 0.52 0.88-0.55-0.92 1.04-1.04

oNB oNS oZ oPS oPB



Figure 5: Temporal Path Tracking Response of Fuzzy Controller

8 CONCLUSIONS
GP was successfully applied to discover FLCs capable of
steering a mobile robot to track straight-line paths in the
plane.  Instances of simultaneous evolution of
membership functions and rules showed that GP was
capable of evolving a FLC that demonstrated satisfactory
responsiveness to various initial conditions while utilizing
minimal human interface.  Suboptimal solutions, with
respect to the employed fitness function, were
consistently found that compared favorably against
manually-derived solutions, suggesting a strong basis for
practical application of GP in the controller design
process.  Further automatic improvement towards optimal
solutions could be made by synthesizing a hybrid between
GP and a localized search method such as hill-climbing
(O’Reilly, 1995, Dozier, 1997). The implementation
proposed herein provides a means for full design of FLCs
that can be directly applied to a physical system.
Alternatively, human experts can use the evolved FLCs as
design starting points for further manual refinement as
suggested in (Alba, 1996).
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