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Abstract

X-ray spectroscopic analysis is a powerful
tool for plasma diagnostics. We use genetic
algorithms to automatically analyze experi-
mental X-ray line spectra and discuss a par-
ticular implementation of the genetic algo-
rithm suitable for our problem. Since spec-
troscopic analysis may be computationally
intensive, we also investigate the use of case
injected genetic algorithms for quicker anal-
ysis of several similar (time resolved) spec-
tra. Preliminary results are promising and
genetic algorithms seem to provide a reliable
and robust approach for automated analysis
of X-ray line spectra.

1 INTRODUCTION

X-ray spectroscopic analysis is a widely used method
for hot dense plasma diagnostics (Griem, 1992). Spec-
troscopy diagnostics is important for astrophysical as
well as laboratory plasmas. In this paper we discuss
spectroscopic analysis of experimental X-ray line spec-
tra obtained during Inertial Con�nement Fusion (ICF)
experiments. The idea is the following: given a physics
model for the calculation of X-ray line spectra that
depend on plasma parameters (e.g., temperature and
density) a genetic algorithm based procedure automat-
ically looks for the best synthetic spectra �t to exper-
imental data. In turn, determination of temperature
and density during ICF implosion experiments is im-
portant to provide insight into studying the possibility
of controlled thermonuclear fusion.

In many cases observation of radiation that comes from
plasmas is the only source of information available.
The analysis of recorded spectral intensity distribu-
tion of the radiation (experimental spectra) usually

proceeds as follows:

� A theoretical synthetic spectrum is computed de-
pending on plasma parameters that de�ne the in-
tensity distribution of radiation coming from the
object,

� Experimental spectrum and theoretical �t are
compared.

� Based on the quality of the comparison a new set
of plasma parameters and synthetic spectrum are
computed.

� These steps are iterated until the best theoretical
�t to the experiment is obtained.

If the theoretical spectrum matches experimental data,
we assume that the parameters used to construct the
synthetic spectrum are representative of the state of
the plasma during the formation of the X-ray line spec-
tra. In general real spectra are very complex and the
intensity distribution depends quite non-linearly on
the �tting parameters (in our case: temperature, den-
sity, and shift). These parameters may vary within
a known range, and the problem is to �nd the best
combination within that range. The complexity of the
parameters' functional dependence makes it di�cult
for conventional search algorithms to �nd good solu-
tions. Thus, looking for the best �t to experimental
data may be a lengthy and laborious procedure involv-
ing much twiddling of parameter values. In this paper,
we investigate the application of Genetic Algorithms
(GAs) for this task (Holland, 1975; Goldberg, 1989).
The GA does not perform a simple random walk but
does a selective exploration of the search space. Its ro-
bustness in �nding a solution in a poorly understood
search space was our primary motivation in choosing
it as our search engine for �tting experimental X-ray
spectra.



Another problem investigated in this paper concerns
time resolved spectra that provide important informa-
tion about evolution of plasmas. Analysis of such spec-
tra allows us to determine plasma temperature and
density as a function of time. Usually there are no
abrupt changes of plasma parameters and therefore
subsequent spectra are similar. Furthermore, spec-
tra may be simultaneously collected by several in-
struments and need to be analyzed. In other words,
time resolved and multi-instrument spectra lead to se-
quences of similar spectral analysis problems. It makes
little sense using a randomly initialized genetic algo-
rithm for each time interval or for each instrument
when information from previous search attempts on
similar problems is available. Case Injected Genetic
AlgoRithms (CIGARs) were designed to learn to solve
such similar problems quickly (Louis and Johnson,
1997). We therefore use CIGARs to accelerate spec-
troscopic analysis and/or produce better theoretical
�ts to sets of similar experimental spectra.

CIGARs combine genetic algorithms with a case-based
memory to improve performance at related tasks.
Typically, a genetic algorithm randomly initializes its
starting population so that the GA can proceed from
an unbiased sample of the search space. Instead, pe-
riodically injecting a genetic algorithm's population
with relevant solutions or partial solutions to similar
previously solved problems can provide information (a
search bias) that reduces the time taken to �nd a qual-
ity solution. In CIGAR, the data-base, or case-base,
of problems and their solutions supplies the genetic
problem solver with a long term memory. The sys-
tem does not require a case-base to start with and can
bootstrap itself by learning new cases from the genetic
algorithm's attempts at solving a problem. Figure 1
shows a conceptual view of CIGAR. When confronted
with a problem, we periodically inject a small num-
ber of solutions similar to the current best member of
the GA population (closest to the best) into the cur-
rent population, replacing the worst members. The
GA continues searching with this combined popula-
tion. During a GA search, whenever the �tness of the
best individual in the population increases, the new
best individual is stored in the case-base. Reusing old
solutions has been a traditional performance improve-
ment procedure. Our work di�ers in that we attack
a set of tasks, store and reuse intermediate candidate
solutions which results in better performance, and do
not depend on the existence of a problem similarity
measure avoiding indexing problems common to case-
based systems.

