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tion of joints within the problem domain. The x, y, or z coor-
dinates of the joints must be designated as design variables to
optimize the geometry of the structure. Topology optimiza-
tion requires the ability to add and remove members and

Abstract

Synthesis design solutions for an unstructured, mul-
ti—objective problem domain are evolved using the
implicit redundant representation genetic algorithm
(IRR GA). The IRR GA uses redundancy to repre-
sent a variable number of location independent de-
sign parameters. Using the IRR GA in tandem with
an unstructured definition of the problem domain al-
lows the representation and evaluation of diverse
structural topologies and geometries. Details of the
IRR GA design parameter encoding and the unstruc-
tured formulation of the frame synthesis design
problem are discussed along with the GA fithess and
penalty functions applied. Novel frame designs
generated by the IRR GA synthesis design method,
which compare favorably with traditional frame de-
sign solutions obtained by trial and error, are pres-
ented.

INTRODUCTION

joints from the structure, either heuristically or implicitly.

Researchers have applied genetic algorithms (GA) to struc-
tural truss optimization problems, including the optimization

of trusses with fixed topology and fixed geometry (Adeli &
Cheng, 1993; Yang & Soh, 1997); the optimization of trusses
with fixed topology and variable geometry (Wu & Chow,
1995); and the optimization of trusses with variable topology
and geometry (Rajan, 1995; Rajeev & Krishnamoorthy,
1997). These GA truss topology and geometry optimization
methods, including those based on the ground structure ap-
proach (Hajela & Lee, 1995; Rajan, 1995), are not directly
transferable to frame optimization problems due to the non-
linear interactions existing between the member properties
and the member stresses and the use of heuristic rules for ad-
ding or deleting members. Frame designs having diverse
topologies and geometries can satisfy the design objectives
equally well and obtaining a good design solution requires a
trial and error process. Several researchers have used GAs to
optimize the members sizes of frame structures with fixed ge-
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. . . , ) ometry and topology (Camp, et al., 1998) and to provide lim-
Performing synthesis during conceptual design provides sulad geometry optimization of frame structures (Grierson &
stantial cost savings by selecting the structural topology anlark;” 1996; Jenkins, 1997). The synthesis method imple-
geometry of the design, in addition to selecting the membefented using the IRR GA and an unstructured problem do-
sizes. Traditional optimization methods cannot effectivelymain formulation discussed by this paper provides both struc-

synthesize design solutions that have diverse structural topQlyra| frame topology and geometry optimization.
ogies and geometries. In the past, shape optimization meth-

ods were used to refine the member section properties of

structures having a fixed topology and geometry as a finald& |IMPLICIT REDUNDANT

sign stage to reduce cost by reducing the volume of material REPRESENTATION

used. The research presented by this paper focuses on topolo- . _

gy and geometry optimization of the structure, in addition tdn order to provide an evolutionary based method capable of
shape optimization, by supporting the synthesis of design afynthesizing design alternatives, a more flexible GA repre-
ternatives during conceptual design. The cost benefits of dééntation is required that is capable of encoding a variable
sign changes made during the conceptual design stage &mber of design variables, providing location independent

greater than any design changes identified during the final d8€sign variables, and allowing self—organization of the link-
sign stage (Reich & Fenves, 1995). age of the encoded design variables. The implicit redundant

representation (IRR) provides a mechanism that allows es-
In structural design, topology optimization defines the numsential and redundant sections of a string to interact dynami-
ber of joints in the structure, the joint support locations, angally by using a string length that is longer than the length re-
the number of members connected to each joint. Geometquired to encode only the parameter values (Raich &
optimization defines the length of the members and the loc&haboussi, 1997). The specific location of each encoded pa-



rameter value, which is called a gene instance, is not desighe level of unstructuredness of the design domain is altered
nated explicitly by the IRR. Instead, each gene instance is dby placing constraints on the values of the design variables
lowed to drift within the length of the string as shown inwithin the problem domain. A tradeoff occurs in the process
Figure 1. Each gene instance in an IRR string consists of twaf determining the level of unstructuredness that is beneficial
parts: a pre—selected Gene Locator (GL) pattern identifyingp the synthesis process. Removing constraints allows for a
the location of the gene instance in the string and a specifiedore diverse set of synthesis alternatives to be explored by
number of useful bits of the gene instance that encode the paxpanding the search space. The increased exploration for
rameter values. All population individuals have the samelesign alternatives, however, has a high computational cost
string length and each individual in the population represen@ttached. Limiting the size of the search space by constrain-
one complete solution. To decode the parameter values froimg the values of specific design variables results in a limited
the IRR string, the string is parsed until a GL pattern is founéxploration, with the cost being the exclusion of beneficial
indicating a gene instance. The parameter values are encodksbign alternatives from consideration.

