
A Biologically Inspired Fitness Function for Robotic Grasping

J. Jaime Fernandez Jr.

Intelligenta, Inc.
4110 St. MichaelÕs Ct.
Sugar Land, TX 77479

jjf@jjf.com
http://www.jjf.com

Ian D. Walker

Electrical and Computer Engineering
Clemson University
Clemson, SC 29634

ianw@ces.clemson.edu

Abstract

This paper describes the innovative use of
genetic programming (GP) to solve the grasp
synthesis problem for multifingered robot hands.
The goal of our algorithm is to select a ÒbestÓ
grasp of an object, given some information about
the object geometry and some user- defined
Òfitness functionsÓ which intuitively delineate
ÒgoodÓ from ÒbadÓ grasp qualities. The fitness
functions are used by the specially designed
genetic program, which iteratively selects the
grasp. This paper describes in detail the fitness
function used to obtain the best grasps for
multiple objects. The approach is biologically
inspired in the choice of fitness functions, which
adapt intuition from nature to guide the evolution
process.

1. INTRODUCTION

One obstacle preventing the practical application of robot
hands has been the inability to provide the operator with a
general grasp selection planner which can select and
preview candidate grasps across a wide range of objects
and tasks. The goal for the research discussed in this
paper is to develop the framework for a user-friendly,
practical, and intuitive package for multifingered robot
hand grasp selection, using GP or genetic algorithm (GA)
techniques.

In this paper, we build on our GP based algorithm
[Fernandez 97, Fernandez 98, Fernandez 99] which
Òevolves populationsÓ of candidate grasps to arrive at
ÒpreferredÓ grasps for a given task. The ÒevolutionÓ is
guided by a user-defined Òfitness functionÓ, which can be
composed of grasp quality measures existing in the
literature, or synthesized by the user for the given
application. The results suggest that GP can provide a
straightforward, intuitive, and practical alternative to the
complex and difficult-to-use grasp selection strategies
currently available. Since our approach does not make
any a priori assumptions about the geometry of the robot
hand, our algorithms will be easy to interface and use

with any robot hand. Thus our results should be
adaptable to a wide range of applications.

2. ROBOT HAND RESEARCH

We begin with a brief summary of research in the area of
multifingered robot hands. Several excellent summaries
of robot hand research exist [Bicchi 96, Grupen 89, Kato
87], and the reader is referred to these works for more
details.

In the last fifteen years, significant progress has been
made in the development of dextrous robot end effectors.
Some early three-fingered hands, such as the Jameson
Hands began the trend of development of more
sophisticated end effectors [Bicchi 96]. Numerous
multifingered hands have since been built and
successfully demonstrated, notably the Salisbury hand
[Salisbury 82, Mason 85] and the MIT/Utah hand
[Jacobsen 86].

A key obstacle to the application of robot hands has been
the sheer complexity involved in modeling and control of
dextrous multifingered tasks. In particular, the problem of
grasp synthesis is a key issue that has attracted much
attention in the last few years. The problem of grasp
synthesis, or grasp planning, can be restated as Òat which
points on the object should the fingers be placed?Ó Notice
that this is an issue that is ÒnaturalÓ to humans, who grasp
most objects instinctively. However, for robot hands
(some of which have very different kinematic
arrangements of the fingers than human hands) this is a
non-trivial issue.

A framework which could incorporate and exploit
existing grasp analysis techniques could be very useful in
bringing the advantages of different theoretical
approaches to users and applications. The GP technique
described in this paper provides such a framework, by
allowing existing methods to be incorporated via the
fitness functions selected. Our biologically-inspired
approach to multifingered grasping [Fernandez 97,
Fernandez 98, Fernandez 99] follows from our earlier
analysis of simple but effective multifingered hand
designs in nature [Walker 95].

3 . APPLICATION OF GP TO
ROBOTIC GRASPING

Genetic Programming consists of several important
components. They are the representation of the solution,
mutation, crossover and the fitness function. The
following sections explain all of these components.

3.1. REPRESENTATION TREES

The solutions are represented in a tree format [Koza 92].
A sample solution in a tree format is illustrated in Figure
1. Each tree has a root node from which three nodes
branch out. The root node represents the entire hand.
Each of the nodes that branches out represents a different
finger. The finger nodes have three additional nodes that
represent the position of each joint. The joint nodes are
kinematically chained together.

