
A Tool for Solving Di�erential Games with Co-evolutionary
Algorithms

Francisco Gordillo

Escuela Superior de Ingenieros
Camino Descubrimientos s/n

41092 Sevilla, Spain

Ismael Alcal�a

Escuela Superior de Ingenieros
Camino Descubrimientos s/n

41092 Sevilla, Spain

Javier Aracil

Escuela Superior de Ingenieros
Camino Descubrimientos s/n

41092 Sevilla, Spain

Abstract

Game theory is concerned with optimization
problems involving several players with con-

icting interests. Di�erential games are an
interesting area inside this �eld in which the
problem is formulated by means of dynamical
systems. In spite that the theoretical solu-
tion of di�erential games is well known, faced
with large-scale, complex systems, analytical
or, even, numerical methods are not usually
suitable. Genetic algorithms appear to be
useful for solving such problems when deal-
ing with nonlinear, large-scale systems. This
paper shows how co-evolutionary algorithms
can be applied to solve di�erential games and
presents a computer tool to formulate and
solve these problems. The di�erential equa-
tions which de�ne the system under study
are written in Vensim, a visual modeling tool.
The usefulness of the presented tool is shown
by means of two examples.

1 INTRODUCTION

This paper deals with the use of genetic algorithms for
the resolution of di�erential games. Di�erential game
theory is an extension of traditional game theory which
considers problems involving several players with con-

icting interests [Isaacs, 1965]. Di�erential games con-
sider dynamical systems as the arena of the game. Dif-
ferential games have application in many diverse �elds,
such as missile guidance-avoidance [Isaacs, 1965], arm-
race problems [Moriarty, 1984] and competitive envi-
ronments. Another important application is for worst-
case designs. In this case, player 1 is the designer while
player 2 is not a real player but is nature: it is desired
the action u1 to be optimal faced against the worst
possible set of disturbances. In this way, it is possible

to replace a stochastic problem by a deterministic one.
Di�erential games have also application in control the-
ory [Vincent and Grantham, 1997].

This paper presents how genetic algorithms in its co-
evolutionary variant can be used to solve this kind of
problems. Firstly, a computer tool for solving di�er-
ential games is presented. With this tool the prob-
lem can be formulated with Vensim, a visual model-
ing tool which allows to build and simulate dynamic
systems [Ventana Systems, Inc, 1997]. It is a pop-
ular software package used in the discipline known
as System Dynamics~[Aracil and Gordillo, 1997,
Roberts et al., 1983]. Secondly, the usefulness of the
tool is shown by means of two simple examples. A
more complex application of the tool is described in
[Gordillo et al.,].

The paper is organized as follows. Section 2 shows
the formulation of di�erential games. In Sect. 3 co-
evolutionary genetic algorithms are presented. The
implementation of them in the computer tool is shown
in Sect. 4. Section 5 presents the examples of applica-
tion. The paper closes with a section of conclusions.

2 DIFFERENTIAL GAMES

A di�erential game with two players can be formulated
as follows. Given a dynamical system

_x = f(x; u1(t); u2(t); t); x(t0) = x0 (1)

where x 2 IRn, u1; u2 2 IR and _x means derivative
of x with respect time. The signals u1(t) and u2(t)
can be considered as the control signals (the actions)
which two players can perform to modify the system
behavior.

Consider also two performance criteria

J1 = S1(x(tf); tf) +

Z tf

t0

L1(x; u; v; t)dt (2)

J2 = S2(x(tf); tf) +

Z tf

t0

L2(x; u; v; t)dt (3)

The objective of player 1 is to �nd u1(t) such that J1
is minimum. Likewise, player 2 must select u2(t) such
that J2 is minimum.

In fact, other kind of criteria can be considered but
this formulation is the usual for analytically solvable
problems. Likewise, di�erential games with more than
two players can also be formulated.

The solution of the problem is known in some cases.
In particular, when the problem is zero-sum, that is,
J1 = �J2 the ordinary di�erential equations which de-
�ne the solution are well known [Isaacs, 1965]. Never-
theless, the class of problems considered in this paper
need not to ful�ll this condition. Furthermore, when
the system equation is other than some very simple
examples, the resolution of the di�erential equations
is not a trivial task.

3 CO-EVOLUTIONARY

ALGORITHMS

Genetic algorithms are general-purpose search meth-
ods based on natural selection, which can be used to
solve optimization problems. They are especially use-
ful when other traditional methods fail since genetic
algorithms are not very demanding in properties such
as continuity or di�erentiabilility.