What happens if our similarity measure is noisy and/or
leads to unsuitable retrieved solutions? By de�ni-
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Figure 1: Conceptual view of CIGAR.

tion, unsuitable solutions will have low �tness and
will quickly be eliminated from the GA's population.
CIGAR may su�er from a slight performance hit but
will not break or fail { the genetic search compo-
nent will continue making progress towards a solution.
CIGAR is robust. Note that we can choose schemes
other than injecting the closest to the best; schemes
such as furthest from the worst and probabilistic ver-
sions of both have proven e�ective.

We performed several calculations using a simpli�ed
physical model (in order to reduce computing time)
with the goal of studying di�erent crossover, muta-
tion, and selection operators as well as learning strate-
gies and their e�ect on convergence. Computing times
vary from 2-3 seconds per evaluation for the simple
model to several minutes per evaluation for complex
models on an SGI Power Challenge machine. The re-
sults are quite promising and will allow us to apply the
techniques proposed in this paper (GAs and CIGAR)
to more complex problems that include parameteri-
zation of the temperature and density gradients for
non-uniform plasmas.

2 METHODOLOGY

Computing a theoretical synthetic spectrum of the ra-
diation coming from hot dense plasma is a non-trivial
problem. For our purposes we used the LAMBDA
model and code (Golovkin and Mancini, 1999) for
uniform, optically thin plasmas. This model calcu-
lates synthetic spectra in an one-dimensional plane-
parallel slab plasma approximation. As boundary con-
ditions we use absence of incident radiation on ei-
ther side of the plasma slab. Atomic processes in-
cluded in the model are electron collisional excita-
tion and de-excitation, electron collisional ionization
and recombination, autoionization and electron cap-
ture, spontaneous radiative decay, stimulated emis-
sion, photoexcitation, and radiative recombination.
Atomic rates, cross sections and energy level structure



were calculated with the Los Alamos National Lab-
oratory atomic structure and scattering codes. Col-
lisional rates were computed by integrating cross sec-
tions with a Maxwellian electron distribution function.
Intrinsic line pro�les in the model are Stark-broadened
line shapes calculated in the standard Stark broaden-
ing theory approximation using a multielectron radia-
tor line pro�le code that takes into account the e�ects
due to the micro�elds of the plasma ions and electrons.
The e�ect of the ions was calculated in the static ion
approximation (except for the resonance line that in-
cludes ion dynamics e�ects), while that of the electrons
using a quantum-mechanical second-order relaxation
theory. The ion micro�eld distribution function was
calculated using the APEX model assuming equal ion
and electron temperatures. No line shifts have been
considered in these line pro�les. All these data are
input to our model that self-consistently solves a set
of collisional-radiative atomic kinetics equations and
the radiation transport equation. This is important
for plasmas that are not in local thermal equilibrium.
We utilize an iterative procedure to calculate atomic
population and radiation �eld.

The problem can be tremendously simpli�ed if one as-
sumes that the plasma is optically thin. This assump-
tion allows us to uncouple atomic kinetics and radia-
tion transport equations and signi�cantly decrease ex-
ecution time since radiation dependent rates that in-
volve space, angle, and frequency integration no longer
need to be computed.

These approximations allowed us to signi�cantly re-
duce the time required for computing synthetic spec-
tra while keeping the 
avor of the model intact. This
sacri�ce of several physical processes was necessary to
allow us to perform a series of numerical experiments
to study the e�ects of di�erent GA operators and pa-
rameters and to evaluate the genetic algorithm's e�ec-
tiveness as a spectra-�tting tool. We plan on using
the more computationally intensive but physically ac-
curate plasma models after this feasibility study and
GA tuning.

We chose the He� and associated Li-like satellites
composite spectral feature as a characteristic exam-
ple of X-ray line spectra widely used for spectroscopy
diagnostics. Figure 2 displays an experimental spec-
trum of this feature and a theoretical �t. Also indi-
cated in the �gure are the density, temperature and
shift obtained from the analysis. The experimental
spectrum was recorded during a laser-driven implo-
sion performed at the Laboratory for Laser Energetics,
University of Rochester (Haynes and et. al., 1996).

