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Abstract

This paper presents a novel and effective
genetic algorithm approach for generating
computational models for hazard assessment.
With millions of proposed chemicals being
registered each year, it is impossible to come
even remotely close to completing the battery
of tests needed for the proper understanding
of the toxic effects of these chemicals. Com-
puter models can give quick, cheap, and en-
vironmentally friendly hazard assessments of
chemicals. Our approach works by first ex-
tracting a hierarchy of theoretical descriptors
of the structure of a compound, then filtering
these numerous descriptors with a genetic al-
gorithm approach to ensemble feature selec-
tion. We tested the utility of our approach by
modeling the acute aquatic toxicity (LC50)
of a congeneric set of 69 benzene derivatives.
Our results demonstrate a very important
point: that our method is able to accurately
predict toxicity directly from structure.

1 INTRODUCTION

By the end of 1998 the number of chemicals registered
with the Chemical Abstract Service rose to over 19
million (CAS 1999). This is an increase of over 3
million chemicals between 1996 and 1998. It is de-
sirable to test each of these chemicals for their effects
on the environment and human health (which we re-
fer to as hazard assessment); however, completing the
battery of tests necessary for the proper hazard as-
sessment of even a single compound is a costly and
time-consuming process. Therefore, there is simply
not enough time or money to complete these test bat-
teries for even a tiny portion of the compounds which
are registered today (Menzel 1995). An alternative to

these traditional test batteries is to develop computa-
tional models for hazard assessment. Computational
models are fast (milliseconds per compound), cheap
(less than one cent per compound), and do not run
the risk of adversely affecting the environment during
testing. Additionally, these computational methods
can replace or limit the amount of animal testing that
is necessary. Thus computational models can easily
process all registered chemicals and flag the ones that
require further testing. The central problem with this
approach is developing class specific models that can
be considered accurate enough to be useful. In this
paper, we present a novel and effective approach for
learning computational hazard assessment models by
using an ensemble feature selection algorithm based on
genetic algorithms (GAs) to filter numerous theoreti-
cal descriptors of chemical structure.

To better illustrate the need for effective and quick
hazard assessment, we should consider the situation
of the industrial chemicals ”grandfathered” into con-
tinued use under the Toxic Substances Control Act
(TSCA) of 1976. TSCA has required that a suite of
physicochemical and toxicological screens be run on all
commercial compounds (those produced or imported
in volumes exceeding one million pounds annually) de-
veloped after 1976. However, there are almost 3,000
chemicals that were ”grandfathered” in with the un-
derstanding that it would be the responsibility of the
chemical manufacturing industry to ultimately sup-
ply information about these chemicals. Only recently,
after a 20-year delay, are the chemical manufactur-
ers talking about running 2,800 of these compounds
through basic toxicity screens and while this is promis-
ing, these screens will not be completed until 2004 and
at a cost of between $500 to $700 million dollars. So it
will be another five years before we have basic toxicity
data on compounds that have been in wide-spread use
for more than twenty years (Johnson 1998).

One of the fundamental principles of biochemistry is



that activity is dictated by structure (Hansch 1976).
Following this principle, one can use theoretical molec-
ular descriptors that quantify structural aspects of
a molecule to quantitatively determine its activity
(Basak & Grunwald 1995; Cramer, Famini, & Lowrey
1993). These theoretical descriptors can be generated
directly from the known structure of the molecule and
used to estimate its properties, without the need for
further experimental data. This is important due to
that fact that, with chemicals needing to be evaluated
for hazard assessment, there is a scarcity of available
experimental data that is normally required as inputs
(i.e., independent variables) to traditional quantitative
structure-activity relationship (QSAR) model develop-
ment. A QSAR model based solely on theoretical de-
scriptors on the other hand can process all registered
chemicals for hazard assessment.