Co-evolutionary algorithms are a variant of standard
genetic algorithms in which two or more genetic pop-
ulations evolve interacting each other [Hillis, 1992,
Koza, 1992]. In other words, each population tries
to optimize its own �tness function but this �t-
ness function depends on the state of the rest of
the populations. Co-evolutionary algorithms are
usually classi�ed into competitive and cooperative

[de Moura Olivera and Jones, 1998] depending if the
di�erent objectives of the populations are opposed or
complementary, respectively. We believe that this clas-
si�cation should not be so strict and intermediate sit-
uations can be allowed: the �tness functions of the
di�erent populations may pursue di�erent objectives
but the pro�t of one population need not to imply
losses for the other players. This is the underlining
idea of this paper which allows to deal with non-zero
sum games by means of co-evolutionary algorithms.

The outline of these algorithms is described in the fol-
lowing. Each population evolves as in standard ge-
netic algorithms with the usual operators: selection,
crossover and mutation. Other operators are allowed
as usual. The di�erence lies in the way the �tness

measure of each individual is obtained. Since the �t-
ness function depends on the state of the rest of the
populations, this measure can not be computed with-
out knowing the value of the individuals of the other
populations. The procedure is the following. Consider
the case of two populations. In order to evaluate the
�tness of individual i of the �rst population it must
encounter all the individuals of the other population1.
As a consequence of the encounter of individual i of
the �rst population with individual j of the second
population, two basic �tness values f1ij and f2ij are ob-
tained. This basic �tness values are not the �tness
of the individuals since other encounters must also be
considered. In this way two, matrices F 1 = [f1ij] and

F 2 = [f2ij] are formed. Then, the �tness associated to
individual i of the �rst population can be computed
averaging the values f1ij with j from 1 to the number
of individuals in the second population. In the same
way the �tness associated to individuals of the second
population is computed averaging the rows of matrix
F 2.

When more populations exist the procedure is similar
but more matrices F i will be formed and they will have
more dimensions. In this way, in a game with three
players, the element fnijk of matrix Fn represents the
�tness value for player n resultant of the encounter of
individual i of the �rst population with individual j
of the second population and individual k of the third
population.

Co-evolutionary algorithms have been applied, among
other �elds, to manufacturing scheduling optimization
[Husband and Mill, 1991], multivariable system iden-
ti�cation [de Moura Olivera and Jones, 1998],
controller design [Jones and de Moura Oliveira, 1997,
Paredis, 1997] and competitive learning
[Angeline and Pollack, 1993].

The application of this algorithm to the case of di�er-
ential games is straightforward. The encounters of two
(or more) individuals correspond to a simulation of Eq.
(1) with the control signal represented by these indi-
viduals. The basic �tness values corresponding to the
encounter are the values of Ji (see Eqs. (2) and (3))
resultant of the simulation. The rest of the algorithm
remains unchanged.

1In some variants of the algorithm the encounters are
only with some randomly-selected individuals of the other
population.

4 CO-EVOLUTIONARY

ALGORITHMS IN VENSIM

In this section, the computer tool for solving di�eren-
tial games is described. A co-evolutionary algorithm
has been implemented in conjunction with Vensim to
solve di�erential games with two players (the necessary
modi�cations to deal with more players are described
below). With Vensim, the dynamic equations (1) can
be easily programmed even with large systems with
many nonlinearities. The performance criteria J1 and
J2 can also be programmed with Vensim.

There exists a version of Vensim called Vensim DLL
which is a Dynamic Link Library (DLL). This version
allows the programmer to make use of the models de-
veloped in Vensim from other applications. This is the
strategy used in the co-evolutionary tool. The main
part of this tool is written in C and calls Vensim DLL
to perform the simulations.

In the following, the way the algorithm has been im-
plemented is explained. Two separated programs ex-
ecute each one an almost-standard genetic algorithm.
A di�erent population evolves in each program.

The individuals of each population represent the con-
trol signals u1 and u2 respectively. As genetic algo-
rithms work with strings of symbols, a codi�cation
must be considered. The most natural way is to dis-
cretize the variable t between t0 and tf and code the
values of the signals in the considered instants as bi-
nary numbers. In this way, each individual repre-
sents a function of time ui(t). A more interesting
approach, from the practical point of view, is to try
to �nd the optimal laws in closed-loop form ui(x) in-
stead of open loop control signals ui(t). The inherent
feedback in closed-loop control laws allows to correct
unpredictable circumstances such as disturbances, er-
ror in the initial conditions or modeling errors.