Hand

Finger 1 Finger 2 Finger 3

Yaw Joint
degrees

Proximal Joint
degrees

Distal Joint
degrees

Yaw Joint
degrees

Proximal Joint
degrees

Distal Joint
degrees

Yaw Joint
degrees

Proximal Joint
degrees

Distal Joint
degrees

Figure 1: A graphical illustration of a GP tree that
represents a robotic hand.

3.2. MUTATION

Mutation is an important feature of GP. Mutation consists
of creating a new node or set of nodes for one tree. For
example, mutation may give a new value to the distal
joint of the second finger. This may be a good mutation
which may cause a better grasp of the object, or it might
be a bad mutation. Figure 2 illustrates this concept.

Hand

Finger 1 Finger 2 Finger 3

Yaw Joint
degrees

Proximal Joint
degrees

Distal Joint
New Value

Yaw Joint
degrees

Proximal Joint
degrees

Distal Joint
degrees

Yaw Joint
degrees

Proximal Joint
degrees

Distal Joint
degrees

Figure 2: An illustration of a mutation. In this case a
new value is created for the distal joint of the second

finger. The node in bold illustrates the swapped node.

3.3. CROSSOVER

One of the most powerful features of GP is its ability to
combine two trees to form a new tree. This feature is
commonly known as crossover. Crossover consists of
swapping one or more objects from one tree for the same
objects of another tree. Suppose, for example, the

program currently has two trees. Crossover swaps the
position of a few objects from the first tree for the same
objects of the second tree. One offspring tree is created
which might be better and a second offspring is created
which might not be as good as the first offspring. The
program rejects the worse tree. Figure 3 illustrates the
concept of crossover.

Crossover Operation

Hand 1

Finger 1

Yaw Joint 1,1

Proximal Joint
1,1

Distal Joint 1,1

Finger 2

Yaw Joint 1,2

Proximal Joint
1,2

Distal Joint 1,2

Finger 3

Yaw Joint 1,3

Proximal Joint
1,3

Distal Joint 1,3

Hand 2

Finger 1

Yaw Joint 2,1

Proximal Joint
2,1

Distal Joint 2,1

Finger 2

Yaw Joint 2,2

 Proximal Joint
2,2

Distal Joint 2,2

Finger 3

Yaw Joint 2,3

Proximal Joint
2,3

Distal Joint 2,3

Offspring from Crossover Operation

New Hand 1

Finger 1

Yaw Joint 1,1

Proximal Joint
1,1

Distal Joint 1,1

Finger 2

Yaw Joint 1,2

Proximal Joint
1,2

Distal Joint 1,2

Finger 3

Yaw Joint 1,3

Proximal Joint
2,3

Distal Joint 2,3

New Hand 2

Finger 1

Yaw Joint 2,1

Proximal Joint
2,1

Distal Joint 2,1

Finger 2

Yaw Joint 2,2

 Proximal Joint
2,2

Distal Joint 2,2

Finger 3

Yaw Joint 2,3

Proximal Joint
1,3

Distal Joint 1,3

Figure 3: Illustration of how crossover works between 2
different trees. The proximal and distal joints in finger 3
of hand 1 are swapped for the proximal and distal joints
in finger 3 of hand 2. The swapped nodes are in bold.

4 . F I T N E S S F U N C T I O N
COMPONENTS

The fitness function is one of the most important aspects
of GP. The fitness function determines what is a ÒgoodÓ
or ÒbadÓ tree, which in turn produces a ÒgoodÓ or ÒbadÓ
solution. A combination of the following fitness
functions are used to obtain a grasp for the robotic hand.

4.1. VIRTUAL SPHERES

Each finger has one mathematical virtual sphere (VS)
attached at the end of the finger or at the fingertips. The
program calculates the area of intersection between the
surface plane of the object to be grasped and the spheres.
The program attempts to maximize the areas of
intersection. Figure 4 illustrates the concept of the virtual
spheres on a two dimensional diagram. Intuitively, we
expect that the greater the area the firmer the grasp.
Figures 5 illustrates the virtual spheres on each of the
fingers.

Three possibilities exist for the intersection of the VS and
the desired objects. The first one is the easiest to
calculate, this is the intersection of the VS and a plane, in
which the resulting area is a circle. The second case is
when the VS attempts to grab an edge of the object. In
this case the resulting area consists of two semi-circles.
Finally, the third case is when the VS attempts to grab a
corner of an object. The resulting surface area consists of
three semicircles. In this paper we only considered

objects with flat surfaces and angles of 900 degrees.
However this technique also applies to irregular shaped
objects.

