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Abstract

In this paper we present a method based on
preference relations for transforming non–crisp
(qualitative) relationships between objectives in
multi–objective optimisation into quantitative
attributes (i.e. numbers). This is integrated
with two multi–objective Genetic Algorithms:
weighted sums GA and a method for combin-
ing the Pareto method with weights. Examples
of preference relations application together with
traditional Genetic Algorithms are also presen-
ted.

1 INTRODUCTION

When dealing with industrial design problems, it rapidly
becomes apparent that there are significant differences
between so called ‘textbook optimisation problems’ and
‘real world applications’. In both cases, in multi–objective
optimisation we have a function to optimise:

Definition 1 Let n > 0, k > 0, D = X1�X2� : : :�Xn �
Rn, andR = Y1�Y2� : : :�Yk�Rk. Let further fi : D 7!
Yi for 1 � i � k and finallyF : D 7! R , so thatF(x) =
( f1(x); : : :; fk(x)).

The goal is to optimise functionF(x) under additional con-
straints i.e.

max
x

F(x) (1)

G1(x;p)� 0; : : :;Gl(x;p)� 0 (2)

wherep = (p1; : : :; pu) are additional (real–valued) para-
meters. This problem is well known and a number of non–
genetic (Hwang & Masud 1979, Osyczka 1984) and ge-
netic algorithm (Veldhuizen & Lamont 1998) approaches
exist. An additional problem is that not all objectives are

equally important which necessitates the use of weights or
preferences. We have applied Genetic Algorithms adap-
ted to solve multi–objective optimisation problems and de-
scribed some of the design problems in (Cvetkovi´c, Parmee
& Webb 1998).

The designer cannot always completely objectively define
the preferences regarding the objectives which have to be
optimised (cf. (Nisbett & Wilson 1977, p. 254)). A com-
mon situation is a subjective statement “objective A is
much more important than objective B” but without any
quantitative representation. One method for overcoming
this problem is fuzzy multiple objective optimisation (Lai
& Hwang 1996). In this paper we address this problem in
a different manner and integrate our developed methods to
different GA–based optimisation techniques.

2 FUZZY PREFERENCES AND ORDERS

The most common situation found in the literature is the
following one: if we have a finite set ofma alternativesX,
(ma � 2) and a set ofme expertsE, (me� 2), experts can
represent their preferences in three different ways:

Preference ordering of the alternatives:an expert ej

provides his preferences onX as an individual
preference orderingOj = foj(1); : : :;oj(ma)g.

Fuzzy preference relation: the expert’s preferences onX
is described by a fuzzy preference relation,Pj � X�
X with membership functionµPj : X�X 7! [0;1].

Utility function: an expertej provides his preferences on
X as a set ofma utility values,U j = fuj

i j 1� i �mag.

Unfortunately, this is not directly applicable to multi–
objective optimisation problems as we are not choosing
onealternative from a finite set, butall of them — only
their order of importance matter. However, fuzzy pref-
erences could support the estimation of relative import-



ance (weights) of objectives in multi–objective optimisa-
tion problems.

2.1 PREFERENCE ORDER

The intensity of preferenceor, shortly thepreferenceof x
overy is usually given byR(x;y) = f (g(x);Ng(y)), where
f is a non–decreasing function of both arguments andN is a
strong negation (strictly decreasing continuous involution)
(Fodor & Roubens 1994, p. 177).

Strict preferencerelationP and indifferencerelation I are
defined in the following way:

P(x;y) = 1�R(y;x); I(x;y) = min(R(x;y);R(y;x))

If we have a complete (fuzzy-)preference matrix, we would
be able to define a complete order among the objects.

