Scalable Search Spaces for Scheduling Problems

Dirk C. Mattfeld
Dept. of Economics
University of Bremen
28334 Bremen, Germany

Abstract

This paper presents a tunable decoding pro-
cedure for Genetic Algorithm (GA) based
schedule optimization. Tuning the decoding
procedure of the algorithm scales the size of
the search space of the underlying optimiza-
tion problem. We show by experiment, that
a tradeoff exists between the advantage of
searching a small space and the impacts of
excluding near-optimal solutions from being
searched at the same time. Thereby we reveal
the weakness of GAs when coping with large
and difficult search spaces. Finally we discuss
the deficiencies observed by tuning the decod-
ing procedure auto-adaptively and leave this
matter as an open issue.

1 Introduction

A common way to improve GA performance focuses
on tuning the parameters of the algorithm, i.e. to en-
large the population size, to alter the selection pres-
sure and so forth. If all the parameters are already
within useful bounds, the promised progress for solv-
ing a single problem instance usually does not justify
the costs of finding an even more appropriate fine tun-
ing. More universal approaches are going by modifi-
cations of the population management. E.g. spatial
distributions of the population can lead to a better
performance. Although coming along with slight im-
provements, such techniques are certainly not able to
eliminate the weakness of adaptation concerning a par-
ticular problem class. Substantial improvements of the
adaptation process require a modification of the scope
of search. This can be achieved either by modifying
the problem representation or by altering the decoding
procedure. This paper is devoted to the latter inten-
tion.

Throughout the last decade researchers have devoted
a vast number of publications to the task of schedul-
ing resources over time. Despite some remarkable
approaches, GAs are still outperformed by OR algo-
rithms for most academic benchmark problems. On
the other hand, for real world scheduling applications
GAs have been shown to work sufficiently well, often
because they are the only applicable search method
at hand. In order to cope with the constraints of the
real world, recent GA research has focused on the en-
coding/decoding scheme of the algorithm. We follow
this line of research by taking up well known GA com-
ponents from previous research, all of them capable to
deal with complex constraints of the real world. In the
resulting algorithm we incorporate a tunable decoding
procedure yielding serious improvements of solution
quality.

Any encoding of schedules can be decoded into semi-
active, active, or non-delay schedules (Giffler and
Thompson, 1960). The three properties of schedules
can be achieved by incorporating domain knowledge
at a variable extent, causing a reduction of accessible
schedules, see Fig. 1. Furthermore, there is strong em-
pirical evidence that for regular measures' the small-
est, of these sets —consisting of non-delay schedules—
show a better average performance compared to the set
of active schedules. However, as indicated in Fig. 1,
there is not necessarily an optimal schedule in the set
of non-delay schedules. On the other hand at least one
schedule of optimal quality is known to be in the set
of active ones. Since the set of active schedules is a
true subset of the set of semi-active schedules, we con-
fine the search to the set of active schedules without
loosing the condition for optimality.

'A regular measure of a schedule does not deteriorate
whenever the completion time of any of its jobs changes
to an earlier date. Prominent regular measures are the
minimization of the maximal completion time of jobs and
the minimization of the mean flow time of jobs.

non-delay

semi-active

optimal

Figure 1: Relationships of schedule properties.

For this reason so far most GAs have incorporated
an active schedule decoding, see e.g. Mattfeld (1996)
for a comprehensive survey. Contrarily, a non-delay
scheduler is used for decoding in the GA approach
of Della Croce et al. (1995). They notice that a non-
delay decoding procedure sometimes come up with a
much better performance than an active one. These
results motivate the idea to vary the scope of search
for the decoding procedure. For this end we incorpo-
rate a tunable decoding procedure originally proposed
by Storer et al. (1992) which scales the scope of the
search in the range from non-delay to active schedules.

The above classification scheme of schedules can be
applied for a wide array of scheduling problems when-
ever a regular measure of performance is pursued,
e.g. Kolisch (1995). Without loss of generality we con-
fine this research to the job shop scheduling problem
(JSP), because it is well known, it has a rich literature,
and many benchmarks exist (Blazewicz et al., 1996).