Our hierarchical approach examines the relative con-
tributions of theoretical descriptors of gradually in-
creasing complexity (structural, chemical, shape, and
quantum chemical descriptors). This approach is im-
portant as none of the individual classes of parame-
ters are very effective at predicting toxicity (Gute &
Basak 1997); however, we show in this paper that we
can effectively predict toxicity if we combine all levels
of descriptors. One potential problem with using our
hierarchical approach is that it often gives many in-
dependent variables as compared to data points since
having a limited number of data points in not uncom-
mon in hazard assessment. For instance, in our case
study of predicting acute toxicity (LC50) of benzene
derivatives, we have 95 independent variables and 69
data points. Therefore, reducing the number of inde-
pendent variables is critical when attempting to model
small data sets. The smaller the data set, the greater
the chance of spurious error when using a large num-
ber of independent variables (descriptors). In some
of our earlier QSAR studies we have used statistical
methods such as principal components analysis (PCA)
and variable clustering methods to reduce the num-
ber of independent variables (Basak & Grunwald 1995;
Gute & Basak 1997; Gute, Grunwald, & Basak In
press).

As an alternative solution, we use our previous en-
semble feature selection approach (Opitz 1999) that
is based on GAs. An “ensemble” is a combination
of the outputs from a set of models that are gener-
ated from separately trained inductive learning algo-
rithms. Ensembles have been shown to, in most cases,
greatly improve generalization accuracy over a single
learning model (Breiman 1996; Maclin & Opitz 1997;
Shapire et al. 1997). Recent research has shown that
an effective ensemble should consist of a set of models

that are not only highly correct, but ones that make
their errors on different parts of the input space as
well (Hansen & Salamon 1990; Krogh & Vedelsby 1995;
Opitz & Shavlik 1996a). Varying the feature subsets
used by each member of the ensemble helps promote
the necessary diversity and create a more effective en-
semble (Opitz 1999). We use GAs to search through
the enormous space of finding a set of feature subsets
that will promote disagreement among the component
members of an ensemble while still maintaining the
component member’s accuracy.

Combining our approach of generating hierarchical
theoretical descriptors with our other approach to GA-
based ensemble feature selection, we are able to gen-
erate an effective model for predicting the toxicity of
benzene derivatives using only a few compounds. Our
results show that our model is nearly as accurate as the
battery of tests necessary for the proper hazard assess-
ment of a single compound. Our results also confirm
that our new ensemble feature selection approach is
more effective than previous approaches for modeling
hazard assessment.

The rest of the paper is organized as follows. First
we provide background and related work for both our
hierarchical QSAR approach and our GA-based en-
semble feature selection approach. This is followed by
results of our approach applied to benzene derivatives.
Finally, we discuss these results and provide future
work.

2 QSAR AND THEORETICAL
METHODS

QSARs have come into widespread use for the pre-
diction of various molecular properties, as well as bi-
ological, pharmacological and toxicological responses.
Traditional QSAR techniques use empirical properties
(Dearden 1990; Hansch & Leo 1995; de Waterbeemd
1995); however, due to the scarcity of available data
for the majority of chemicals needing to be evaluated
for hazard assessment, these physicochemical proper-
ties necessary for traditional QSAR model develop-
ment may not be available. When this is the case, it
is imperative that there are methods available which
make use of nonempirical parameters, which we term
theoretical molecular descriptors.

Topological indices (TIs) are numerical graph invari-
ants that quantify certain aspects of molecular struc-
ture (Gute & Basak 1997; Gute, Grunwald, & Basak
In press). The different classes of TIs provide us
with nonempirical, quantitative descriptors that can
be used in place of experimentally derived descriptors



in QSARs for the prediction of properties.

Our recent studies have focused on the role of different
classes of theoretical descriptors of increasing levels of
complexity and their utility in QSAR (Gute & Basak
1997; Gute, Grunwald, & Basak In press). Four dis-
tinct sets of theoretical descriptors have been used in
this study: topostructural, topochemical, geometric,
and quantum chemical indices. Gute and Basak 1997
provide the detailed list of the indices included in our
study.