using binary or real numbers similar to other GAs.
g y A design problem with a predefined topology and geometry

has a fixed number of variables, a bounded search space, and
a single, static fitness landscape, which may be multi-modal.
Encoded Parameter Values In unstructured problem domains, however, there is no assur-
ance that the fithess landscape searched remains static.
Instead, each distinct topology and geometry considered will
have a fithess landscape defined in a distinct dimensional
Redundant Segments search space. If the topology or geometry changes, then a
new fitness landscape will be defined. The search for synthe-
sis design solutions in an unstructured problem domain is per-
Figure 1: Generic IRR GA genotype. formed over a non-stationary fitness landscape. Unstruc-
tured problems, therefore, can be categorized as highly
The portions of the string that are not part of a gene instanckceptive problems (Goldberg, 1989).
contain redundant material. Incorporating the use of redun-
dant, or non—coding segments, has been researched previous-
ly (Levenick, 1991; Wu & Lindsay, 1996; Raich & Ghabous-4 PROBLEM STATEMENT
si, 1997). Each redundant segment consists of a variable
number of bits that separate the gene instances in the strinidie design problem selected for this paper is the synthesis of
The use of redundancy provides several benefits to the evolaplane frame structure with a maximum total structure width
tionary process: redundant segments protect existing param&-60'—-0" and a maximum structure height of 36'-0” (three
ters from the disruption of crossover and mutation and nefoors). The unstructured frame problem domain is defined
gene instances may be designated within previously reduas shown in Figure 2. and is defined by: dimensional bounds
dant segments by the actions of crossover or mutation in fylaced on the maximum structure width and height and the
ture generations (Raich & Ghaboussi, 1997). statement of the location of planes of possible applied loading
N ) ) ] . and possible support placement. The actual loading applied
In addition, the designer is not required to specify the numbep the frame structure is a function of the number of stories
of parameter values to be represented by the IRR GAsnd bays defined and varies for each individual frame synthe-
Instead, the number of variables encoded changes dynamjs alternative. The fixed design parameters are the magni-
cally from generation to generation. No external constraintgdes of the dead load, live load and wind load and the desig-
are required to process over or underspecified strings, sing@tion of pinned support nodes. All other required design
the IRR GA strings are the same length. information, including the number and location of structural
nodes and members, member properties, support informa-
tion, member connectivity, number of stories, and number

3 UNSTRUCTURED PROBLEM and size of bays, are design variables.
FORMULATION

Gene Locator (GL) Pattern

*x r————— 9
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The synthesis of design alternatives is supported in this re- é : vy *DL*:LL* 1y : = WL
search by defining an unstructured problem domain that does E | |
not have explicit bounds placed on the design parameters 2 | LYV VY IVV VY | - WL
modeled. Therefore, design solutions can be generated and ? | VY Y Y Y VYT Yy |
compared that have diverse topologies and geometries. Syn- & | | <« wL
thesis of design alternatives has two principles driving it: pro- o ' |
viding partial optimality of design (in some sense the best de- N N N D

sign) and ensuring feasibility of design.  Synthesis * 60 —0” Maximum _y

alternatives are found in the search space bounded by the

space of all possible design alternatives, which is infinite and

ill-defined, and the space of mathematical programming de- Figure 2: Model of unstructured problem domain for the
sign alternatives, which is very small and well-defined. frame synthesis design problem.