2 Job Shop Scheduling

We consider a manufacturing system consisting of m
machines My, ... M,,. A production program consists
of n jobs Jy,...J, where the number of operations of
job J; (1<i<n) is denoted by m;. Since all operations
have to be processed by dedicated machines, u; defines
a production recipe for job J;. The elements of u;
point to the machines, hence for p;(k) = j (1<k<m;)
machine M is the k-th machine that processes J;. The
k-th operation of job .J; processed on machine M,)
is denoted as 0;;. The required processing time of o
is known in advance and denoted by p;f.

A schedule of a production program can be seen as a
table of starting times t;; for the operations oy, with
respect to the production recipe of jobs. The comple-
tion time of an operation is given by its starting time
plus its processing time (t;; + pix). The earliest possi-
ble starting time of an operation is determined by the
maximum of the completion times of the predecessor
operations of the same job and of the same machine.

Therefore the starting time for operation oy, is calcu-
lated by t;; = max (ti,kfl + Pik—1,th + phl)- Here
op; refers to the operation of job .J, which precedes o;
on its machine, i.e. pu;(k) = pun(l). For k = 1 we deal
with the beginning operation of a job and in this case
the first argument in the max-function is set to zero.
If 041, is the first operation processed on a machine it
has no machine predecessor and the second argument
in the max-function is set to zero.

The completion time C; of a job J; is given by the
completion time of its final operation o; ,,, i.e. C; =
tiom; + Dim;. As a measure of performance the mini-
mization of Cpax = max{Cy,...C,} is pursued.

3 Genetic Algorithm Components

Literature reports a large number of GA approaches
to the job shop scheduling problem. In the following a
new GA is described, which combines well known com-
ponents adopted from previous research in the fields
of Operations Research and Evolutionary Computa-
tion into a very efficient algorithm. First, the solu-
tion encoding and the genetic operators, all of them
already proven successful, are sketched. Next the de-
coding procedure is introduced in detail, before finally
the parameterization of the algorithm is described.

3.1 Encoding and Operators

Encoding. We use a permutation of all operations
involved in an instance of a scheduling problem. The
decoding procedure scans the permutation from left to
right and consecutively assembles a schedule from this
sequence of operations. Note that not all permutations
represent feasible schedules directly. An operation o
found in the permutation is only schedulable if its job
predecessor o0; ;1 has been scheduled already. There-
fore in a feasible permutation 0; ;1 occurs to the left
of 0;;. In case of infeasible permutations the decoding
procedure ensures feasibility of the resulting schedule
by delaying an operation until its job predecessor has
been scheduled.

Crossover. In the following we describe the Prece-
dence Preservative Crossover (PPX) which was inde-
pendently developed for vehicle routing problems by
Blanton and Wainwright (1993) and for scheduling
problems by Bierwirth et al. (1996). The operator
passes on precedences among operations given in two
parental permutations to one offspring at the same
rate, while no new precedences between operations are
introduced. PPX is illustrated in Figure 2 for an in-
stance consisting of six operations A-F.

parent permutation 1
parent permutation 2

a
>
o
= O
whles!
= =

select parent no. (1/2)
offspring permutation

>
Qo
W =
g —
oo
SRS

Figure 2: Precedence Preservative Crossover.

A binary vector of the same length as the permuta-
tion is filled at random. This vector defines the order
in which the operations are successively drawn from
parent 1 and parent 2. We now consider the parent
and offspring permutations and the binary vector as
lists, for which the operations ’append’ and ’delete’ are
defined. We start by initializing an empty offspring.
Then the leftmost operation in one of the two par-
ents is selected in accordance to the leftmost entry in
the binary vector. After an operation is selected it is
deleted in both parents and appended to the offspring.
Finally the leftmost entry of the binary vector is also
deleted. This procedure is repeated until the parent
lists are empty and the offspring list contains all oper-
ations involved.