2.1 TOPOLOGICAL INDICES

The topostructural and topochemical indices fall into
the category normally considered topological indices.
Topostructural indices (TSIs) are topological indices
that only encode information about the adjacency and
distances of atoms (vertices) in molecular structures
(graphs), irrespective of the chemical nature of the
atoms involved in bonding or factors such as hybridiza-
tion states and the number of core/valence electrons
in individual atoms. Topochemical indices (TCIs)
are parameters that quantify information regarding
the topology (connectivity of atoms), as well as spe-
cific chemical properties of the atoms comprising a
molecule. These indices are derived from weighted
molecular graphs where each vertex (atom) or edge
(bond) is properly weighted with selected chemical or
physical property information.

The complete set of topological indices used in this
study, both the topostructural and the topochemi-
cal, have been calculated using POLLY 2.3 (Basak,
Harriss, & Magnuson 1988) and software developed
by the authors. These indices include the Wiener in-
dex (Wiener 1947), the connectivity indices developed
by Randic 1975 and higher order connectivity indices
formulated by Kier and Hall 1986, bonding connec-
tivity indices defined by Basak and Magnuson 1988,
a set of information theoretic indices defined on the
distance matrices of simple molecular graphs (Hansch
& Leo 1995), and neighborhood complexity indices of
hydrogen-filled molecular graphs, and Balaban’s 1983
J indices.

2.2 GEOMETRICAL INDICES

The geometrical indices are three-dimensional Wiener
numbers for hydrogen-filled molecular structure,
hydrogen-suppressed molecular structure, and van der
Waals volume. Van der Waals volume, VW (Bondi
1964), was calculated using Sybyl 6.1 from Tripos As-
sociates, Inc. of St. Louis. The 3-D Wiener numbers
were calculated by Sybyl using an SPL (Sybyl Pro-

gramming Language) program developed in our lab
(SYBYL 1998). Calculation of 3-D Wiener numbers
consists of the sum entries in the upper triangular sub-
matrix of the topographic Euclidean distance matrix
for a molecule. The 3-D coordinates for the atoms
were determined using CONCORD 3.0.1 from Tripos
Associates, Inc. Two variants of the 3-D Wiener num-
ber were calculated: 3DWH and 3DW . For 3DWH ,
hydrogen atoms are included in the computations and
for 3DW hydrogen atoms are excluded from the com-
putations.

2.3 QUANTAM CHEMICAL
PARAMETERS

The following quantum chemical parameters were cal-
culated using the Austin Model version one (AM1)
semi-empirical Hamiltonian: energy of the highest oc-
cupied molecular orbital (EHOMO), energy of the sec-
ond highest occupied molecular orbital (EHOMO1),
energy of the lowest unoccupied molecular orbital
(ELUMO), energy of the second lowest unoccu-
pied molecular orbital (ELUMO1), heat of formation
(∆Hf ), and dipole moment (µ). These parameters
were calculated using MOPAC 6.00 in the SYBYL in-
terface (Stewart 1990).

3 FILTERING DESCRIPTORS

As stated above, one potential problem with including
all theoretical descriptors in the hierarchy is that it
gives many independent variables when compared to
the limited number of data points available for hazard
assessment modeling of a particular chemical deriva-
tive. Compounding this problem is that a salient de-
scriptor for one hazard assessment model may not be a
salient descriptor for another problem. That is, the rel-
evance of a descriptor for predicting hazard assessment
is often problem dependent. This section describes
our approach for automatically filtering the descrip-
tors with a GA-based approach to ensemble feature
detection. Before explaining our algorithm, we briefly
cover the notion of ensembles.