Area of Intersection

Top View of Virtual Spheres

Virtual
Spheres

Object
to be

grasped

Finger
Segment

Figure 4: A two dimensional illustration of the virtual
spheres (VS). The left-most figure is the intersection of
the tip of the VS and the object. The middle figure is the
intersection between the object and a partial area of the
VS. The right-most figure is the intersection between the
object and the VS. In this case the intersection occurs at

the center of the VS, which gives the greatest possible
area, and thus the best fitness.

Figure 5: The top view of a simulated Salisbury hand
with the virtual spheres at the ends of the three fingers.

4.2. TRIANGLE AREA

The program attempts to maximize the area of the triangle
generated by the tips of the three fingers. The greater the
area of the triangle the further apart the fingers are from
each other.

Figure 6: The top view of a simulated Salisbury hand
grasping an elongated object. The triangle represents the

triangle created by the tips of the three fingers.

4.3. TRIANGLE ANGLES

The program attempts to minimize the standard deviation
between the angles of the triangle generated by the tips of

the three fingers. This further ensures that the fingers are
equally separated from each other. The ideal in this case
should be all angles equal to 60 degrees.

Figure 7: The top view of a simulated Salisbury hand
grasping a rectangular object. The angles of the triangle

are illustrated in the figure.

4.4. MULTIPLE OBJECT PLANES

The program attempts to maximize the number of planes
grabbed by the fingers. Each finger can grab a maximum
of three planes at once, by grabbing the corner of the
object (soft finger assumption). Two important reasons
leads to this criteria. First we do not want the fingers all
grabbing the same plane. In this case the hand obviously
does not have a grasp on the object. Secondly, it is
thought that a grasp at a corner is more stable than a grasp
on a side of the object. The fingers on the right are
holding one edge and a corner, while the finger on the left
is holding a different corner.

Figure 8: The side view of a simulated Salisbury hand
grasping a rectangular object. This figure illustrates the

hand grasping an object from multiple planes.

4.5. RACCOON GRASPING

Raccoons use successful Òtapping and leveringÓ strategies
to compensate for having limited kinematic functionality
in their five-fingered hands (relative to humans). In this
way, they learn about the dynamic properties of an object
of interest with a series of Òlearning graspsÓ before finally
capturing the object. A typical feature of raccoon-type
grasps is that the fingertips are aligned perpendicular to
the surface of the object. This maximizes the dynamic
impact of the grasp. We have attempted to capture this
behavior by utilizing a fitness component that rewards
this type of grasp.

Figure 9: The side view of a simulated Salisbury hand
grasping a small object. This figure illustrates the hand

using the raccoon-style grasp.

4.6. FINGER INTERSECTIONS

It is necessary to modify the initial fitness functions to
prevent intersection of finger links. This is done by a
simple modification of the fitness function to include a
geometric constraint inhibiting finger collisions. We also
find it necessary to modify the fitness functions to prevent
the strong intersection we sometimes see between the
fingertips and the object. We are assuming soft fingers,
so some intersection between fingertips and object is
reasonable, but in our early examples we have observed
excessive intersections.

Figure 10: Illustration of an overlap between fingers one
and two. These class of solutions are not allowed, since

they are physically impossible.

Several simple rules were applied to prevent the finger
intersections from occurring. First, if two endpoints are
closer than twice the sphere radius that means there is an
intersection. This rule prevents the fingertips from
intersecting. Second, if the second finger is to the right of
first finger then there is an intersection. This intersection
occurs with the first two fingers. In some cases these two
fingers intersect each other. This type of intersection is
illustrated in figure 10. Third, if the first or second
fingers are in front of the third finger then there is an
intersection. This rule prevents the type of finger
intersections of the thumb intersecting the other two
fingers.

5. FITNESS FUNCTION

The fitness function is simply the addition of the
previously defined components. The pseudo equation for
the fitness function is:

Fitness Function = Area of intersection of virtual spheres
(sum in square inches) +
Triangle area (in square inches) +
Triangle angles (sum in radians) +
Number of contact planes (Maximum = 9) +
Angle between fingers and object (sum in radians)

Configurations with an intersection are deleted from the
population.