Mutation. In our GA we alter a permutation by
first picking (and deleting) an operation before rein-
serting this operation at a randomly chosen position
of the permutation. At the extreme all precedence re-
lations of one operation to all other operations are af-
fected. Typically a mutation has a much smaller effect
and often it does not even change the fitness value.

3.2 Decoding Procedure

Schedules are produced in a flexible way by introduc-
ing a tunable parameter 6 € [0.0,1.0]. The setting of
0 can be thought of as defining a bound on the span
of time a machine is allowed to remain idle. At the
extremes ¢ = 0.0 produces non-delay schedules while
0 = 1.0 produces active schedules.

In each step of the decoding procedure the set A con-
tains all schedulable operations, i.e. those operations
whose job-predecessors have been scheduled already.

1. Determine an operation o' from A with the ear-
liest possible completion time ¢ = t' + p’ with
c' <ty + pir for all oy, € A.

2. Determine the machine M’ of o' and build the
set B consisting of all operations in A which are
processed on M', B := {0y, € A | piy = M'}.

3. Determine an operation o' from B with the earli-
est possible starting time, ¢ = t;;, for all oy, € B.

4. Delete operations in B in accordance to parameter
d such that B := {0y, € B | ty, <t" +6(c' —1")}.

5. Select operation o, from B which occurs leftmost
in the permutation and delete it from A, A :=

A\{of}-

This tunable decoding procedure produces schedules
based on a look-ahead technique. All operations which
could start within the maximal allowed idle time of a
machine have equal chance for being performed next
by that machine. This degree of freedom is used by the
GA representation. Whenever there is more than one
operation available for processing, the one is selected
which occurs at the left-most position of the permuta-
tion. In this way the permutation memorizes priorities
among operations.

3.3 Genetic Algorithm Parameters

The components described above are now embedded
into the framework of a simple GA. Since we mini-
mize Chayx, selection is based on inverse proportional
fitness. The PPX operator is applied with probabil-
ity 0.8, whereas the mutation operator is applied with
the probability of 0.05. A fixed population size of 150
individuals is used.

After a permutation has been decoded, the permu-
tation is rewritten with the sequence of operations
as they have been actually scheduled in the decoding
step. In order to take advantage from a fast conver-
gence, a flexible termination criterion is used. The
algorithm terminates after a 7' generations which are
carried out without gaining any further improvement.
We confine T to half of the number of operations con-
tained in a problem instance. In this way larger in-
stances are given a longer time to converge.

The appropriate setting of the parameter ¢ remains as
an open issue. Storer et. al (1992) propose values of 0.0
and 0.1 in the context of another search method. In a
recent publication (Bierwirth and Mattfeld, 1999) we
have found that on average 6 = 0.5 works best for a set
of instances of a related scheduling problem. Further-
more we have found that different optimal parameter
settings §* exist for different problem instances. The
spread of 0* as well as the improvements we can expect
from tuning ¢ are subject of the following investigation
for the JSP.

Table 1: Mean relative error observed for different parameterizations.

problem value of parameter ¢

instance 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
la02 5.1 4.7 5.0 4.0 4.2 3.6 4.0 3.8 4.3 4.7 5.0
la04 36 36 36 36 36 36 36 1.3 1.6 1.7 2.0
lal6 5.3 5.6 5.3 5.1 5.1 4.5 4.3 44 4.3 4.1 4.1
lal7 1.3 1.2 1.8 1.5 1.7 1.5 1.5 1.6 1.6 2.1 1.9
la19 4.1 3.8 3.6 3.3 2.9 2.8 2.6 2.4 2.2 2.2 2.7
1a20 4.2 2.5 2.1 2.1 2.2 2.0 1.9 2.4 2.8 2.6 3.4
la21 8.6 81 83 80 78 86 88 89 94 98 10.6
la27 8.2 8.0 8.0 7.7 7.8 8.4 8.9 9.2 9.1 9.8 10.4
1a30 2.2 2.1 1.4 1.5 1.9 1.9 1.9 2.3 2.5 3.1 3.4