RelationRdefines the directed valued graphG= (A;R) and
we can defineentering score, leaving scoreandnet flowand
the corresponding orders (Fodor & Roubens 1994, p. 151).
In the case whenR(a;b)+R(b;a) = 1 for all a;b (probab-
ilistic relation) i.e.R(a;b) = P(a;b), they all give the same
order, so, as our relations will satisfy this property, we will
concentrate only on the leaving score and the induced or-
der:

SL(a;R)
def
= ∑c2Anfag R(a;c)

a�L b iff SL(a;R)� SL(b;R)

Example 1 Wine experts give their preferences on five
Médoc winesa, b, c, d and e using the following matrix
(Fodor & Roubens 1994, p. 150):

R=

2
66664

0:50 0:57 0:57 0:29 0:67
0:43 0:50 0:70 0:52 0:28
0:43 0:30 0:50 0:72 0:48
0:71 0:48 0:28 0:50 0:48
0:33 0:72 0:52 0:52 0:50

3
77775

We have the following leaving scores:SL(a) = 2:10,
SL(b) = 1:93, SL(c) = 1:93, SL(d) = 1:95, SL(e) = 2:09,
giving the order

a� e� d� b� c:

3 OUR APPROACH

Our approach is in a way similar to linguistic ranking meth-
ods (Chen, Hwang & Hwang 1992, p. 265). For every two
objectives we ask the designer to specify one of the follow-
ing characterisations:

� Less important �Much less important
� Equally important �More important
�Much more important � Don’t care

In the further text,don’t care will be treated exactly as
equally important. There are some psychological explan-
ations for this, namely that if we don’t care in respect of
two objectives, then we also don’t care which one provides
better results. However, in future research it is intended
that this relation will be analysed more closely. Also, we
can easily and quite straightforwardly extend the number
of degrees of importance (such as slightly more important,
vastly more important etc.).

Sincek objectives requires in the worst casek(k� 1)=2
questions, we first ask the designer to identify the object-
ives of interest at this stage of the optimisation process and
to specify the relative importance of these only. However,
for clarity and brevity, this step will be skipped in the rest
of this paper.

Concerning objective importance escalation (from much
less important to much more important), it is worth men-
tioning the work of Lootsma (1996, 1997).

3.1 PROPERTIES OF PREFERENCE RELATIONS

We define the following relations:

relation intended meaning
� is equally important
� is less important
� is much less important
: is not important
! is important

The properties that we require are:

� Relation� is anequivalence relation
� Relations� and� arestrict orders
� Relation� is congruentwith� and�:

x� y^y� z) x� z
x� y^y� z) x� z

� Relation� is sub–relation of�
�Miscellaneous properties:
� !x_:x, � x� y^y� z) x� z
� !y^:x) x� y, � :x^:y) x� y

We can define predicates� (is more important) and� (is
much more important) in the following way:

x� y
def
, y� x; x� y

def
, y� x

3.2 DESCRIPTION OF THE ALGORITHM

� Let the set of objectives beO = fo1; : : :;okg. Con-
struct the equivalence classesfCi j 1� i �mg accord-
ing to� and choose one elementxi from each class
Ci giving setX = fx1; : : :;xmg wherem� k. In the
sequel we are going to work on setX .



� Use the following valuationv:

– If a� b thenv(a) = α andv(b) = β
– If a� b thenv(a) = γ andv(b) = δ
– If a� b thenv(a) = v(b) = ε

Note: Taking into account the intended meaning of
the relations, we can further assume thatα < γ < ε =
1=2< δ < β. We assume thatα+β = γ+δ = 1.

� Initialise two matricesR andRa of sizem�m to the
identity matrixEm. They will be used in the following
way:

xi � xj ,R(i; j) = α; Ra(i; j)= 0; Ra( j ; i) = 2

xi � xj ,R(i; j) = γ; Ra(i; j)= 0; Ra( j ; i) = 1 (3)

xi � xj ,R(i; j) = ε; Ra(i; j)= 1; Ra( j ; i) = 1

together withR( j ; i) = 1�R(i; j).

Note: This valuation gives already the idea how to
generalise preferences to havesstages instead of only
5 (from “much less important” to “much more import-
ant”): if xi is (say)s0 times more important thexj , we
will simply assignRa(i; j) = s0 andRa( j ; i) = 0 etc.