The distance between experimental and theoretical
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Figure 2: Experimental X-ray spectrum and theoreti-
cal �t.

spectra is de�ned as the sum of squared di�erences
of intensities of the spectra evaluated at the experi-
mental photon energy points (EPEP). That is,

distance =
X

EPEP

(Iexp � Itheor)
2:

We use this formula since the photon energy points
are the same for all experimental spectra in our prob-
lem. In the more general case, when the number of
experimental points varies from one spectrum to an-
other, we would use mean squared error or other ways
to measure the distance. The intensity of the theoret-
ical spectrum needs to be adjusted automatically to
minimize the di�erence. While temperature and den-
sity de�ne a shape of the theoretical spectrum, the
shift helps to correct for plasma e�ects as well as un-
certainty in the experimental data. Since we want to
minimize the sum squared distance (error) and genetic
algorithms always maximize �tness we de�ne �tness as

�tness =
1

distance

and therefore convert the minimization of distance into
the maximization of �tness. Figure 3 shows a typical
evaluation function.

Temperature, density, and shift vary within a known
range. For each of the parameters we use a binary
5-bit encoding that results in a 15-bit chromosome.
This encoding provides su�cient precision for plasma
diagnostic purposes. Figure 4 illustrates the encoding
and mapping of our parameters.

We expect our proposed method to work for more com-
plete physical models and therefore implemented an
elitist selection scheme modeled after the CHC algo-
rithm with linear scaling (Louis and Rawlins, 1991)
that is claimed to converge quickly. A combination
of conservative selection, highly destructive crossover
and mutation operators, and �tness scaling makes the
algorithm quite powerful and robust (Eshelman, 1991).
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We use a case injected genetic algorithm on seven (7)
time resolved spectra. There are two performance cri-
teria for evaluating CIGAR's e�cacy: Quality of solu-
tion and time taken to �nd the highest quality solution.
An increase in the quality of solution with number of
problems solved and/or a decrease in time needed to
produce a high quality solution will support the valid-
ity of this approach.

The next section presents our results with GAs applied
to single spectra and CIGAR applied to multiple time-
resolved spectra.

3 RESULTS

We performed a series of experiments to adjust GA
parameters so that we can reliably �nd good quality
solution quickly. Analysis of the results from these ex-
periments with spectra taken from plasmas with dif-
ferent parameters convinced us that the GA reliably
converges to a physically meaningful result when using
the parameters in Table 1.

For each experimental spectrum we run the GA ten
(10) times with di�erent initial random seeds. Figure 5
shows maximum, average, and minimum �tness aver-
aged over ten runs as a function of generation number

Table 1: GA parameters that lead to fast convergence

Chromosome length 15
Population size 40
Maximum number of generations 40
Crossover probability 0.95
Mutation probability 0.05
Fitness scaling factor 1.2

for a characteristic experimental spectrum.
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Figure 5: Maximum, average, and minimum �tness vs.
number of generations

All the results are acceptable even though not all of
the runs produced maximum �tness. Uncertainty in
experimental data does not allow claiming very high
precision in temperature and density diagnostics with
the results that we have the sensitivity threshold indi-
cated in the �gure. Table 2 tabulates GA performance
for three spectra.

Table 2: Performance on three sample spectra

Spec1 Spec2 Spec3

Number of runs 10 10 10
Best �tness found 7143 11322 8809
Worst �tness found 3303 90505 8507
Acceptable results 9/10 10/10 10/10
Avg. convergence speed 520 480 200

These results show the robustness of the algorithm.
Almost all runs had meaningful results and the average
number of evaluations required to get a good solution
(450) is small compared to the size of the search space
(215).

We next applied CIGAR and GA to seven time re-
solved spectra. Note that the �tness of the solution for



each spectrum depends on the quality of the data as
well as the intensity of the radiation. Since intensity
may change signi�cantly during the experiment, we
normalized our experimental spectra to assure compa-
rable �tnesses for all the cases. When applied to the
�rst spectrum we expect no performance di�erence be-
tween the GA and CIGAR since there is no case-base
and both start from randomly initialized populations.
Subsequent spectra should show a performance di�er-
ence with the gap widening as more spectra are ana-
lyzed. Figure 6 compares convergence behavior on the
last problem attempted and we can see that CIGAR
converges more quickly.
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Figure 6: Avg. maximum �tness vs. number iterations
on problem 7

There are two distinct phases in plasma behavior over
the time period under consideration. During the �rst
phase the plasma implodes and temperature grows.
The �rst three problems correspond to this phase while
the fourth problem corresponds to the temperature
peak. From this point, the plasma begins to cool ac-
companied by a substantial change in spectra. We
should therefore also expect two distinct phases in
CIGAR's behavior.

