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Abstract

This paper shows how Evolutionary Algo-
rithms (EAs) are used as components in a
system for design of protein �ngerprints. The
system is used for automated mining of data
from protein sequence databases, with the
purpose of deriving protein family �nger-
prints. The �ngerprints are expressed as pat-
terns, which can be used for recognition of se-
quences belonging to speci�c protein families.
The system constructs candidate patterns by
analyzing multiple sequence alignments, and
selecting pattern elements corresponding to
evolutionary conserved positions. Since most
candidate patterns are too speci�c, we use
stochastic search algorithms for generaliza-
tion of the candidate patterns. In a previ-
ous version of the system a hill-climbing al-
gorithm was used. In this paper we show how
results can be substantially improved by us-
ing EAs for this task. We also compare a
\standard" EA with a host-parasite EA, and
show that it can signi�cantly reduce the num-
ber of evaluations.

1 Protein Sequence Patterns

Much of the work in Bioinformatics [5] is focused on
building systems for analysis of bio-sequence data [7],
such as DNA, RNA, or protein sequences. In this con-
text, a pattern is a representation of a regular expres-
sion which should match all members of some class
of sequences. A protein sequence pattern, therefore,
represents a regular expression which matches, for ex-
ample, all sequences of a protein family, or all se-
quences containing a particular motif or set of mo-
tifs. As an example, �gure 1 shows a pattern taken
from the PROSITE Dictionary of Protein Sites and
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C-C-{P}-x(2)-C-[STDBEKPI]-x(3)-[LIVMFS]-x(3)-C

Figure 1: PROSITE pattern for the insulin family, and
a short subsequence of human insulin which matches
the pattern.

Patterns [4], together with a short subsequence of hu-
man insulin which matches the pattern (the complete
insulin sequence consists of 110 amino acids). When
this example pattern is used to scan the SWISS-PROT
database [3] - which contains approximately 7�105 pro-
tein sequences - it will match 157 of the 162 sequences
which are known to belong to the insulin family. In
addition, it will match one non-insulin sequence.

Proteins are represented in SWISS-PROT [3] by their
amino acid sequence as strings of characters, using a
23-letter alphabet, where most one-letter codes cor-
respond to a given amino acid1. This public do-
main database, administered by the Swiss Institute
of Bioinformatics (SIB), contains 76,803 protein se-
quences with an average length of 363 characters
(SWISS-PROT release 36 and updates until 18 Decem-
ber 1998). These proteins can be grouped into fami-
lies, based on evolutionary and functional relatedness,
and the sequences belonging to a family can usually
be characterized by the presence of a small number
of amino acids which are important for the protein's
function, and therefore evolutionary conserved in the
family. This pattern of conserved amino acids can be
called a \�ngerprint" [1], since it can be used for identi-

1Apart from 20 characters for the amino acids, there are
also three characters corresponding to two or more amino
acids each. For further details, see the SWISS-PROTman-
ual [2].



fying sequences belonging to the family. A �ngerprint
usually covers one or more of the functionally impor-
tant motifs found in the sequences of the family.

PROSITE [4], which is also administered by SIB, is a
collection of 1,359 patterns (release 15 and updates un-
til 18 December 1998). PROSITE is cross-referenced
to SWISS-PROT, so that each pattern is accompa-
nied by the results of scanning SWISS-PROT with
the pattern, showing all of the true and false hits ob-
tained. An important usage of PROSITE is for anal-
ysis of newly sequenced proteins. A new sequence can
be scanned for occurrences of the patterns stored in
PROSITE, and thereby identi�ed as belonging to a
particular family. Of course, if PROSITE is to be reli-
able for this form of usage, the patterns should ideally
be diagnostic, i.e. each pattern should match every
sequence belonging to the family, and reject all non-
family sequences.

The PROSITE patterns are built manually [4] from
sequence alignments, which is obviously an ine�cient
method - especially since new sequences are added to
SWISS-PROT at a rapid rate, so that patterns must
be updated in order to maintain their discriminatory
power. On the other hand, there are also advantages of
building patterns manually. Detailed biological knowl-
edge can be used in the process - both general biochem-
istry and more speci�c information about important
sites in the protein family. In order to achieve an au-
tomated system for pattern construction, such knowl-
edge must either be accounted for in the algorithms, or
compensated for by e�cient search algorithms. As will
be seen in the following, we are using both approaches,
i.e. we are building biological knowledge into the algo-
rithm, as well as using e�cient search algorithms for
parts of the pattern construction process.