6. RESULTS

The results have been excellent. The Genetic Program has
worked well, and consistently generates meaningful and
practical grasps. We have found it straightforward to tune
the fingertip ÒspheresÓ to generate ÒtighterÓ or ÒlooserÓ
grasps. In addition, a key feature of the approach is that
the initial ÒpopulationÓ of grasps is essentially hand-
independent, making the initialization straightforward.
However, the most exciting aspect of the work has been
the ability to ÒtuneÓ the grasp selection process by means
of the fitness functions chosen for each run.
Table 1: Tableau for the GP solution to the

biologically inspired robotic grasping.
Objective: Find the best grasp for the desired

object.
Terminal
Set:

Finger1: Yaw, Proximal, Distal,
Finger2: Yaw, Proximal, Distal,
Finger3: Yaw, Proximal, Distal

Function
Set:

Not Applicable

Fitness
cases:

1) Maximize contact area between
each of the 3 virtual spheres and the
desired object.
2) Maximize area of triangle formed
by the 3 fingertips.
3) Minimize the standard deviation
between the 3 angles of the triangle
formed by the 3 fingertips.
4) Maximize number of contact
planes at each virtual sphere.
Maximum of 3 per virtual sphere.
5) Maximize the angle of contact of
the distal segment and the desired
object. Maximum π/2.
6) Prevent finger intersections.

Raw fitness: The addition of the 5 fitness cases.
Standardized
fitness:

Same as raw fitness.

Parameters: Population = 400
Generations = 5000

Success
predicate:

Best solution after 5000 generations.

By using different types of fitness function (which are
easily input and modified by the user) we have been able
to generate very different types of grasps, for a given
hand and object. For example, by looking at the example
of the raccoon in nature, we have been able to synthesize
grasps which would be more dynamic in practice than
those generated using fitness functions based on more
conservative grasp stability measures. This change in the
nature of grasps is easily and intuitively guided by
changing the fitness function. This ability of the approach
to allow the user to input the fitness function (basically
specifying how the candidate grasp populations will be
allowed to ÒbreedÓ) gives the method its most powerful
feature.

7. EXAMPLES

In this section, we present various examples showing the
grasp choices selected by GP. In each case, a summary of
the grasp and its interesting features is followed by a
picture of the grasp seen from different angles.

7.1. EXAMPLE 1

In this example, the Salisbury Hand is to grasp a long
object as shown in figure 11. We have found this type of
object to be particularly useful for investigating the
properties of our algorithms. The long length (relative to
the hand workspace) allows us to consider grasps at
different orientations in an intuitive fashion. The figure
shows the grasp with highest fitness function value among
the final, or terminal, population for one run of the GP.

Figure 11: Grasp of long object in a vertical position.

Here the ÒfingersÓ are essentially supporting the object,
and the ÒthumbÓ is configured in a way that would allow
significant movements of the object for small thumb
movements. This grasp is reminiscent of the way humans
hold a pen or pencil in a dextrous grasp. Notice that there
is a strong intersection between the fingertips and the

object in this example. This would make the grasp
impractical for hard fingertips (we have assumed soft
fingertips in most of our work). However, we have found
that it is straightforward to regulate the amount of
intersection between the fingertips and the object by
varying the radius of the Òvirtual sphereÓ in the fitness
sub-function which checks for finger/object contact.

7.2. EXAMPLE 2

In this example, the Salisbury hand grasps the same object
as in example 2, but in a different orientation. The fitness
function here was the same as in example 1. In this case,
the ÒthumbÓ assumes a more opposing role (no special
emphasis was placed on the thumb relative to the fingers
here), and the two opposing fingers are placed a the ends
of the object, which would allow it to manipulate the
object dexterously with only small motions of the fingers.

Figure 12: Grasp of long object in a horizontal position.

7.3. EXAMPLE 3

This example shows how the fitness function adjusts itself
to different kind of objects. The fitness function is the
exact same as in examples 1 and 2. The only difference is
how the genetic programming evolves to apply one
component more over the other components.

As can be seen in figure 13 (compare with figure 11 for
Example 1) the grasp in this case features quite different
finger configurations. Notice that the fingertips are
aligned in a much more perpendicular fashion than in
Example 1. This is much more representative of raccoon-
like grasping, where the grasp in Example 1 is more
representative of cautious human grasping. This alteration
of the ÒbehaviorÓ of the grasp demonstrates how easily
different grasp needs and task strategies can be
incorporated for quite simple changes in fitness function
elements.

Figure 13: Raccoon-style grasp.