� Perform the following procedure:

1. For alli �mand for all j �m such thatj 6= i do
– If Ra(i; j)+Ra( j ; i) = 0 then
� Ask whetherxi � xj , xi � xj , xj � xi or

xj � xi

� Using equations (3) setRa(i; j) andRa( j ; i)
accordingly.

– Using Warshall’s algorithm (Warshall 1962),
compute transitive closure ofRa (some modi-
fications are necessary but straightforward).

2. Using (3), calculate matrixR from Ra.
3. For eachxi 2 X compute weight as a normalised

leaving score:

w(xi) =
SL(xi ;R)

∑xj2X SL(xj ;R)
: (4)

and for eachy2 Ci setw(y) = w(xi).

Example 2 Let O = fo1; : : :;o6g, ando1� o2 ando3� o4.
We haveC1 = fo1;o2g, C2 = fo3;o4g, C3 = fo5g, C4 =
fo6g andX = fx1;x2;x3;x4g wherexi 2 Ci for 1� i � 4.
Assign initiallyR andRa to E4 — identity 4�4 matrix.

Suppose that the first question gives the answerx2 � x1,
the second question gives the answerx3 � x1 and the third
onex1 � x4. The fourth question gives the answerx2 � x3

and after performing transitive closure, we have

Ra =

2
664

1 2 1 0
0 1 0 0
0 2 1 0
1 2 1 1

3
775

Since for each pair(i; j) we haveRa(i; j)+ Ra( j ; i) 6= 0,
we have enough information (without computing transitive
closure we would have to ask 6 questions and additionally
handle non–consistent answers), and we can construct the
matrix R. Suppose thatα = 0:05,β = 0:95,γ = 0:35,δ =
0:65 andε = 0:5. Then

R=

2
664

ε β δ γ
α ε α α
γ β ε γ
δ β δ ε

3
775=

2
664

0:50 0:95 0:65 0:35
0:05 0:50 0:05 0:05
0:35 0:95 0:50 0:35
0:65 0:95 0:65 0:50

3
775 :

Further, SL(x1;R) = 1:95, SL(x2;R) = 0:15, SL(x3;R) =
1:65 andSL(x4;R) = 2:25, and the order of importance1

is x2 � x3 � x1 � x4. Weights are further calculated using
(4): w(x1) = 0:325,w(x2) = 0:025,w(x3) = 0:275,w(x4) =
0:375, and after normalisationw(o1) = w(o2) = 0:2407,
w(o3) = w(o4) = 0:0185,w(o5) = 0:2037,w(o6) = 0:2778
andw(o7) = 0.

4 APPLICATIONS OF PREFERENCES

The concept of preferences and of the relative importance
of the objectives can be integrated with Genetic Algorithms
in at least two different situations:

1 weighted sum based optimisation, and
2 Pareto optimisation.

In both cases the preference method will be used to calcu-
late the weights as required. More details are described in
the following sections.

4.1 WEIGHTED SUM BASED OPTIMISATION

Weighted sum based optimisation uses a genetic algorithm
that instead of the vector function (1) optimises the scalar
function

F 0
w(x) =

k

∑
i=1

wi � f 0i (x)

where f 0i is objective fi normalised to[0;1] and w =
(wi)i=1;k is the weights vector computed using the al-
gorithm presented in section 3.2.

Our method integrated with weighted sums has a signific-
ant advantage over the traditional weighted sum based op-
timisation methods since the user doesn’t have to express
the weights quantitatively but qualitatively (within a few
categories) which is much easier. Figure 1 show results us-
ing different preferences on weighted sum optimisation of
BAe function (explained in section 4.3).

1Note that the order between objectives does not depend on
the actual values ofα, β, γ, δ andε, only their order matter.
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Figure 1: The Influence Of Preference Settings.