The general pattern syntax can be described as

E1 � x(i1; j1)�E2 � x(i2; j2)� :::�En (1)

where Ek is an element, and x(ik; jk) is a wild-card
region. An element speci�es either a single amino acid
(e.g. C) or a set of alternative amino acids (such as
[LIVMFS]), which the sequence must contain. In
addition, an element enclosed by curly brackets, e.g.
fPg, speci�es amino acids which the sequence must
not have at the given position. A wild-card speci-
�es an arbitrary stretch of amino acids, the length of
which must be at least ik and at most jk. For ik = jk
the shorter notation is x(ik), and x(1) can be written
x. For convenience, all zero-length wild-cards x(0) are
omitted from the pattern.

The example pattern which is shown in �gure 1 spec-
i�es that in order to match this pattern the sequence
must contain a subsequence beginning with C, fol-
lowed by another C, followed by any character ex-
cept P , followed by two arbitrary characters, followed
by C, followed by either S; T;D;B;E;K; P , or I , fol-
lowed by three arbitrary characters, followed by either
L; I; V;M; F , or S, followed by three arbitrary charac-
ters, followed by C.

One advantage of patterns is that they are very simple
objects. In an implementation, the pattern can eas-
ily be converted into the implementation language's
(Perl, in our case) syntax of regular expressions, and
a database can very rapidly be scanned for sequences
matching the pattern. Of course, there is also a price
to pay for this simplicity. Since patterns have limited
descriptive power [6], it is di�cult to �nd diagnostic
patterns for families where the degree of sequence sim-
ilarity is very low. For this reason, PROSITE uses
pro�les [4] as a complement to patterns for some of
the most di�cult families.

2 An Automated System for Pattern

Construction

In previous work [12] we presented a system for au-
tomated pattern construction and evaluated its per-
formance on 439 protein families. The system uses
sequence alignments as input, analyses them to iden-
tify columns that seem to correspond to evolutionary
conserved positions, and generates candidate patterns
from these columns. The result is usually a pattern
which is speci�c for the family, but also over-speci�c
in the sense that it rejects some of the family members.
As a �nal stage the pattern must therefore be general-
ized, so that its sensitivity is improved. The general-
ization phase can be formulated as a search problem:
given a speci�c pattern, there is a space of possible
generalizations which can be searched more or less ef-
�ciently, depending on the choice of search algorithm.

Very brie
y described, the system constructs a candi-
date pattern for a particular protein family using the
following four steps (see also �gure 2):

i) For each column of the multiple sequence alignment,
calculate the entropy of the column, based on an es-
timation of the probability of observing each of the
amino acids in the column. In the estimation of amino
acid probabilities we combine the amino acid frequen-
cies observed in the column with Dirichlet mixture
densities [18], which encode prior information about
typical amino acid distributions. Using this form of
prior has been shown to improve the generalization



capacity of statistical models such as hidden Markov
models [9] and phylogenetic trees [17]. We adapted its
use for design of patterns in [10] and [12].

ii) Choose the column with lowest entropy, and make
an initial pattern consisting of a single element which
includes the symbols from this column.

iii) In order of increasing entropy, incrementally add
elements corresponding to additional columns, and
complement these with wild-card elements which re-

ect the relative positions of the columns. Measure the
speci�city of each candidate pattern by scanning the
database and counting the number of false matches.
The process of adding elements to the pattern contin-
ues until speci�city is 1.0, i.e. until the pattern does
not match any non-family sequences in the database.

iv) Measure the sensitivity of the pattern by scanning
the set of family sequences. If any family sequence is
not matched: generalize the pattern.