In any case, the tool allows to use any code for u1
and u2 since the genetic algorithm implemented in the
programs is a general-purpose one. In the examples of
the next section a closed-loop control law is found.

On the other hand, both programs are not completely
independent since they are synchronized, that is, they
wait each other to perform the evaluation of their pop-
ulations. When both programs are ready to evaluate
their populations, one of them (the client) sends to the
other (the server) the information which de�nes the
individuals of the present generation. With this in-
formation, the other program is ready to perform the
encounters of the, say, n1 individuals of one population
with the, say, n2 individuals of the other one. In this

way n1 � n2 encounters must be implemented in each
generation. For each encounter, an order is passed to
Vensim DLL to perform a simulation with the control
signal associated to the corresponding individuals. At
the end of each simulation two �tness indexes are ob-
tained which represent the value of J1 and J2. In this
way matrices F 1 and F 2 are formed and the �tness of
each individual of both populations can be computed.
Then, the �tness values of the individuals associated
to the client are sent to it. Now, both programs can
continue separately their algorithms till the next gen-
eration.

The communication between both programs is imple-
mented with the TCP/IP protocol. In this way, they
can be executed in the same or in di�erent computers.
In this last case, an easy improvement would allow to
save time: each program would evaluate the half of
matrices F 1 and F 2. With this enhancement, which
has not been programmed yet, the program would ac-
quire parallel computation capabilities. Another easy
improvement of the tool would be the incorporation of
more players which would be implemented with more
genetic-algorithm programs.

The tool includes a graphical interface which allows
the user to easily con�gure the di�erential game. The
user can

� specify the name of the Vensim model which de-
�nes the dynamical system and the performance
criterion. The last one can be much more general
than the type given in (2) and (3).

� specify the con�guration of each genetic algo-
rithm:

{ Performance criterion:

� Name of the Vensim variable.

� If it is desired to optimize the �nal value
of the variable or its integral in the simu-
lation time.

� If it is desired to maximize or minimize.

{ Unknown control signal:

� Name of the Vensim variable.

� Maximum and minimum values bounds.

� Number of values considered in the inter-
val.

{ Parameters which de�ne the genetic algo-
rithm: number of individuals, maximum
number of evaluations, crossover and muta-
tion probabilities.

� Con�gure the output of the program.

5 EXAMPLES

In this section, two examples of application of the tool
are exposed involving a pursuit game in two dimen-
sions. These examples are included only in order to
illustrate the use of the presented tool. More re�ne-
ments must be included in these examples to acquire
more practical value. A more complex example of ap-
plication of the tool can be found in [Gordillo et al.,].
Another application of genetic algorithms (with a dif-
ferent approach) to a similar example can be found in
[Sheppard and Salzberg, 1995].

In the �rst example, one of the players (the pursuer)
tries to catch the other player (the evader). This is
a typical example of di�erential game. In the sec-
ond example, a new pursuer is added in such a way
that the two pursuers act as an only player. The
two-pursuer problem has no known analytical solution
[Imado and Ishihara, 1993].

In both examples, the dynamics of each player are:

d2xi
1

dt2
= ui

1

d2xi
2

dt2
= ui

2

where ri = (xi
1
; xi

2
) are the coordinates of the player i

(i = P for the pursuer and i = E for the evader) and
ai = (ui

1
; ui

2
) is its acceleration which acts as the con-

trol signal. Furthermore, two restrictions have been
considered for each player:

kaik � aimax

k _xik � vimax

where aimax and vimax are prede�ned constants.

5.1 EXAMPLE 1: SINGLE-PURSUER

GAME

In the case of one pursuer and one evader, the objective
of the pursuer is to minimize

JP =

Z tc

0

LP dt =

Z tc

0

tkri � rjkdt (4)

where tc is the time in which the pursuer catches the
evader. This index is similar to the ITAE criterion
used in control theory. The multiplication by time in
the de�nition of L penalizes in smaller amount early
errors than late errors. In this way the pursuer at-
tempts to catch the evader as soon as possible. The
�nal time for the simulations tf has been chosen equal
to 30.

On the other hand, the evader tries to maximize the
same functional, in other words, JE = �JP .