3.1 ENSEMBLES

Figure 1 illustrates the basic framework of a predictor
ensemble. Each predictor in the ensemble (predictor 1
through predictor N in this case) is first trained using
the training instances. Then, for each example, the
predicted output of each of these predictors (oi in Fig-
ure 1) is combined to produce the output of the ensem-
ble (ô in Figure 1). Many researchers (Breiman 1996;
Hansen & Salamon 1990; Krogh & Vedelsby 1995;
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Figure 1: A predictor ensemble.

Opitz & Shavlik 1997) have demonstrated the effec-
tiveness of combining schemes that are simply the
weighted average of the predictors (i.e., ô =

∑
i∈N wi ·

oi and
∑
i∈N wi = 1), and this is the type of ensemble

on which we focus in this article.

Combining the output of several predictors is useful
only if there is disagreement on some inputs. Obvi-
ously, combining several identical predictors produces
no gain. Hansen and Salamon 1990 proved that for an
ensemble, if the average error rate for an example is
less than 50% and the predictors in the ensemble are
independent in the production of their errors, the ex-
pected error for that example can be reduced to zero
as the number of predictors combined goes to infinity;
however, such assumptions rarely hold in practice.

Krogh and Vedelsby 1995 later proved that the ensem-
ble error can be divided into a term measuring the av-
erage generalization error of each individual predictor
and a term called diversity that measures the disagree-
ment among the predictors. Formally, they define the
diversity term, di, of predictor i on input x to be:

di(x) ≡ [oi(x)− ô(x)]
2. (1)

The quadratic error of predictor i and of the ensemble
are, respectively:

εi(x) ≡ [oi(x) − f(x)]2, (2)

e(x) ≡ [ô(x) − f(x)]2, (3)

where f(x) is the target value for input x. If we de-
fine Ê, Ei, and Di to be the averages, over the input
distribution, of e(x), ε(x), and d(x) respectively, then
the ensemble’s generalization error can be shown to
consist of two distinct portions:

Ê = Ē − D̄, (4)

where Ē (=
∑
iwiEi) is the weighted average of

the individual predictor’s generalization error and D̄
(=
∑
i wiDi) is the weighted average of the diversity

among these predictors. What the equation shows
then, is that an ideal ensemble consists of highly
correct predictors that disagree as much as possible.
Opitz and Shavlik 1996a; 1996b empirically verified
that such ensembles generalize well.

Regardless of theoretical justifications, methods for
creating ensembles center around producing predic-
tors that disagree on their predictions. Generally,
these methods focus on altering the training pro-
cess in the hope that the resulting predictors will
produce different predictions. For example, neural
network techniques that have been employed include
methods for training with different topologies, differ-
ent initial weights, different parameters, and training
only on a portion of the training set (Alpaydin 1993;
Freund & Schapire 1996; Hansen & Salamon 1990;
Maclin & Shavlik 1995).

Numerous techniques try to generate disagreement
among the classifiers by altering the training set each
classifier sees. The two most popular techniques
are Bagging (Breiman 1996) and Boosting (Freund
& Schapire 1996). Bagging is a bootstrap ensem-
ble method that trains each network in the ensemble
with a different partition of the training set. It gener-
ates each partition by randomly drawing, with replace-
ment, N examples from the training set, where N is
the size of the training set. As with Bagging, Boosting
also chooses a training set of size N and initially sets
the probability of picking each example to be 1/N .
After the first network, however, these probabilities
change to emphasize misclassified instances. A large
number of extensive empirical studies have shown that
these are highly successful methods that nearly always
generalize better than their individual component pre-
dictors (Bauer & Kohavi 1998; Maclin & Opitz 1997;
Quinlan 1996). Neither approach is appropriate for
our domain since we are data poor and cannot afford
to waste training examples; however, we are feature
rich and can afford to create diversity by instead vary-
ing the inputs to the learning algorithms. Varying the
feature subsets to create a diverse set of accurate pre-
dictors is the focus of the next section.