4 Scaling the Scope of Search

This investigation is performed on a set of bench-
marks proposed in 1984. It consists of 40 instances
ranging from 50 to 300 operations. Since meanwhile
all instances have been solved to optimality, we are
able to report the relative error in % calculated by
100(fitness — optimum)/ optimum in order to obtain
a comparable measure of performance. For each of the
40 instances and 11 values of § = {0.0,0.1,...,1.0} we
calculate the mean relative error. In order to produce
a sound mean we have performed 50 GA runs for each
of the resulting 440 cases.

4.1 Gain of Performance

We confine the following discussion to the nine in-
stances listed in Tab. 1. These problems are selected
because the instances show a different §* in the range
of [0.1,0.9] (depicted in gray shade). For non of the
40 instances an optimal parameter setting of 6* = 0.0
or 6* = 1.0 has been observed. In other words, tun-
ing the decoding procedure has improved the solution
quality in every case. Moreover, for certain instances
(e.g. ’1a20’) non-delay and active schedules show the
worst mean performance of all § values investigated.
A reduction of the relative error of merely 1% is al-
ready significant for the JSP. Hence, we can state that
tuning § to appropriate values is worthwhile the effort
spent.

By looking closer at Tab. 1 we notice that —although
we must admit a few exceptions— the performance in-
creases with increasing delta starting from § = 0.0 up
to 0*. By increasing ¢ further on we then observe a
continuous loss of performance up to the extreme of
0 = 1.0. This phenomenon can be nicely observed at
the example of instance ’1a21’: Starting from a mean

relative error of 8.6% for non-delay scheduling an in-
crease of § causes a widening of the look-ahead in-
terval considered in the decoding procedure. A large
look-ahead interval in turn leads to a wider scope of
search. Schedules of potentially better performance
are included in the scope of search and therefore the
schedule quality achieved increases (for ’la21’ up to
7.8% at 0 = 0.4).

4.2 Loss of Performance

By increasing & beyond ¢* for ’la21’ we observe a
continuous deterioration of GA performance towards
10.6% for 6 = 1.0. This finding strikes because non-
delay schedules form a true subset of the active sched-
ules. Thus, by scaling up the scope of the search, it
is guaranteed that no schedule is excluded from the
search. Moreover, a larger search space may include
schedules of even better quality. Whenever a decrease
of performance is registered in connection with an in-
crease of the scope of search, the algorithm obviously
has failed to explore the larger space. In this way 6*
determines the borderline of effective genetic search for
the particular problem instance under consideration.

Now recall that a flexible termination criterion is
used and that the set of active schedules is much
larger than the set of non-delay schedules. We ex-
pect much shorter GA runs —in terms of generations
performed— for the latter case. Indeed, we have ob-
served that the number of generations performed de-
pends almost linearly on the § parameter used. On
average, a GA run with 6 = 0.0 takes only 1/2 of the
generations needed for a run with 6 = 1.0. By taking
into account that a GA parameterized with § < 1.0
improves its performance significantly while saving up
to one half of the generations needed, an automatic
tuning of § seems highly desirable.

5 Auto-Adaptive Scaling

As we have seen in Tab. 1, no parameterization exists
which fits the needs of all problem instances. Typically
the parameterization of GAs is done a priori with re-
spect to the problem difficulty. Since the tractability
of JSP instances cannot be determined sufficiently on
behalf of the static problem data, we are going to pa-
rameterize the GA dynamically over the course of its
run.