The parameters which de�ne the restrictions on the
movement of the players are:

aPmax = 1 aEmax = 2

vPmax = 2 vEmax = 1

The objective of the di�erential game is to �nd optimal
closed-loop control laws for both players. It is assumed
that these control laws have the form:

ui
1
(t) = Ki

r11
(xP

1
(t)� xE

1
(t))

+ Ki
r12

(xP
2
(t)� xE

2
(t))

+ Ki
v11

(_xP
1
(t)� _xE

1
(t))

+ Ki
v12

(_xP
2
(t)� _xE

2
(t)) (5)

ui
2
(t) = Ki

r21
(xP

1
(t)� xE

1
(t))

+ Ki
r22

(xP
2
(t)� xE

2
(t))

+ Ki
v21

(_xP
1
(t)� _xE

1
(t))

+ Ki
v22

(_xP
2
(t)� _xE

2
(t)) (6)

with i = P;E.

Thus, the control laws are de�ned with the value of
the parameters

(KP
r11

;KP
r12

;KP
r21

;KP
r22

;KP
v11

;KP
v12

;KP
v21

;KP
v22

)

for the pursuer and

(KE
r11

;KE
r12

;KE
r21

;KE
r22

;KE
v11

;KE
v12

;KE
v21

;KE
v22

)

for the evader. Hence, each individual of both popula-
tions of the co-evolutionary algorithm represents eight
real parameters.

This problem has been introduced in the tool described
in the previous section. For each encounter, a simula-
tion has been performed, corresponding to the follow-
ing initial conditions:

rP = (0; 0) vP = (0; 2)

rE = (10; 0) vE = (0; 1)

The results of one execution of the tool are shown in
Tab. 1. In order to test the validity of the solution
some simulations have been performed. The �rst one,
shown in Fig. 1, corresponds to the best control laws
and the same initial conditions of the simulation which
de�nes the �tness of the individuals. In this �gure the
behavior of the pursuer is represented by stars and
the one of the evader by circles. Figure 2 shows the
evolution of JP during this simulation. Figure 3 shows
a simulation with di�erent initial conditions:

rP = (0; 0) vP = (0; 2)

rE = (15; 0) vE = (�1; 0)

Table 1: Parameters Obtained for Example 1

KP
r11

�1:56 KE
r11

�0:70
KP

r12
�1:60 KE

r12
�0:59

KP
r21

0:06 KE
r21

0:04
KP

r22
�0:27 KE

r22
�0:22

KP
v11

�1:64 KE
v11

�1:82
KP

v12
1:04 KE

v12
1:34

KP
v21

�0:02 KE
v21

1:30
KP

v22
�2:00 KE

v22
�2:00

The behavior of both players in both simulations is
quite coherent. As it can be seen, the evader is able
to escape. This is due to the fact that the constraints
in the movement of the pursuer are very restrictive.
Concretely, aPmax is quite small compared with aEmax.
The simulation of Fig. 4 corresponds to the same con-
ditions of Fig. 1 but with aPmax = 1:5. In this case,
the pursuer catches the evader.

0 5 10 15 20 25
−6

−4

−2

0

2

4

6

8

X1

X
2

t=tf

t=tf

t=0
t=0

Figure 1: Example 1: Best Control Laws with Training
Initial Conditions

0 5 10 15 20 25 30
0

50

100

150

200

Le

Time

Figure 2: Evolution of LP for the Case of Fig. 1

5.2 EXAMPLE 2: TWO-PURSUER GAME

In the second example two pursuers attempt to catch
a single evader. The evader tries to remain far from
both pursuers at the same time. This problem has no
known analytical solution even when looking for open-
loop control laws [Imado and Ishihara, 1993]. Here,

0 5 10 15 20 25 30 35
−25

−20

−15

−10

−5

0

5

10

X1

X
2

t=0
t=0

t=tf

t=tf

Figure 3: Example 1: Best Control Laws with Test
Initial Conditions

0 5 10 15 20 25
−1

0

1

2

3

4

5

6

X1

X
2

t=tc
t=0t=0

Figure 4: Example 1: Best Control Laws with Training
Initial Conditions and aPmax = 1:5

the control law, as well as the performance index, for
both pursuers are identical, so they act as a single
player. Hence, a population of the co-evolutionary al-
gorithm represents both pursuers simultaneously.

The individuals representing the control law of both
pursuers attempt to minimize the performance index

JP =

Z tc

0

LP dt =

Z tc

0

t
�
krP1 � rEk+ krP2 � rEk

�
dt

where rP1 and rP2 are the positions of both pur-
suers. Their control law has the same form (5){(6)
and, hence, the same parameters.