As input to the pattern construction process, our
system uses pre-derived multiple sequence alignments
from Pfam [19], which contains alignments for 1,390
families (release 3.3). For each family, Pfam contains
a \seed alignment", which is an accurate hand edited
alignment of a subset of the members of the sequences
of the family. In addition, Pfam contains \full align-
ments", which are made automatically from hidden
Markov models, which are built from the seed align-
ments. Since the full alignments often contain errors,
we use the seed alignments as input to our system. The
drawback is that there is no guarantee that a pattern
derived from an alignment of a subset of the family
will match all family members, and the majority of
patterns consequently need generalization in order to
become diagnostic.

3 An Evolutionary Algorithm for

Pattern Generalization

Given the pattern syntax in ( 1) we can de�ne pattern
generalization as a process which may use the following
three generalization operators:

Op 1: Generalize an individual element by adding a
character.

Op 2: Generalize the pattern by deleting an element.

Op 3: Generalize a wild-card region by decreasing the
lower bound on the length (or increasing the upper
bound).

In previous work [13] [12] we used a hill-climbing algo-
rithm which randomly applied these three operators.
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Figure 2: Upper: Small portion of multiple alignment.
Lower: Subset of corresponding incrementally built
candidate patterns, and for each pattern, the entropy
of the alignment column corresponding to the most
recently added pattern element.

In each step, the hill-climber chooses randomly one of
the generalization operators and applies it at a random
position in the pattern. It then replaces the current
pattern P with the generalized pattern P 0 if and only
if P 0 has improved sensitivity (without any deterio-
ration in speci�city). Sensitivity and speci�city are
checked by scanning SWISS-PROT and counting the
number of family and non-family sequences (accord-
ing to the PROSITE listing of known family members)
which match the pattern.

Sensitivity and speci�city are here de�ned as

Sens =
Truepos

Truepos + Falseneg
(2)

Spec =
Truepos

Truepos + Falsepos
(3)

where Truepos is the number of family sequences
matched by the pattern, Falseneg the number of
family sequences not matched by the pattern, and
Falsepos is the number of non-family sequences
matched by the pattern. This sensitivity measure is
equal to the fraction of the known family sequences
which are matched by the pattern, whereas speci-
�city equals the probability that a sequence which is
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G-x(4)-[DV]-x(22,25)-[DE]-x(22,46)-[AG]-x(2)-[AG]-x(4)-G

1

G-x(4)-[DV]-x(21,24)-[APV]-[DE]-x(22,46)-[AG]-x(2)-[AG]-x(1)-G-x(2)-G

Figure 3: A bit-string chromosome represents a gener-
alization of a given pattern, and this pattern is �tness
evaluated against the sequence database.

matched by the pattern really belongs to the family.

In order to see how we can apply a Genetic Algorithm
to the generalization problem, it is useful to consider a
pattern of N elements. In order to achieve a bit-string
representation for a GA, we restrict the generalization
to a search for subsets of N , so that bit-strings rep-
resent which elements of N to include in the subset -
as illustrated in �gure 3. This way, the search is re-
stricted to generalization operator Op 2 only, i.e. to
deletion of pattern elements. The advantage of such
an approach is its simplicity, allowing a \standard"
bit-string GA to be used. The disadvantage is the re-
striction it places on the search, when only element
deletions are used.

However, allowing only element deletions may not be
such a serious restriction as appears at �rst sight. To
see this, consider an initial pattern containing every
single element derived from the alignment, so that N
contains as many elements as there are columns in the
alignment. It should be clear that from this start-
ing point, even a search procedure which uses only
pattern deletions can still generate all patterns which
are consistent with the multiple alignment. Naturally,
we will not be using this starting point in our search,
since the search space would be far too large even for
a stochastic/heuristic search algorithm such as a GA.
However, we will be using as starting point a pattern
with \extra" elements added. Recall that in the in-
cremental addition of pattern elements, we stopped
the process as soon as the candidate pattern was spe-
ci�c enough to reject all non-family sequences in the
database. Instead of using this candidate as starting
point for GA-generalization, we will continue adding
elements to create an over-speci�c pattern as starting
point for GA-generalization.