5.1 Co-Evolutionary Approach

Therefore the GA already described above can be mod-
ified in the following way: Instead of setting a fixed §
for each call of the decoding procedure, ¢ is drawn
from a population of co-evolving individuals. This ad-
ditional population consists of 150 Gray-coded strings
in 6-bit precision. After the strings have been ini-
tialized at random, they undergo an identical selec-
tion and recombination cycle —with the same opera-
tor probabilities— as described above for the schedule
permutations. Different to those, a standard two-point
crossover and a bit-flip mutation operator are used.
Whenever a permutation is decoded, the correspond-
ing J is determined from a string by normalizing its
fitness to [0.0, 1.0]. The objective function value of the
resulting schedule is assigned to both, the permutation
and the -string. Two variants are proposed.

coupled Every ¢ string is tied to a certain permu-
tation over the entire runtime of the algorithm.
Therefore both, the permutation and the string
always carry the same fitness and consequently
they are selected as a union in order to enter the
population of the next generation. Whenever a
couple is chosen for recombination, the appropri-
ate operators are applied to both, the permutation
as well as the string.

decouple In this variant both populations evolve al-
most independently of each other. Selection and
recombination cycles are carried out separately for
both populations. For the purpose of decoding
one member of each of the two populations are
combined to generate a new schedule. After the
schedule is generated, the fitness is assigned to
both, the permutation and the string.

The ’coupled’ variant has the advantage, that above
average fit couples have a reasonable chance to enter
the next population. Moreover elitist strategies can be
implemented straightforward. The ’decouple’ variant
allows to set operator probabilities and fitness-scalings

Table 2: Performance with auto-adaptive d tuning.

instance 6* best decouple coupled
1a02 0.5 3.6 4.3 4.4
la04 0.7 1.3 3.5 3.4
lal6 09 4.1 5.4 5.0
lal7 0.1 1.2 1.3 1.3
lal9 0.8 22 3.7 3.6
1a20 0.6 1.9 1.8 1.7
la21 04 7.8 8.0 7.9
la27 03 7.7 7.9 8.0
1a30 02 14 2.0 2.2

for the two populations independently of each other.
Although many different parameterizations of the two
variants were tested, the search did not benefit signif-
icantly from these modifications. Therefore we report
the results of the genuine version of both variants in
the following. Again the mean relative error is based
on 50 runs for each instance.

The third column ’best’ of Tab. 2 reports the best per-
formance taken from Tab. 1, while the second column
lists the 0*, at which the best performance was ob-
served. The results obtained for both co-evolutionary
variants are of almost identical, but inferior quality.
Merely for the instances 'lal7’; ’la21’, "1a27’ and ’1a30’
an acceptable performance has been achieved. Con-
sider that all four instances show a §* < 0.4. In order
to explain the results, program traces of the mean § of
the string population have been taken for all nine in-
stances. In all cases 0 rapidly decrease from initial 0.5
to 0 < 0.25 in later generations. Thus, the acceptable
performance observed for four out of the nine instances
has been achieved merely by accident. A proper auto-
adaptation towards 0* has not taken place.

5.2 Deceived by Stochastic Sampling

The failure of the auto-adaptive tuning of 4 can be ex-
plained by arguments of plausibility. Recall that the
size of the set of active schedules is much larger while
the average performance is inferior compared to the
properties of the set of non-delay schedules. Therefore
the decoding procedure returns a much better per-
formance in the vast majority of cases if called with
a small §. As a consequence, selection tends to fa-
vor non-delay scheduling because of its seemingly bet-
ter potentials. Auto-adaptation of § fails because the
stochastic sampling of the GA is deceived.

The set of active schedules contains at least one sched-
ule of optimal performance. Thus, a relatively large
0 is a prerequisite for the generation of schedules of

near-optimal or even optimal quality. The generation
of one of these scarce schedules is subject to search.
Hence an appropriate decoding procedure has to carry
out a search process on its own in order to assess the
potentials of a certain §. A GA which is able to tune
0 properly requires another GA (called GA') inside
its decoding procedure. This GA’ optimizes random
permutations by using a fixed d, i.e. a § which is pre-
scribed by the decoding procedure of GA. The only
task of GA’ is to assess the potentials of the ¢ value.