8. CONCLUSIONS

This paper has presented a fundamentally new approach
for guiding grasp selection choices for multifingered
robot hands. The method is based on GP or GA which
ÒevolveÓ candidate ÒpopulationsÓ of grasps to reach a best
choice. The evolution is guided by a user-defined Òfitness
functionÓ. The method is very intuitive and effective, and
provides a way to incorporate the best features of existing
grasp analysis tools in one framework.

The key feature of the approach is the ability of GP to
arrive at sensible (in the context of the fitness function
chosen) grasps from an initial semi-random set of
candidate grasps. While it can be argued that the method
is not formally repeatable (the algorithm does not produce
precisely the same final grasp population over different
runs), we have observed that the nature of the grasps
chosen are very consistent in character. In addition, the
approach often results in grasps which would not have
been initially selected by the user (but are consistent with
the fitness functionÕs measure of ÒgoodnessÓ). In this
way, we feel that the problem of robot hand grasp
selection is a particularly interesting arena for the
application of GP techniques to robotics.

We presented a new and novel fitness function for robotic
grasping. The fitness function consists of six simple
components that collectively define a ÒgoodÓ grasp. The
components are: the triangle area formed by the
fingertips, the triangle angles formed by the fingertips, the
number of planes of the object to be grasped, the angle at
which the fingers touch the object, and a component to
prevent finger intersections. These six components of the
fitness function were obtained from studying at common
sense human and raccoon grasps. In addition, it is quite
easy add a new component for the fitness function based
on a different type of desired grasp. For example, none of

our objects included any information about hardness or
weight. Thus, objects could be used with different
amounts of hardness or weights, such as an egg, a piece of
wood and an iron object. These objects would require a
new component that compensates the amount of force
applied depending on the objects characteristics.

Acknowledgements
Primary funding for this work was provided by Office of
Naval Research under contract # N00014-96-C-0320.
Professor Walker was also supported by that National
Science Foundation under grants CMS-9532081 and IRI-
95266363, and NASA under grant NAG 9-845. The
research was conducted while Mr. Fernandez worked at
Metrica, Inc. and Dr. Walker was an associate professor at
Rice University.

References
[Bicchi 96] A. Bicchi. Hands for Dexterous Manipulation
and Powerful Grasping: A Difficult Road Towards
Simplicity. In 1988 IEEE International Conference on
Robotics and Automation: Workshop on Minimalism in
Robot Manipulation, pages 1-13, Minneapolis, MN, 1996.
[Fernandez 97] J.J. Fernandez and I.D. Walker.
Biologically Inspired Control for Semi-Autonomous
Robotic Grasping. In Workshop on Evolutionary
Robotics, 1997 International Conference on Genetic
Algorithms, page 1, East Lansing, MI, 1997.
[Fernandez 98] J.J. Fernandez and I.D. Walker.
Biologically Inspired Robot Grasping Using Genetic
Programming. In Proc. of the 98 IEEE International
Conference on Robotics and Automation (ICRA98).
Leuven, Belgium, 98.
[Fernandez 99] J.J. Fernandez and I.D. Walker.
Biologically Inspired Robot Grasping Using Genetic
Algorithms. Accepted for publication in the International
Journal of Intelligent Mechatronics, 1999.
[Grupen 89] R.A. Grupen, T.C. Henderson, and I.D.
McCammon. A survey of general-purpose manipulation.
Int. Journal of Robotics Research, 8(1):38-62, 1989.
[Jacobsen 86] S. Jacobsen. et. al. Design of the Utah/MIT
Dextrous Hand. In IEEE Conference on Robotics and
Automation, pages 1520-1532, San Francisco, CA, 1986.
[Kato 87] I. Kato and K. Sadamoto. Mechanical Hands
Illustrated. Hemisphere publishers, Springer-Verlag,
1987.
[Koza 92] J. Koza. Genetic Programming. MIT Press,
1992.
[Mason 85] M.T. Mason and J.K. Salisbury. Robot Hands
and the Mechanics of Manipulation. MIT Press, 1985.
[Salisbury 82] J.K. Salisbury and J.J. Craig. Articulated
Hands: Force Control and Kinematic Issues. International
Journal of Robotics Research, 1:4-17, 1982.
[Walker 95] I.D. Walker. A Successful Multifingered
Hand Design The Case of The Raccoon. In Proceedings
1995 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 186-193, Pittsburgh,
PA, 1995.