4.1 IRR GA FRAME SYNTHESIS GENE INSTANCE Node 2
(X2,Y2)  Depth 3

Assembling a frame design solution within the unstructured Depth 1 --(if-ge-nerated)
problem domain requires knowledge about the number of Node 1 th 2
members, the member areas, and the member locations in the (X1,Y1)$== == == =Dcp

(if generated)

structure as defined by the nodal coordinates. The topology
and geometry of the structure is specified through the desig-
nation of member and nodal information using a design gram-
mar. The process of defining the required design grammar forFigure 4: Design variables for a single member in the un-
the frame design problem is simplified because the grammar structured frame problem encoded in one gene instance.

is explicit in the genotype/phenotype relationship provided ,
by the IRR GA representation itself. The two horizontal member depths decoded from the gene

instance for each non-horizontal member are used when a

The design information required to model a frame member iIgorizontal member is generated. The horizontal members are

encoded in a single gene instance identified by the GL patted"€"ated between each pair of adjacent nodes defined on the
[1 1 1] in the order shown in Figure 3: the x—coordinate of M€ floor level from the non-horizontal member informa-

node 1 (X1): the y—coordinate of node 1 (Y1): the w—coordition decoded. The depth of horizontal member is provided by
nate of (nocge 2 (¥(2)' the y—coordinate og‘ ngde 2 (v2); thdhe value of the horizontal depth (Depth 2 or Depth 3) de-
depth of the non—ho}izontal member (Depth 1); the dep’th }(joded for the designated starting node of the horizontal mem-

any horizontal member connected to the right of node er as shown in Figure 4. Assembling a complete frame struc-

: : re consists of defining the non-horizontal member
(Depth 2); and the depth of any horizontal member connect gcations using the nodal coordinates decoded from the IRR

to the right of node 2 (Depth 3). This design information de- d ind the hori | bers b
fines the non—horizontal member coordinates, nodal inci@€NOLWYPE and generating the horizontal members by connect-

dences, and member depths as shown in Figure 4. Membé&?¥ the nodal coordinates defined along each level.

decoded from the IRR genotype having the same y—Coordiee repair strategies were applied to the complete frame
nates for both nodes, which designates a horizontal membgfyctures as required: assigning a minimal fitness to frames
are ignored during the assembly of the non-horizontal memp 4t have less than two supports to prevent unstable structures
bers. The total number of frame members (gene instancegym peing analyzed: replacing nodes that are closer than
encoded in each IRR GA genotype is implicitly constraineds;_q» with a single node to reduce the automatic generation
by the fitness and penalty functions and will vary among the¢ yery short members; and removing single nodes that occur

individuals in the current population. Representing differen}yithin the structure that do not carry any loading.
structural topologies and geometries is achieved by encoding

different numbers of location independent design variables in

the IRR GA string.
g 4.2 FRAME FITNESS AND PENALTY FUNCTIONS

- Typically, a frame design problem has a single objective:
ﬁ provide minimum weight subject to the satisfaction of flexu-
‘\ ) ral strength requirements and deflection requirements. Satis-

M X1 [vif x2 [v2f Deptn1 | Depti2 | Deptn 3 | fying this objective using the unstructured frame problem do-

main, however, results in the evolution of minimal structures
represented by two member frames that carry no loading.
Therefore, a second objective is required: maximize the total
floor space provided by the frame. The non—penalized GA
Figure 3: IRR GA gene instance for the unstructured fitness functions that optimize the volume (minimum
frame problem domain. weight), F, and floor areafr, objective functions can be
stated for the frame synthesis design problem :
The design variable value ranges are set by the number of

binary bits used to encode each variable. The nodal x—coordi- m ay my, aF
nates, X1 and X2, are encoded as 6-bit binary numbers that Z

are mapped by the following function: (X1 — 31.0)*12.0, Cy 40 A; I, Zh./’ (xj_)
which encodes a value range of (-372.0, 384.0) with an unft, = =t Fp=|]i-1 (1)
of inches. The y—coordinates, Y1 and Y2, are encoded as C, L,

2—bit binary numbers. Each of the four encoded binary values

corresponds to a floor level of 0, 1, 2, or 3. All three member

depths are 3—bit binary numbers that encode 8 discrete memherem is the total number of membergy, is the number
ber depths {5, 10, 15, 20, 25, 30, 40, 50} with a unit of inchesof horizontal membersCy is a selected scalar value that is
All of the structural frame members are defined as steel tudarger than the maximum expected volunig; is the maxi-
sections having a fixed width and thickness and a variable deaum total floor space provided by the dimensional bounds
coded depth. The member area and the section modulus @laced on the problem domain; amgandar are selected
calculated based on the member depth decoded. exponential power terms.