However, weighted sum based GA optimisation methods
(although very useful for multi–objective optimisation in
general) are generally not suitable for optimisation during
the conceptual design. The main reason is that in the con-
ceptual design phase, the likelihood of objective and con-
straint variation is high. Thus the fitness landscape will
change therefore necessitating the re–calculation and nor-
malisation of weights many times (Cvetkovi´c et al. 1998,
p. 259).

4.2 PARETO OPTIMISATION

Comparing Pareto principle based multi-objective optim-
isation with lexicographic order based optimisation, we see
two extremes concerning the objective importance: in the
case of Pareto optimisation, all objectives are considered
equally important whereas in the case of lexicographical
order the first objective is the most important one and only
if we get the same results for the first objective, do we then
consider the second objective etc. In this section we try to
develop an optimisation method that is based on the Pareto
principle but where we can specify the relative importance
of objectives.

As in the case of weighted sums based methods, re-
lative importance of objectives in this modified Pareto
method could be specified using weights (quantitatively)
or they could be combined with the above developed pref-
erence method that would translate qualitative specification
into quantitative. Without this combination, our modified
Pareto method would suffer from the same problem as the
weighted sum method: how to specify weights in the case
of 15–20 or more objectives (it is estimated that 7� 2 is
the maximal number of chunks a person can work on at the
same time).

4.2.1 Definition Of The Modified Pareto method

In order to avoid any terminological confusion, we give the
definition ofnon–dominance:

Definition 2 We say that (in object space) the vectorx =
(x1; : : :;xk) isnon–dominatedby vectory=(y1; : : :;yk), de-
notedx� y, if xi � yi for all 1� i � k. In other words,

x� y ,
1
k

k

∑
i=1

I�(xi ;yi) � 1; (5)

where

I�(x;y) =

�
1; x� y
0; x< y

We can generalise (5) and say (assuming∑k
i=1wi = 1):

x�w y if and only if
k

∑
i=1

wi � I�(xi ;yi) � 1; (6)

or we can even put some thresholdτ � 1 and say

x�τ
w y if and only if

k

∑
i=1

wi � I�(xi ;yi)� τ: (7)

Definition 3 We will call relation�w defined by (6)w–
non-dominanceand the relation�τ

w defined by (7)(w;τ)–
non-dominance.

Note: The standard dominance relation is just a special
case of (7) forw= (1

k;
1
k ; : : :;

1
k) andτ = 1.

Example 3 Let F(x) = (x2
1;x

2
2;x

2
3;x

2
4) and w =

(1=2;1=3;1=6;0). Using above defined orders, we
have:

F(1;2;3;5)�w F(1;2;3;7)

F(1;2;3;7)� F(1;2;3;5)

F(1;3;7;4)�0:6
w F(0;4;5;9):

Note that relation�τ
w is transitive as a product of transitive

(component–wise) orders and has all the usual features of
an order relation.

Definition 4 ThePareto frontis defined as a maximal set
of non–dominated elements (according to a given order�)
and this definition is naturally extended tow–Pareto front
and to(w;τ)–Pareto front for a given vector of weightsw
and thresholdτ (i.e. according to the order�τ

w)�w and�τ
w

given by (6) and (7) respectively. We assume that at least
one of the inequalities is strict.

As mentioned before, vectorw could be either specified
directly by the designer or it can be calculated from his



preferences which would help the designer to work in more
qualitative terms without the burden to reason if the weight
should be set of 0.5 or to 0.6 and how is it going to affect
his results.

The Pareto front method combined with genetic algorithms
is a very powerful optimisation method since it maintains
the diversity of population. However, it could be computa-
tionally very expensive.

4.2.2 Genetic Algorithms And Pareto Optimisation

This section describes applications of above method. First
we give a fairly simple example of a test function, and after
that, in section 4.3, we present a real world problem in co-
operation with British Aerospace (BAe).