We ran both the GA and CIGAR ten (10) times with
di�erent random seeds and use the GA parameters
in Table 1 for both. CIGAR replaces �fteen percent
(15%) of the population with individuals from the case
base every four (4) generations. We replace the worst
members in the population and choose individuals in
the case base that are closest in hamming distance to
the best individual in the current population. We stop
injecting after 20 generations. Increasing the injection
percentage beyond a certain limit tends to degrade
performance and usually leads to premature conver-
gence. In our case 15% worked well although we did
not have time for extensive experimentation. It takes
approximately �ve hours to attempt all seven problems

once. Injecting after about half the maximum number
of generations does not signi�cantly a�ect performance
since the population diversity is low and injected indi-
viduals tend to be repeated.

The injection period of 4 generations was chosen to be
less than the minimum takeover time of an individual.
With our elitist selection scheme an individual could
take over the population in O(log2(population size))
generations. This period balances two parameters: 1)
the time needed by injected individuals to contribute
their genetic material without needing to compete with
newly injected individuals, and 2) the minimum time
needed before an (injected) individual can takeover the
population.

Figure 7 compares the quality of solutions produced by
the GA to the quality of those produced by CIGAR.
The �gure plots the number of spectra analyzed on
the x-axis versus the average, over ten runs, of the
maximum �tness on the y-axis. We can see that there
is no signi�cant di�erence in quality. Fitness decreases
from problem 1 to problem 7 because the noise level
increases during the experiment.
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Figure 7: Avg. maximum �tness vs. number of prob-
lems attempted

Figure 8 compares the time taken to �nd these best
solutions by the GA versus the time taken by CIGAR.
The x-axis is again the number of spectra analyzed
while the y-axis plots the average (over ten runs) time
taken to �nd the best solution. We can see that
CIGAR improves upon the time taken to �nd solu-
tions during the �rst phase (problems 1, 2, and 3).
When the temperature peaks resulting in a very dif-
ferent problem, CIGAR's performance (in terms of
speed) su�ers since injected cases are not relevant to
this problem. However, CIGAR does �nd a quality
solution indicating its robustness under adverse con-
ditions. During the second phase performance once
again improves, until it overtakes the GA on the last



problem.
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Figure 8: Avg. convergence time vs number of prob-
lems attempted

4 CONCLUSIONS AND FUTURE

WORK

We studied the possibility of using genetic algorithms
for the analysis of experimental X-ray spectra and
applied the GA to many experimental spectra with
promising results. The GA reliably found good so-
lutions in a relatively small number of evaluations.
We emphasize that the plasma temperatures and den-
sities obtained with the GA-driven spectra analysis
are consistent with values expected at the collapse of
an ICF implosion. We also applied case injected ge-
netic algorithms to seven time-resolved spectra. Our
results indicate that when the spectra are similar,
CIGAR learns to take less time to �nd good solu-
tions. When problems are dissimilar, CIGAR is robust
enough to recover and �nd acceptable solutions al-
though it may take longer. Along with parallelization,
CIGAR should signi�cantly reduce computing time al-
lowing for the analysis of large numbers of spectra.

We are planning to use our methodology to analyze ex-
perimental data using more complete theoretical mod-
els. We expect that for optically thick plasma, the
temperature and density diagnostics may be ambigu-
ous and this might cause the evaluation function to
have a multi-peak structure. This could make the
problem less suitable for other less robust algorithms
and even more suitable for genetic algorithms and
CIGAR. Also, for situations involving many plasma
parameters (e.g., parameterization of plasma gradi-
ents, background level analysis) the availability of ef-
�cient search algorithms for data analysis is critical.

Our preliminary work in this area with more complex
but more accurate physical models (optically thick

non-uniform plasma) shows promise. Both the GA and
CIGAR perform well if we increase the population size
and number of generations to 50 to cater to the larger
search space brought on by the extra parameters in the
more complex physical model. Unfortunately, detailed
analysis of performance and speed does not seem to be
feasible at this point since �tting one spectrum takes
several days.
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