A stress penalty functiolRs is used to reduce the GA fitness sym(k,j)is O if member& andj are symmetric or 1 if members
of frame design solutions that violate the maximum stress crk andj are not symmetric.

ia of th i : . o
teria of the design code Applying the LRFD load combinations to structures that are

potentially nonsymmetrical requires the analysis of four

ﬁ As loading cases: two load cases for Dead Load + Live Load on
alternating spans and two load cases for Dead Load + Wing
p. = Cs - = 1Im(Mf’Mf“”’Pf’Pf“” ) ) Load from two directions. Three of the penalty functions,
. =

stress(Ps), horizontal deflection(Pqp), and vertical deflec-

tion (Pyp), must be evaluated for each of the four code speci-
Cs fied loading conditions applied to the structure to determine
the total penalty function. The calculation of the stress and
'deflection penalties requires a separate structural analysis for
each individual in the IRR GA population. Using an unstruc-
tured formulation for the plane frame design problem creates

J; B an is the allowable axial force in membewsg is a se- a difficulty i : ; : .
X ) . i y in applying the gravity and wind loading to the
lected exponential power term; a0gis a selected scalar val structure. The loading cannot be applied to a fixed set of

ue that is larger than the maximum stress interaction penal%embers or nodes. since the same members and nodes are not

The evolved IRR GA frame design solutions must also satis?'ways present due to variable geometry and topology.
serviceability criteria that require the horizontal deflection ofinstéad, the loading applied depends on the topology and ge-
the structure to satisfy the NEHRP allowable inter—story drifPmetry of the each structure. Gravity load is applied uniform-
limits and restricts the vertical deflection of the structuraly @long the horizontal members defined at each floor level.
member to a deflection of less thi#@60 across the member. The alternating spans are defined by the location of the nodes
The penalty functiondyp andPyp used to reduce the fit- along each flo_or level _and dc_J not necessari_ly relate to equal
ness of design solutions that have excessive horizontal ag@@ns. The wind load is applied to the exterior nodes defined
vertical deflections can be stated (with an additional subscrigtt €ach floor level depending on the direction of the wind. If

wherelnt() is the interaction ratio defined by the LRFD code
M; is the design moment in membeM; g is the allowable
moment in member B is the design axial force in member

of y for horizontal ang for vertical deflection): a floor level is not defined at a specific level, the wind load
is transferred to the floors above and below the non—existent
floor level.
n ap
n A4, A product composite penalty terfyot that magnifies the
Cp - I 1( 1.0 + Ao differences existing among the individual penalty terms de-
pPp = - 3) fined in Equations 2 to 4 was defined:
Cp ! h j

wheren is the number of nodes considered for horizontal or Pror = Z Py z Pip* Z Py * Pgy * Py, (9)
vertical deflectiony, is the horizontal or vertical deflection k=1 k=1 k=1

of nodel exceeding the set limitlax is the maximum limit ~ wherel is the number of loading cases analytdd;the num-
on horizontal or vertical deflection for all nodesijs a se- ber of load cases analyzed for horizontal deflection;jasd
lected exponential power term, a@ds a selected scalar val- the number of load cases analyzed for vertical deflection.
ue that is larger than the maximum horizontal or vertica

deflection penalty. IExpenmentaI results for the frame synthesis design problem

presented in this paper were obtained using a product com-
Aesthetics are introduced into the synthesis search processgsite fitness function that is composed of two fitness terms
promoting the symmetric placement of structural membergnd ten penalty terms:

and nodes, while still allowing the consideration of honsym-

metrical member and node placement. Penalties for non— max F [x] = F, * Fr * Pyop (6)
symmetrical members and nodes in the structure are calcu-

lated using a 2'-0" tolerance. The nodal and membefhe values of the scalar terms stated in the fitness and penalty
symmetry penalty function®syandPsy, can be stated that functions defined by Equations 1 to 4 are providég=
penalize the design solution: 600.0;Cs, G/p, Gup = 2000.042y,ar = 1.0;a1p, anp=4.0jasy,

asw= 0.1 andLy = 2268.0.

A sN Asy

1.0 1.0

4.3 SELECTION OF IRR GA STRING LENGTH

Py = Z(num_Sym*O.Z) Py = zsym(kJ) (4) The selection of the appropriate level of redundancy is an im-
k=1 k=1 portant design consideration (Raich & Ghaboussi, 1997).
The GL pattern selected affects the number of gene instances
initialized in the randomly generated population of strings.
wherenum_Synis the number of nhon—symmetrical nodes;This effect is directly related to the probability of an occur-
asN and agy are selected exponential power termasd  rence of the GL pattern within the designated string length.