In our initial experiment, we used the algorithm to
evolve generalizations of an over-speci�c pattern for
the 2 Hacid DH family. We selected a pattern with
16 elements, which gave six false negatives and no
false positives. For this family, the original system
�nds - using hill-climbing generalization - a 10-element
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Figure 4: The population's best �tness during 100 gen-
erations. The discrete \jumps" in �tness correspond to
discoveries of patterns with fewer false positives. For
example, the \jump" to �tness ' 0:5 at generation 37
corresponds to discovery of a pattern with only two
false negatives.

generalized pattern which only gives �ve false nega-
tives. We used the GA to search for generalizations to
the 16-element pattern, using a population of 20 bit-
string chromosomes, and evaluating each chromosome
by searching the whole database and assigning �tness
according to

1

fp(P 0) � 100 + fn(P 0) + �
(4)

where fp(P 0) and fn(P 0) are the number of false posi-
tives and false negatives for the generalized pattern P 0

speci�ed by the chromosome (and � is a small constant
to protect from division by zero). The algorithm was
run for 100 generations. Figure 4 plots the popula-
tion's best �tness for every generation. At generation
37, the GA discovers a pattern with only two false
negatives. This pattern has a sensitivity of 0.93, to be
compared with the sensitivity of 0.83 for patterns pro-
duced by the hill-climber. Both patterns have speci-
�city 1.0.

To evaluate the GA-approach in more detail, we tested
it on 20 protein families. We selected at random 20
families for which the hill-climber had found a pattern
P with fp(P ) = 0 and fn(P ) > 0. For each family,
we made a single GA-run with the same parameters as
in the previous experiment on 2 Hacid DH. Detailed
results from these 20 runs are shown in table 1. We
only show the sensitivity, since all resulting patterns
retained a speci�city of 1.0.

As can be seen from these results, a GA may be a pow-
erful tool for �nding improved generalizations. The av-
erage sensitivity is considerably higher than that found



Sensitivity
Family PRO HC EA HP

14-3-3 1.000 0.960 1.000 1.000
2 Hacid DH 0.767 0.833 0.933 0.867
6PGD 0.968 0.806 0.935 0.935
7 tm2 0.925 0.863 0.941 0.941
ADP glu Plase 1.000 0.889 0.926 0.963
ALAD 1.000 0.962 0.962 0.962
ATP-gua Ptrans 1.000 0.839 1.000 1.000
ATP-synt 0.814 0.930 1.000 1.000
ATP-synt A 0.980 0.928 0.979 0.948
Acyl-CoA dh 0.848 0.758 0.848 0.879
Bac DNA binding 0.972 0.972 1.000 1.000
Bcl-2 1.000 0.619 0.667 0.667
Bet v I 0.914 0.829 1.000 1.000
Bowman-Birk leg 1.000 0.917 1.000 1.000
COX1 0.971 0.921 0.978 0.989
COX2 0.971 0.930 0.971 0.965
Calc CGRP IAPP 1.000 0.964 1.000 1.000
Cu-oxidase 0.956 0.822 0.889 0.822
DAG PE-bind 0.952 0.964 0.952 0.964
DNA pol A 0.926 0.889 1.000 1.000

Average 0.948 0.880 0.948 0.945

Table 1: Sensitivity results for 20 protein families.
Comparison of the original PROSITE pattern (PRO),
the best pattern found by the hillclimber (HC), the
evolutionary algorithm (EA), and the host-parasite al-
gorithm (HP).

by the hill-climber, and close to that of PROSITE's
patterns. The main problem the GA faces is the fact
that every individual is evaluated by testing the pat-
tern against the whole database, which is a very costly
operation. Using a population size of 20 means that
only 2,000 candidate patterns are evaluated during a
run, but given that the database contains over 7 � 105

sequences, this corresponds to evaluation of approxi-
mately 1:4 � 108 pattern-sequence pairs.

4 A Host-Parasite Algorithm for

Pattern Generalization

Host-parasite algorithms were introduced in [8], and
have since then been investigated by several authors,
for example in [16], [14], and [11]. In the relatively
small body of literature on host-parasite algorithms
almost exclusively arti�cial problems are used, such
as game-playing and sorting networks design, or prob-
lems designed speci�cally to test properties of the al-
gorithms. The only example of a real-world applica-

Algorithm: Host-Parasite Algorithm
f

t := 0
exec initialize(Ht)
exec initialize(Pt)
while (termination criterion == 0) do f

exec evaluate(Ht,Pt)
exec evaluate(Pt,Ht)
Ht+1 := reproduce(Ht)
Pt+1 := reproduce(Pt)
t = t+ 1

g
g

Figure 5: Pseudo code of a host-parasite algorithm.

tion seems to be the drug design problem mentioned
in [15], where a host-parasite algorithm was used to
design antiviral drugs to overcome viral resistance.