On the other hand, the evader tries to maintain both
pursuers as far as possible. This can be done max-
imizing the distance to the nearer pursuer. Thus, a
sensible performance index is

JE =

Z tc

0

LEdt = �

Z tc

0

t min
i=1;2

krE � rPikdt

The structure of the control law is:

uE
1
(t) = KE

r11
(xP1

1
(t)� xE

1
(t))

+ KE
r11

(xP2
1
(t)� xE

1
(t))

+ KE
r12

(xP1
2
(t)� xE

2
(t))

+ KE
r12

(xP2
2
(t)� xE

2
(t))

+ KE
v11

(_xP1
1
(t)� _xE

1
(t))

+ KE
v11

(_xP2
1
(t)� _xE

1
(t))

+ KE
v12

(_xP1
2
(t)� _xE

2
(t))

+ KE
v12

(_xP2
2
(t)� _xE

2
(t))

uE
2
(t) = KE

r21
(xP1

1
(t)� xE

1
(t))

+ KE
r21

(xP2
1
(t)� xE

1
(t))

+ KE
r22

(xP1
2
(t)� xE

2
(t))

+ KE
r22

(xP2
2
(t)� xE

2
(t))

+ KE
v21

(_xP1
1
(t)� _xE

1
(t))

+ KE
v21

(_xP2
1
(t)� _xE

1
(t))

+ KE
v22

(_xP1
2
(t)� _xE

2
(t))

+ KE
v22

(_xP2
2
(t)� _xE

2
(t))

Notice that the constants associated to both pursuers
are the same. Therefore, each individual of the evader
population still represents eight parameters.

The maximum velocities and accelerations are the
same as in example 1.

As in the previous example, one simulation has been
performed for each encounter, corresponding to the

following initial conditions:

rP1 = (0; 0) vP1 = (0; 2)

rP2 = (15; 0) vP2 = (0; 2)

rE = (10; 0) vE = (0; 1)

The results of one execution of the tool is shown in
Tab. 2. As in the previous example, some simulations

Table 2: Parameters Obtained for Example 2

KP
r11

�0:68 KE
r11

�2:00
KP

r12
�0:06 KE

r12
�1:77

KP
r21

0:31 KE
r21

1:88
KP

r22
�0:73 KE

r22
1:50

KP
v11

�1:49 KE
v11

�0:44
KP

v12
0:34 KE

v12
�0:17

KP
v21

0:07 KE
v21

1:40
KP

v22
�2:00 KE

v22
0:00

have been performed to test the validity of the solu-
tion. The �rst one, shown in Fig. 5 corresponds to the
best control laws and the same initial conditions of the
simulation which de�nes the �tness of the individuals.
Figure 6 shows the evolution of JP during this simula-
tion. Figure 7 shows a simulation with di�erent initial
conditions. The behavior of the players in both simu-
lations is still quite coherent. The simulation of Fig. 8
corresponds to the same conditions of Fig. 5 but with
vEmax = 2. The simulation of Fig. 9 confronts the best
evader with a pursuer control law obtained when the
evolution is aborted prematurely. It can be seen that
the behavior of the evader is, now, much worse than
the previous one. Finally, the obtained control law for
the evader is confronted with the best pursuer control
law of the previous example (with only one pursuer)
in Fig. 10. It can be seen that the new control law for
the pursuer is more suitable for the two-pursuer case.

6 CONCLUSIONS

A method based on co-evolutionary algorithms has
been proposed to solve di�erential games. This
method has been implemented in a computer tool
which allows to de�ne the problem with a modeling
program. In this way the formulation of complex prob-
lems is allowed. The co-evolutionary algorithm is able
to deal with these kind of problems as it has been ver-
i�ed by means of two examples.

0 5 10 15
−10

−5

0

5

X1

X
2

t=tc

t=0
t=0

t=0

Figure 5: Example 2: Best Control Laws with Training
Initial Conditions

0 2 4 6 8 10 12
0

20

40

60

80

Lp

Time

0 2 4 6 8 10 12
0

5

10

15

20

25

Le

Time

Figure 6: Evolution of LP and LE for the Case of Fig.
5

0 10 20 30 40 50 60
−25

−20

−15

−10

−5

0

5

X1

X
2

t=0t=0
t=0

t=tf

t=tf

t=tf

Figure 7: Example 2: Best Control Laws with Test
Initial Conditions

−20 −15 −10 −5 0 5 10 15 20
−30

−25

−20

−15

−10

−5

0

5

X1

X
2

t=tf

t=tf

t=tf

t=0
t=0

t=0

Figure 8: Example 2: Best Control Laws with Training
Initial Conditions and vEmax = 2

−10 −5 0 5 10 15 20
−25

−20

−15

−10

−5

0

5

10

X1

X
2

t=0 t=0

t=0

t=tf

t=tf

t=tf

Figure 9: Example 2: Best Evader Against Non-
optimal Pursuers

−15 −10 −5 0 5 10 15 20 25
−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

X1

X
2

t=tf

t=tf

t=tf

t=0
t=0

t=0

Figure 10: Example 2: Best Evader Against the Best,
One-pursuer Pursuers

Acknowledgments

The authors want to thank Federico Cuesta who gave
the idea of implementation of co-evolutionary algo-
rithms.