For a IRR GA string length of 600 bits and a total geneand the maximum floor space allowed by the domain bound-
instance length of 22 bhits, an average of 16 members (geaeies. The beneficial influence of the member symmetry pen-
instances) are randomly initialized in each individual (genoalty on the evolution of design features and complete frame
type). Starting with an overspecified string provides more dieesign solutions is apparent. Incorporating symmetry into
versity initially to the solution process. The overspecifiedthe design process by penalizing unsymmetrical solutions al-
string protects the population from premature convergendewed the evaluation of single members before promoting the
by reducing the average stress and deflection penalties duriaddition of symmetrical members to the structure. To support
early generations, which lowers the severity of the penaltiesnember symmetry, the IRR GA genotype must maintain two
separate gene instances, which correspond to the pair of sym-
metrical members, within the genotype. The self-organiza-
4.4 GENETIC CONTROL OPERATORS USED tion of the location independent gene instances along the IRR
GA genotype helps to protect these pairs of gene instances
The search space for the frame synthesis design problem iffem the disruption of crossover and mutation. If this flexibil-
cludes multiple, equally optimal solutions. To ensure that thigy of encoding is not provided, representing structures hav-
population did not converge to a single optimum, fitness shaing multiple pairs of symmetrical members is difficult.
ing was used to distribute the population among multiple
solutions with only a few individuals maintained in the vicin-
ity of each solution in the search space (Goldberg & Richard
son, 1987). A niche countj was used to reduce the fithess
of similar individuals. The sharing function applied was the W
same as defined by Goldberg (1989) with a similarity mea- ,Jx % 4}
surepgs, of 0.05 to control the size of the niche. An Euclidear
distance measure was calculated to relate the similarity b
tween the satisfaction of the individual objective and penalt [\ / A
terms for all individuals in the population. The fitness of eact X \/ ’L
individual was reduced based on the number of similar indi
viduals in the current population as defined by the niche
count,m. Tournament selection was performed using the
modified fithess values to determine the next generation pop-Figure 5: IRR GA frame design solutions represented by
ulation. A tournament group ofindividuals was selected for  the fittest population individual after 1500 generations.
competition. The individual with the highest fithess in the
tournament group was selected to be the winner of the tournadditional IRR GA frame synthesis design trials are pres-
ment. To ensure that the fittest individual in the current popuented using a less unstructured problem formulation. The
lation was not removed because of a low selection pressun@dal x—coordinates (X1 and X2) encoded in the genotype
or destroyed because of the disruption of crossover or mutgene instances were restricted to a 10'-0" spacing along each
tion, an elitist strategy was used. The fittest individual in théloor, instead of the 1'-0" spacing used in the previous trials
current population was copied to the next generation bypasy using 3-bit binary encodings. Multiple, randomly initial-
sing any genetic manipulation. ized IRR GA trials were performed using the product com-

) ) _ posite fithess function defined by Equation 6, a population
To increase the number of string segments recombined andd@e of either 100 or 200, a string length of 600, and a tourna-
reduce the size of each of the string segments exchanggflent size of 5. The reduced population size and string length
multiple point crossover was used. A random, normal disresyited from constraining the size of the search space by re-
Frlbutmn was used to select the number of crossover sites Uacing the number of possible x—coordinate locations as-
ing a mean of 10 crossovers and a standard deviation of tW§igned. The frame synthesis design solutions obtained after
A crossover rate of 1.0 was used. Single bit mutation was agoo generations for four IRR GA trials are shown in Figure
plied to the population using a mutation rate of either 0.0025, The evolved synthesis design solutions satisfied the sym-
or 0.0033. metry penalties to a greater extent than the trials performed

without placing a restriction of the x—coordinates of the
nodes.