The central idea behind host-parasite algorithms is
to coevolve a population of candidate solutions and
a population of �tness cases. The classical example
in [8] was to coevolve sorting networks and input se-
quences, letting �tness of a sorting network depend on
the number of correctly sorted input sequences, and
letting the �tness of a set of input sequences depend
on the number of networks which fail to sort these se-
quences.

An illustration of the host-parasite approach is given
in the pseudo-code of �gure 5. The population of hosts
H contains candidate solutions, while the population
of parasites P contains problem instances. Evaluation
of a host is done by testing it on all (or a sample)
of the parasites, and setting its �tness to the number
of parasites which it solves correctly. Conversely, the
�tness of each parasite is set to the number of hosts
which fails to solve the problem instance(s) which the
parasite represents.

In the current application we use a host-parasite al-
gorithm by letting hosts represent candidate pattern
generalizations (as in the previous chapter), and let-
ting parasites represent sets of protein sequences. Fig-
ure 6 shows an overview of how host-parasite coevolu-
tion is applied to the pattern generalisation problem.
The chromosome representation for hosts is exactly the
same as that used in the non-coevolutionary GA. In
the parasite population, each chromosome is a vector
of 500 integers, representing database entry numbers
(which identify sequences in the database).

Figure 6 shows how �tness evaluation is done: i) A
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Figure 6: Overview of host-parasite evolution of pat-
terns and sets of test sequences. See the text for de-
tails.

chromosome from the parasite population is replaced
by the set of sequences that its database indices (genes)
identify, and sequences belonging to the family are re-
moved from this set. ii) A host chromosome is re-
placed by the generalised pattern that its bitstring
represents. iii) The pattern is tested on the sequences,
and a record is made of the number of sequences which
match the pattern.

Every host-parasite pair is tested against each other,
and each parasite's �tness is set to the total number
of times that any of its sequences is matched by any
pattern (excluding multiple hits by the same pattern
on the same sequence). Hosts' �tnesse values are set
according to ( 4). In order to determine the number
of false positives, each pattern is tested on the set of
family sequences, in addition to the parasite-evolved
sequence sets. To monitor the real progress made, we
take the �ttest pattern from each generation, and test
it against the whole database.

As in the previous experiment on evolving patterns
with a non-coevolutionary GA, both populations con-
tain 20 chromosomes. This means that 20 � 20 � 500 =
2�105 pattern-sequence pairs are tested in each gener-
ation, which gives a total of 2 � 107 pairs during a run
of 100 generations. Recall that the standard GA in
the previous chapter tested a total of approximately
1:4 � 108 pattern-sequence pairs in a run. In other
words, the standard GA tests seven times as many
pairs during a run as the host-parasite algorithm. The
results presented in table 1 show that despite this re-
duction in computation time spent on �tness evalua-
tion, the host-parasite algorithm still acheives almost
the same average sensitivity as the standard GA.

5 Conclusions and Future Work

We have shown how EAs can be used for pattern gener-
alization to improve the e�ciency of this crucial part
of the pattern design process. Our results are quite
preliminary, and must be extended to many more pro-
tein families before more certain conclusions can be
drawn. So far we have restricted the use of the EAs
to families where the pattern had perfect speci�city
before generalization, since the �tness function is de-
signed for these cases. It remains to be seen if a mod-
i�ed �tness function, which is less biased against false
positives, will be needed for patterns with sub-optimal
speci�city.

Since the EA takes such a long time to run, we are
looking for ways of reducing the amount of compu-
tation. The host-parasite algorithm is an example of
this, and it seems to reliably produce good results sub-
stantially faster than the \standard" EA. We have not
yet explored possibilities of reducing the number of �t-
ness cases even further - either using re�ned versions of
the host-parasite algorithm, or using other alternative
approaches.
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