As a simple test function that can immediately show some
features ofw–Pareto front, let us try to maximise the fol-
lowing functions (n= k= 2):

( f1; f2)(x1;x2) = (sin(x2
1+x2

2�1);sin(x2
1+x2

2+1))

for x1;x2 2 [0;3π=4]. Obviously, f1 is at maximum for
x2

1 + x2
2 = π=2+ 1 � 2:5708 and f2 is at maximum for

x2
1+x2

2 = π=2�1� 0:5708 – so they don’t have joint max-
imum. Using different preferences, i.ef1� f2, f1� f2 and
f1 � f2, we obtained three different vectorsw and three
different Pareto fronts showed in Figure 2. Results were
obtained running GA (described in more details in sec-
tion 4.3) for 15 generations.

0

0.5

1

-0.5 0 0.5 1
f1

f2

f1� f2
f1� f2
f1� f2

Figure 2: Different Preferences Produce Different Parts Of
Pareto Front. Test Function Case.

4.3 BAE FUNCTION AND PARETO

The British Aerospace (BAe) design problem is presen-
ted in (Cvetković et al. 1998). Briefly (at the moment,
as the complexity of the model is constantly increased),
we have 9 input variablesx1; : : :;x9 and 13 output object-
ivesy1; : : :;y13 to optimise simultaneously. The interaction
betweeny4 (specific excess power) andy9 (ferry range) is

specially interesting as they strongly conflict. All results
we discuss in this section will be based on simultaneous
optimisation ofy4 andy9 objectives. All other objectives
are being ignored (masked out).

However, BAe design problem is not only an optimisation
problem, actually, optimisation is a rather small part of
it. The problems of conceptual design relate to the fuzzy
nature of initial design concepts and the many different
variants that engineer wishes to try. Computers should be
able to help the exploration of those variants whilst also
suggesting some others as well (Cvetkovi´c et al. 1998,
Parmee 1998a). Therefore, interaction with the designer
(team) is very important. Our goal is to assist designer in
the preliminary phase design process (more in the sense of
MCDA (multiple criteria decision aid), then MCDM (mul-
tiple criteria decision making) (Carlsson 1996).

The core of the genetic algorithm we have used is
based on the Breeder Genetic Algorithm (M¨uhlenbein
& Schlierkamp-Voosen 1993). It utilises genetic oper-
ators suitable for real valued chromosomes (arithmetic
crossover, exponential mutation etc.), and is adapted to
use techniques for multi–objective optimisation (Cvetkovi´c
et al. 1998, Cvetkovi´c & Parmee 1998). Considering the
Pareto front obtained using Genetic Algorithm, Figure 3(a)
shows the final size of the(w;τ)–Pareto front at the end
of GA run for different weightsw and different Pareto
thresholdsτ. Results were obtained running GA with pop-
ulation size 50 for 200 generations withτ from 0 to 1, step
0.1, andy4–weight from 0 to 1 in steps of 0.05, and are av-
eraged over 15 runs (3465 runs all together). Figure 3(b)
show twow–Pareto fronts ofy4 versusy9 for different pref-
erences i.e. for different weights together with the shape
of the complete Pareto front. We can see immediately from
Figure 3 that by varying Pareto threshold and the weights of
each objective, we can obtain different Pareto fronts. Exact
relationship and applicability will be investigated in further
papers. Knowing the behaviour of Pareto front with respect
to those parameters, would enable us to vary the paramet-
ers during the genetic algorithm run to identify those parts
of the Pareto front that are of special interest (considering
the density of points in given regions etc.).

5 CONCLUSION

In this paper we have presented one method for transform-
ing qualitative characterisation of objective relative im-
portance into quantitative characterisation. One algorithm
is given that implements the transformation. Integration
with traditional and GA based multi–objective optimisa-
tion method is discussed and a novel Pareto optimisation
method combination with weights/preferences developed.
Some applications of preferences in the new Pareto based
method are presented. In the future work we will try to fur-
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Figure 3: (a) Size ofy4 vs. y9 (w;τ)–Pareto Front of the
BAe Function as a Function ofw andτ. (b) w–Pareto Front
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Together With the Shape of a Complete Pareto Front.

ther develop the preference model and to integrate it more
tightly into the real world applications.
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