5 FRAME SYNTHESIS DESIGN RESULTS
The frame synthesis design solutions shown in Figure 6 pro-

Experimental trials were performed using the IRR GA tovide good complete frame design solutions that incorporate
model the fully unstructured plane frame problem domain denclined columns to aid in resisting wind loading, tension
fined in Figure 2. Three frame synthesis design solutionsiembers carrying gravity loading, and stiff, triangular sub-
evolved by the IRR GA after 1500 generations using a popustructures. A striking feature of these designs was the specifi-
lation size of 200, a string length of 800 bits, and a tournamehtion of separate load carrying systems for the individual
size of 10 are presented in Figure 5. The IRR GA trials werloors. For the design solution shown in the bottom, right—
randomly initialized using different random seeds. The prodhand corner of Figure 6, the second and third floor loadings
uct composite fitness function defined by Equation 6 wasre carried to the foundation through an arch structural sys-
used for these trials. Each of the IRR GA frame synthesis déem. The first floor loading is carried on additional vertical,
sign trials converged to design solutions that had three storiese—story columns.



towards the domain boundaries and the nodal coordinates are
placed in nearly symmetrical positions. The synthesis of the
topology and geometry of the design solution continued until
\/ “/ 200 generations were performed. Shape optimization of the

“ > member depths was performed after 200 generations on the

| | synthesized topology and geometry. The best frame design
| solution at 500 generations is symmetric and optimizes the

| floor space and the volume objectives well. The design solu-
> By B o /»L N B» tion also satisfies the stress, deflection, and symmetry penal-
Population Size = 100 Population Size = 200 ties for each of the four applied loading configurations.

Figure 6: IRR GA frame design solutions represented by 5.2 DIVERSITY OF IRR GA POPULATION
the fittest population individual after 500 generations. '
The diversity of the population during evolution can be inves-

tigated by comparing the maximum fitness obtained by the
5.1 EVOLUTION OF FRAME SYNTHESIS DESIGN population at each generation with the average fitness of the
SOLUTIONS population. Figure 8 presents a plot of both the maximum
) ) ) and average fitness for the IRR GA trial shown and presented
The IRR GA evolutionary process starts with a population ofy Figure 7. During early generations, the IRR GA is synthe-
randomly |n|_t|aI|;ed individuals. During each generation, asjzing the topology and geometry of the design solutions. For
new population is selected based on fitness, with those indine remaining generations (after generation 200 for the trial
viduals having a higher fitness having a greater probability a§hown in Figure 8), the IRR GA performs member size opti-
being selected. Crossover and mutation are applied to the $gization on the best fixed structural topology and geometry
IeCted |nd|V|dUa|S to create new |nd|V|dUalS that retain thqhat is evo|ved_ The disruptive effect Of crossover and muta-
beneficial characteristics of their predecessors. The proceggn on the IRR GA genotype, however, makes the size opti-
of evolving frame synthesis design solutions can be investinization process difficult. The flexibility provided to encode
gated by examining the features of the fittest individual in thggriable topologies and geometries during synthesis does not
IRR GA population at specific generations. Figure 7 presentigroyide the best representation for performing size optimiza-
an overview of the evolutionary search process for one of thgon. The average population fitness did not converge to the
IRR GA frame synthesis design trials shown in Figure 6. maximum fitness after synthesis was completed. Conver-
gence of the population indicates that the population individ-
uals are becoming similar and are representing similar design

| solutions. Instead, the population diversity was maintained
e throughout the entire evolutionary process of synthesis and
W/ M optimization for the IRR GA trial.
Generation 1 Generation 20 10
Synthesis(J» Optimization | Fit
aximum rimess
0.8 l )
Generation 50 Generation 100 |
2 0.6
(&)
g ¢ ! "
2 ,Mwﬂ' Il““"“ 'I 'ﬁh“ﬂ‘j
0.4 \ 3 )
Generation 200 Generation 500 ] I Average Fitnes
!
S
Figure 7: Example of the evolution of the best IRR GA
design solution at each generation. 0.05——g 2@ — 2300
enerations

After one generation, the frame design solution represented

by the IRR GA population individual is not random since one . )

tournament selection has been performed. Although three Figure 8: Maximum and average fitness of the IRR GA
stories are defined by the design solution, the floor space pro- Population over 500 generations for a single tih a

vided by each story does not extend to the domain boundaries. ~ 10'—0" restriction on the x—coordinate spacing.