In detail, the decoding function of the GA takes two
inputs, a permutation and a J-string. It builds the
schedule and assigns the resulting Chax as fitness to
the permutation. In order to assign a proper fitness to
the d-string, GA’ is called. After the GA’ run finishes,
the decoding procedure scales the Cpax according to
the GA’ assessment, before it is assigned as fitness to
the d-string. Unfortunately, at the current stage of
computer technology this two-stage optimization pro-
cedure seems computational prohibitive.

In the sequel we suggest a simplified two stage proce-
dure. First, we consider the task of GA’ as much more
difficult to perform than the actual search among the
0 values — provided that GA’ reports § assessments
correctly. Therefore the GA may be replaced by a hill-
climber starting e.g. from 6 = 1.0. Fortunately, we do
not have to perform additional experiments in order to
obtain results, since we can simulate the search man-
ually by means of Tab. 1. Every figure in the table
(actually presenting the mean of 50 runs) may go for
an assessment of a certain ¢ achieved by GA'.

Now let us start from the most right column of the ta-
ble (6 = 1.0) stepping to the left as long as the mean
relative error does not increase. The performance ob-
tained from GA is now estimated by simply taking the
entry of Tab. 1 at the column where the hill-climb has
stopped. By performing this hill-climb §* would have
been found for six of the nine problem instances. The
suggested procedure performs much better compared
to the co-evolving §.

6 Conclusion

In this paper we have shown that scaling the scope
of search will be useful whenever the search space is
large and/or the method of search is weak. To scale
the scope of the search auto-adaptively is highly de-
sirable, but difficult to achieve. We must admit that
this research has not opened a way to an auto-adaptive
scaling of the search space within the GA framework.

The issue actually goes far beyond job shop schedul-
ing, since narrowing the scope of search heuristically

is a widely used concept. As in the JSP case, in
many search spaces which have been narrowed heuris-
tically, the mean performance observed is superior to
the mean performance observed for the original space.
Also another obstacle considered in this paper can be
met for other optimization problems: Narrowing the
scope of search often excludes near-optimal or even
optimal solutions from being considered.

An appropriate scaling at which heuristic knowledge
is incorporated adequately is highly desirable. Adap-
tation should keep the search space small without
excluding near-optimal solutions from the scope of
search. A practical way to control the process auto-
adaptively is left as an open issue for further research.

References

Blazewicz, J., Domschke, W., and Pesch, E. (1996).
The job shop scheduling problem: Conventional
and new solution techniques. Furopean Journal
of Operational Research, 93:1-30.

Bierwirth, C., Mattfeld, D.C., and Kopfer, H. (1996).
On permutation representations for scheduling
problems. In Voigt, H.-M., et al., editors, Pro-
ceedings of Parallel Problem Solving from Nature
1V, pages 310-318, Berlin: Springer.

Bierwirth, C. and Mattfeld, D. C. (1999) Production
Scheduling and Rescheduling with Genetic Algo-
rithms. Fvolutionary Computation, to appear 7(1)

Blanton, J. L. and Wainwright, R. L. (1993). Multiple
vehicle routing with time and capacity constraints
using genetic algorithms. In Forrest, S., editor,
Proceedings of the 5th International Conference
on Genetic Algorithms, pages 452-459. San Ma-
teo, CA: Morgan Kaufmann.

Della Croce, F. D., Tadei, R., and Volta, G. (1995). A
genetic algorithm for the job shop problem. Com-
puters and Operations Research, 22:15-24.

Giffler, B. and Thompson, G. (1960). Algorithms for
solving production scheduling problems. Opera-
tions Research, 8:487-503.

Kolisch, R. (1995) Project Scheduling under Resource
Constraints. Heidelberg. Physica/Springer.

Mattfeld, D. (1996). Evolutionary Search and the Job
Shop. Heidelberg. Physica/Springer.

Storer, R., Wu, S., and Vaccari, R. (1992). New search
spaces for sequencing problems with application
to job shop scheduling. Management Science,
38:1495-1509.