This work has been supported by the Spanish Ministry
of Education and Culture under grants CICYT TAP
97{0553 and CICYT TAP 98{0541 and by the \De-
partamento de M�etodos Cuantitativos" of Telef�onica,
S.A.

References

[Angeline and Pollack, 1993] Angeline, P. and Pol-
lack, J. (1993). Competitive environment evolve
better solutions for complex tasks. In Fifth Inter-

national Conference on Genetic Algorithms, pages
264{270.

[Aracil and Gordillo, 1997] Aracil, J. and Gordillo, F.
(1997). Din�amica de Sistemas. Alianza Editorial.
In Spanish.

[de Moura Olivera and Jones, 1998] de Moura Oliv-
era, P. B. and Jones, A. H. (1998). Co-operative co-
evolutionary multi-variable system identi�cation us-
ing structured genetic algorithms. In Application of

Multi-variable System Techniques. Professional En-
gineering Publishing.

[Gordillo et al.,] Gordillo, F., Vicente, S. M., Gala,
M., Aracil, J., and Alcal�a, I. Optimal behavior in
competition between telecomunication companies: a
co-evolutive, di�erential-game approach. Submitted
to Journal of Computational Economics.

[Hillis, 1992] Hillis, W. D. (1992). Co-evolving para-
sites improve simulated evolution as an optimization
procedure. In C. G. Langton, C. Taylor, J. D. F.
and Rasmussen, S., editors, Arti�cial Life II, pages
313{323. Addison-Wesley.

[Husband and Mill, 1991] Husband, P. and Mill, F.
(1991). Simulated co-evolution as the mechanism for
emergent planning and scheduling. In Belew, R. and
Booker, L., editors, Proceedings of the Fourth Inter-

national Conference on Genetic algorithms, pages
264{270. Morgan Kaufmann.

[Imado and Ishihara, 1993] Imado, F. and Ishihara,
T. (1993). Pursuit-evasion geometry analysis be-
tween two missiles and an aircraft. Computers and

Mathematics with Applications, 26:3:125{139.

[Isaacs, 1965] Isaacs, R. (1965). Di�erential Games.
Wiley.

[Jones and de Moura Oliveira, 1997] Jones, A. H. and
de Moura Oliveira, P. (1997). Genetic design of ro-
bust PID controllers. In Smith, G. D., Steele, N. C.,
and Albrecht, R. F., editors, Arti�cial Neural Nets
and Genetic Algorithms. Springer-Verlag.

[Koza, 1992] Koza, J. R. (1992). Genetic Program-

ming: on the Programming of Computers by Means

of Natural Selection. MIT Press.

[Moriarty, 1984] Moriarty, G. (1984). Di�erential
game theory applied to a model of the arms race.
IEEE Technology and Society Magazine, pages 10{
17.

[Paredis, 1997] Paredis, J. (1997). Coevolutionay pro-
cess control. In Smith, G. D., Steele, N. C., and
Albrecht, R. F., editors, Arti�cial Neural Nets and
Genetic Algorithms. Springer-Verlag.

[Roberts et al., 1983] Roberts, N., Andersen, D. F.,
Deal, R., Grant, M. S., and Sha�er, W. (1983). In-
troduction to Computer Simulation: A System Dy-

namics Modeling Approach. Addison-Wesley.

[Sheppard and Salzberg, 1995] Sheppard, J. W. and
Salzberg, S. L. (1995). Combining genetic algo-
rithms with memory based reasoning in pursuit
games. In Proceedings of the 1995 International

Conference on Genetic Algorithms.

[Ventana Systems, Inc, 1997] Ventana Systems, Inc
(1997). Vensim 3.0. Reference Manual.

[Vincent and Grantham, 1997] Vincent, T. and
Grantham, W. (1997). Nonlinear and Optimal Con-

trol Systems. Wiley.