The frame design solution also has more members than are

required, which prevents assigning extremely high stress a

de?lection penal?ies to a highgper?:entage my th(gJ populatio -3 FCI:Q?A'KIAFI)EASESSCI)C';\INO&)TST?SN%ND STANDARD

The best frame design solution at 20 generations included

several design features that were similar to the features foufithe quality, or the optimality, of the IRR GA frame design
in the final design solution. After 50 generations, the influ-solutions cannot be determined directly based on a compari-
ence of the floor space objective and the nodal symmetry pesen with known optimal frame design solutions. The frame
alty begins to appear. The floor space provided is extendetesign problem has numerous optimal solutions that each sat-



isfy the constraints and optimize the objectives equally welide competitive solutions when compared with the standard
using different structural configurations of member sizesframe design solutions generated using trial and error. Both
topologies, and geometries. Three frame design solutiodRR GA trials have volumes that compare favorably with the

were determined using a trial and error design process usiistandard frame design solution volumes. The average hori-
standard frame topologies and geometries. The standazdntal and non—horizontal member stress ratios for the IRR
frame design solutions used only vertical columns and rectaGA synthesis solutions are lower than those maintained by
gular bays and are shown graphically in Table 1 as frame d#ie standard design solutions.

sign solutions |, Il, and lll. Standard frame design | has three . . .
12'-0" stories and three, 20'-0” bays. Standard frame desi hhe IRR GA synthesis design method evolved solutions that

Il has three, 12'-0" stories and two, 30'-0” bays. Standard@'e a symmetric topology and geometry, but that do not nec-

frame design |1l has three, 12'—0" stories and three bays, b§SSarily have symmetric member sizes. Both IRR GA trials
with a 10'~0” wide interior bay and two, 25'-0” wide exterior presented in Table 1 were evaluated after modifications were

bays. performed to provide symmetric member sizes and to also re-
duce any excessive deflection of specific nodes. The exces-
Table 1 presents the structural performance of the three stasive deflections that occurred in the IRR GA frame design
dard frame design solutions. The categories used for compaslutions were located at the nodes of members that cantile-
ison are the total volume of the structure, the maximum horiver from the main supporting members. The NAL (Modified)
zontal deflection, the maximum vertical deflection, thetrial provided a very competitive design solution. The other
average stress ratio in the horizontal members, and the avéRR GA trial (NAH) reduced the excessive deflections at the
age stress ratio in the non—horizontal members. Two valuexpense of increasing the structural volume.
of average stress ratio are provided: the stress induced

b . .
gravity loading and the stress induced by wind loading, whicllf}/add't'on' one IRR GA trial was selected and changes were
is indicated by italics. Standard frame design solution | pro@de to the evolved structural member sizes to increases the
vided the lowest volume of the three design solutions. AIRVErage stress ratios in the horizontal and non-horizontal
three design solutions, 1, 11, and IIl, provided approximately"€MPers, resulting in the best frame design solution of all of
the same level of structural deflection and relatively low leviN€ alternatives examined. The IRR GA trial NAL (Ratio) de-
els of average stress ratios under both gravity and wind Ioa?'—gn solution provided the structure with the lowest volume
ing. 90.665), while increasing the average stress ratios to levels

closer to those provided by the standard frame design solu-
Two IRR GA frame synthesis design solutions are selectetions examined. The low stress ratios maintained by the IRR
from the previous results for comparison with the standar@A design solution could be addressed in future trials by
frame design solutions. IRR GA trials (NAL and NAH) penalizing the design solutions for under—stress of the mem-
shown in Table 1 restricted the nodal x—coordinates to 10'—-Oers in addition to the current penalty for over—stress of the
spacings. The IRR GA frame design solutions presented praaembers.

Table 1: Evolutionary Frame Solutions vs. Trial and Error Frame Solutions

I ﬁ NAL $£ NAH

| 11
Structure Volume Amax Amax Horizontal Vertical
(ft3) Horizontal (in.) Vertical (in.) Member Stress Ratio Member Stress Ratio

Solutions Generated by Trial and Error
1 99.666 0.5241 0.25 0.527916/0.295562 0.290942/0.185533
11 102.666 0.5585 0.25 0.546607/0.418753 0.416128/0.257392
111 105.499 0.5704 0.25 0.482846/0.292252 0.421776/0.229096

Solutions Generated by IRR GA

NAL 104.506 0.7216 0.27 0.299691/0.179408 0.364494/0.241060
NAL (Modified) 99.811 0.4281 0.28 0.395359/0.213128 0.346513/0.214314
NAL (Ratio) 90.665 0.7772 0.55 0.435417/0.239017 0.374775/0.251001
NAH 108.422 0.558 1.44 0.362441/0.191724 0.373888/0.230802
NAH (Modified) 118.336 0.216 0.89 0.247890/0.130361 0.324134/0.188822
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