3.2 THE GEFS ALGORITHM

The goal of our algorithm is to find a set of feature
subsets that creates an ensemble of classifiers (neural
networks in this study) that maximize equation 1 while
minimizing equation 2. The space of candidate sets is
enormous and thus is particularly well suited for ge-



Table 1: The Gefs algorithm.

GOAL: Find a set of input subsets to create an accu-
rate and diverse classifier ensemble.

1. Using varying inputs, create and train the initial
population of classifiers.

2. Until a stopping criterion is reached:

(a) Use genetic operators to create new networks.

(b) Measure the diversity of each network with
respect to the current population.

(c) Normalize the accuracy scores and the diver-
sity scores of the individual networks.

(d) Calculate fitness of each population member.

(e) Prune the population to the N fittest net-
works.

(f) Adjust λ.

(g) The current population is the ensemble.

netic algorithms. Table 1 summarizes our recent algo-
rithm (Opitz 1999) called Gefs (for Genetic Ensemble
Feature Selection) that uses GAs to generate a set of
classifiers that are accurate and diverse in their predic-
tions. Gefs starts by creating and training its initial
population of networks. The representation of each in-
dividual of our population is simply a dynamic length
string of integers, where each integer indexes a partic-
ular feature. We create networks from these strings
by first having the input nodes match the string of
integers, then creating a standard single-hidden-layer,
fully connected neural network. Our algorithm then
creates new networks by using the genetic operators
of crossover and mutation.

Gefs trains these new individuals using backpropoga-
tion. It adds new networks to the population and
then scores each population member with respect to
its prediction accuracy and diversity. Gefs normalizes
these scores, then defines the fitness of each population
member (i) to be:

Fitnessi = Accuracyi + λ Diversityi (5)

where λ defines the tradeoff between accuracy and di-
versity. Finally, Gefs prunes the population to the N
most-fit members, then repeats this process. At every
point in time, the current ensemble consists of sim-
ply averaging (with equal weight) the predictions of
the output of each member of the current population.
Thus as the population evolves, so does the ensemble.

We define accuracy to be network i’s training-set accu-

racy. (One may use a validation-set if there are enough
training instances.) We define diversity to be the av-
erage difference between the prediction of our compo-
nent classifier and the ensemble. We then separately
normalize both terms so that the values range from
0 to 1. Normalizing both terms allows λ to have the
same meaning across domains.

It is not always clear at what value one should set λ;
therefore, we automatically adjust λ based on the dis-
crete derivatives of the ensemble error Ê, the average
population error Ē, and the average diversity D̄ within
the ensemble. First, we never change λ if Ê is decreas-
ing; otherwise we (a) increase λ if Ē is not increasing
and the population diversity D̄ is decreasing; or (b)
decrease λ if Ē is increasing and D̄ is not decreasing.
We started λ at 1.0 for the experiments in this article.
The amount λ changes is 10% of its current value.

We create the initial population by randomly choosing
the number of features to include in each feature sub-
set. For classifier i, the size of each feature subset (Ni)
is independently chosen from a uniform distribution
between 1 and twice the number of original features
in the dataset. We then randomly pick, with replace-
ment, Ni features to include in classifier i’s training
set. Note that some features may be picked multiple
times while others may not be picked at all; replicat-
ing inputs for a neural network may give the network
a better chance to utilize that feature during training.
Also, replicating a feature in a genome encoding allows
that feature to better survive to future generations.

Our crossover operator uses dynamic-length, uniform
crossover. In this case, we chose the feature subsets of
two individuals in the current population proportional
to fitness. Each feature in both parent’s subset is in-
dependently considered and randomly placed in the
feature set of one of the two children. Thus it is pos-
sible to have a feature set that is larger (or smaller)
than the largest (or smallest) of either parent’s fea-
ture subset. Our mutation operator works much like
traditional genetic algorithms; we randomly replace a
small percentage of a parent’s feature subset with new
features. With both operators, the network is trained
from scratch using the new feature subset; thus no in-
ternal structure of the parents are saved during the
crossover.

4 RESULTS

We tested the utility of combining our approach for
generating numerous hierarchical theoretical descrip-
tors of compounds with our approach for filtering
these descriptors with Gefs by modeling the acute



aquatic toxicity (LC50) of a congeneric set of 69 ben-
zene derivatives. The data was taken from the work
of Hall, Kier and Phipps 1984 where acute aquatic
toxicity was measured in fathead minnow (Pimephales
promelas). Their data was compiled from eight other
sources, as well as some original work which was con-
ducted at the U.S. Environmental Protection Agency
(USEPA) Environmental Research Laboratory in Du-
luth, Minnesota. This set of chemicals was composed
of benzene and 68 substituted benzene derivatives.

Table 2 gives our results. We studied three approaches
for modeling toxicity: (1) giving all theoretical descrip-
tors to a neural network, (2) reducing the feature set
in a traditional previously published (Gute & Basak
1997) manner, and (3) using our new genetic algorithm
technique on the entire feature set to create a neu-
ral network ensemble. Results for our approaches are
from leave-one-out experiments (i.e., 69 training/test
set partitions). Leave-one-out works by leaving one
data point out of the training set and giving the re-
maining instances (68 in this case) to the learning algo-
rithms for training. (It is worth noting that each mem-
ber of the ensemble sees the same 68 training instances
for each training/test set partition and thus ensembles
have no unfair advantage over other learners.) This
process is repeated 69 times so that each example is
a part of the test set once and only once. Leave-one-
out tests generalization accuracy of a learner, whereas
training set accuracy tests only the learner’s ability to
memorize. Generalization error from the test set is the
true test of accuracy and is what we report here.

We first trained neural networks using all 95 param-
eters. The networks contained 15 hidden units and
we trained the networks for 1000 epochs. We normal-
ized each input parameter to a values between 0 and 1
before training. Additional parameter settings for the
neural networks included a learning rate of 0.05, a mo-
mentum term of 0.1, and weights initialized randomly
between -0.25 and 0.25. With all 95 input parameters,
the neural networks obtained a test-set correlation co-
efficient between predicted toxicity and measured toxi-
city (explained variance) of R2 = 0.868 and a standard
error of 0.29. Target toxicity measurements ranged
from 3.04 to 6.37.

Our first method for feature-set reduction follows the
work of Gute and Basak 1997 on toxicity domains.
Their method begins by using the VARCLUS method
of SAS 1998 to select subsets of topostructural and
topochemical parameters for QSAR model develop-
ment. With this method, the set of topological in-
dices is first partitioned into two distinct sets, the
topostructural indices and the topochemical indices.

Table 2: Relative effectiveness of statistical and neural
network methods in estimating LC50 of 69 benzene
derivatives.

Method R2 Standard Error
NN with 95 inputs 0.868 0.29
VARCLUS 0.825 0.32
NN with Gefs 0.893 0.27

To further reduce the number of independent variables
for model construction, the sets of topostructural and
topochemical indices were further divided into subsets,
or clusters, based on the correlation matrix using the
VARCLUS procedure. This procedure divides the set
of indices into disjoint clusters, such that each clus-
ter is essentially unidimensional. From each cluster
we selected the index most correlated with the clus-
ter, as well as any indices which were poorly corre-
lated with their cluster (R2 < 0.70). The variable
clustering and selection of indices was performed inde-
pendently for both the topostructural and topochem-
ical indices. This procedure resulted in a set of five
topostructural indices and a set of nine topochemical
indices. These indices were combined with the three
geometric and six quantum chemical parameters de-
scribed earlier. Their approach then applied linear re-
gression to these 23 parameters. This study found that
an accurate linear regression model for acute aquatic
toxicity required descriptors from all four levels of the
hierarchy: topostructural, topochemical, geometrical
and quantum chemical. This model utilized seven de-
scriptors and obtained an explained variance (R2) of
0.863 and a standard error of 0.30 on the whole data
set used as a training set. Our leave-one-out experi-
ment gave an R2 = 0.825 and a standard error of 0.32.

Finally we applied our genetic algorithm technique,
Gefs, using all 95 parameters. The parameter set-
tings for the networks in the ensemble were the same as
the settings for the single networks in the first exper-
iment. Parameter settings for the genetic algorithm
portion of Gefs includes a mutation rate of 50%, a
population size of 20, a λ = 1.0, and a search length
of 100 networks (20 networks for the initial population
and 80 networks created from crossover and mutation).
While the mutation rate may seem high as compared
with traditional genetic algorithms, certain aspects of
our approach call for a higher mutation rate (such as
the criterion of generating a population that cooper-
ates as well as our emphasis on diversity); other muta-
tion values were tried during our pilot studies. With
this approach, we obtained a test-set correlation coef-
ficient of R2 = 0.893 and a standard error of 0.27; the
initial population of 20 networks obtained a test-set



R2 = 0.835 and a standard error of 0.31.

5 DISCUSSION AND FUTURE
WORK

The correlation coefficient between the predicted value
from the computational model and the target value
derived from the toxicity test is an extremely informa-
tive metric of accuracy in this case. The exact numeric
value of most toxicity tests is not as important as the
relative ordering and spread of these values. Thus,
a perfect correlation (R2 = 1.0) between the compu-
tation model and target toxicity shows the computa-
tional model is as informative as the toxicity obtained
from a battery of expensive and time-consuming tests
– regardless of the standard error. Note the standard
error of 0.27 is fairly good, given the toxicity measure-
ments ranged from 3.04 to 6.37.

While the neural network technique and the standard
data-reduction technique obtained decent correlation
with measured toxicity, our ensemble technique was
about 20% closer to perfect correlation. Note that
Gefs produces an accurate initial population and that
running Gefs longer with our genetic operators can
further increase performance. Thus our approach can
be viewed as an “anytime” learning algorithm. Such
a learning algorithm should produce a good concept
quickly, then continue to search concept space, report-
ing the new “best” concept whenever one is found
(Opitz & Shavlik 1997). This is important since, for
most hazard assessment, an expert is willing to wait
for days, or even weeks, if a learning system can pro-
duce an improved model for predicting toxicity.

Our results demonstrate a very important point: that
our method is able to accurately predict toxicity di-
rectly from structure. Compared to the actual bat-
tery of tests necessary to measure toxicity, a computer
model is much cheaper, much faster, and does not have
a negative impact on the environment. It is important
to also note that the computer model does not have to
be the final measurement for hazard assessment; addi-
tional tests can be run on compounds that are either
flagged by the model, or require more tests by the na-
ture of their use (such as a benzene derivative that may
become a standard fuel). Not only can good computer
models become filters, they will probably be the only
viable option for processing all registered chemicals.

While the method proposed here has proven effective,
there is much future work that needs to be completed.
For instance, we plan to test our method on other data
sets of chemical derivatives; investigate other ensemble
feature selection techniques; investigate variants to our

genetic algorithm approach, and finally investigate the
utility of other descriptors, such as bio-descriptors.

6 CONCLUSIONS

In this paper we presented a novel approach for cre-
ating a computer model for hazard assessment. Our
approach works by first extracting a hierarchy of theo-
retical descriptors derived from the structure of a com-
pound, then filtering the numerous possible descriptors
with a genetic algorithm approach to ensemble fea-
ture selection. We tested the utility of our approach
by modeling the acute aquatic toxicity (LC50) of a
congeneric set of 69 benzene derivatives. Our results
demonstrate the ability of our approach to accurately
predict toxicity directly from structure. Thus our new
algorithm further increases the applicability of com-
puter models to the problem of predicting chemical
activity directly from its structure.
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