
Optimization by Searching a Tree of Populations

Louis Steinberg

Department of Computer Science
Rutgers University

110 Frelinghuysen Road
Piscataway, NJ 08854

lou@cs.rutgers.edu, 732-445-3581

Khaled Rasheed

Department of Computer Science
Rutgers University

110 Frelinghuysen Road
Piscataway, NJ 08854

krasheed@cs.rutgers.edu, 732-445-6185

Abstract

GAs have been found to be useful in handling
many numerical optimization problems. Be-
cause of the variability in results inherent in
the stochastic nature of GAs, it is common to
run a GA several times and take the best of
the results. However, it is possible to save a
GA’s population at some intermediate states
and restart from one of these populations in-
stead of from the very beginning. By doing
so we generate a tree of populations, where a
child population is generated from its parent
by running some number of GA iterations.
We describe two methods for searching such
a tree of populations, one based on High-
est Utility First Search (HUFS) and one that
proceeds level by level with no backtracking,
and give the results of testing them on a real-
world optimization task involving conceptual
design of supersonic transport aircraft. They
both do much better than repeatedly run-
ning the GA from the beginning, with HUFS
achieving equivalent results in less than half
the GA iterations in some situations.

1 Introduction

Genetic Algorithms (GAs) have proven useful for solv-
ing numerical optimization problems in number of do-
mains. In such a GA, an individual represents a can-
didate solution to the problem and the fitness function
is derived from the measure of merit being optimized.
The best individual created during a run becomes the
result of the optimization.

GAs have the feature that if you run one repeatedly
on the same problem you will get a range of different
results, and these results will vary in quality, i.e in

the measure of merit. Even though this variability is
often less than with competing methods like gradient
descent, it still may be significant. If so, the variabil-
ity can be further reduced by running the GA a few
times on the same problem, and taking the best of the
resulting answers as the overall answer.

Current practice is to simply run the entire optimiza-
tion process several times from beginning to end. Sup-
pose, however, that we ran the GA in stages, stopping
after every n iterations and saving the current pop-
ulation. We can view the process of running for n
iterations as an operator that generates one popula-
tion from another. Because of the stochastic nature
of this operator, we can apply it to the same “par-
ent” population (that is, go back and restart from the
same saved population) many times, and it will gen-
erate many different “child” populations. We can also
apply the operator to one or more child populations.
In this way we can generate a tree of populations.

We can view the optimization process as searching this
tree of populations. The basic step is to start with
some population and apply the operator (i.e. run the
GA for n iterations), to generate one child. When we
go back we need not go back to the very beginning, and
when we run the GA we need not run to convergence.
Rather, each time we do a step we can choose any
existing population as our starting point and take one
step from there.

This paper will present the results of taking this ap-
proach. It will describe two methods for controlling the
search, that is, for deciding at each step which popula-
tion to work from, and will also describe an empirical
evaluation of these methods on a problem involving
the design of a supersonic airliner. It will be seen that
this approach can cut in half the number of iterations
needed to achieve a given level of quality, compared to
simply rerunning the GA from scratch.

The rest of this section will lay out the context we are



Table 1: Aircraft Parameters to Optimize
No. Parameter
1 exhaust nozzle convergent length(lc)
2 exhaust nozzle divergent length(ld)
3 exhaust nozzle external length(le)
4 exhaust nozzle radius(r7)
5 engine size
6 wing area
7 wing aspect ratio
8 fuselage taper length
9 effective structural t/c
10 wing sweep over design mach angle
11 wing taper ratio
12 Fuel Annulus Width

working in: the specific problem and GA that we have
used for our experiments. The next section will de-
scribe the two control methods, one very simple and
one based on decision theory. The third section will de-
scribe the empirical tests and their results. The fourth
section will discuss related work and the last section
is our summary and conclusions.

1.1 The Test Problem

Our test problem concerns the conceptual design of
supersonic transport aircraft. We summarize it briefly
here; it is described in more detail elsewhere [GSS96].
The GA attempts to find a good design for a particular
mission by varying twelve of the aircraft conceptual
design parameters in Table 1 over a continuous range
of values.

An optimizer evaluates candidate designs using a mul-
tidisciplinary simulator. In our current implementa-
tion, the optimizer’s goal is to minimize the takeoff
mass of the aircraft, a measure of merit commonly used
in the aircraft industry at the conceptual design stage.
Takeoff mass is the sum of fuel mass, which provides a
rough approximation of the operating cost of the air-
craft, and “dry” mass, which provides a rough approx-
imation of the cost of building the aircraft. The fuel
mass needed is computed by simulating the aircraft’s
flight over a specified “mission”, which says how far
the aircraft flies at each of several altitudes and speeds.
Calculating takeoff mass for one candidate design re-
quires about 0.2 CPU seconds on a DEC Alpha 250
4/266 desktop workstation.

The aircraft simulation model used is based on both
implicit and explicit assumptions and engineering ap-
proximations. Since it is being used by a numerical
optimizer rather than a human domain expert, some

design parameter sets may correspond to aircraft that
violate these assumptions and therefore may not be
physically realizable even though the simulator does
not detect this fact. We refer to these designs as in-
feasible points. For this reason a set of constraints has
been introduced to safeguard the optimization process
against such violations. Other constraints enforce re-
quirements such as the requirement that there be room
for some specified number of passengers inside the air-
craft. The result of optimization must satisfy all of the
constraints, as well as having a low takeoff mass.

We generate a range of different problems by varying
two parameters: the percentage of the mission that is
to be flown at subsonic speeds (to avoid sonic booms
over populated areas), and how many passengers the
aircraft must accommodate. A problem specification
then consists of values for these two numbers.

1.2 The Genetic Algorithm Used

We conducted our investigations in the context of
GADO [Ras98, RHG97], a GA that was designed with
the goal of being suitable for use in engineering de-
sign. It uses new operators and search control strate-
gies that target the domains that typically arise in
such applications. GADO has been applied in a vari-
ety of optimization tasks that span many fields, and
has demonstrated a great deal of robustness and effi-
ciency relative to competing methods.

In GADO, each individual in the GA population rep-
resents a parametric description of an artifact, such as
an aircraft or a missile. All parameters take on values
in known continuous ranges. Floating point represen-
tation is used. The fitness of each individual is based
on the sum of a proper measure of merit computed by
a simulator or some analysis code (such as the takeoff
mass of an aircraft), and a penalty function that is a
function of the number and magnitude of constraint
violations. A steady state GA model is used, in which
operators are applied to two parents selected from the
elements of the population via some selection scheme,
one offspring point is produced, then an existing point
in the population is replaced by the newly generated
point via some replacement strategy. Here selection
was performed by rank because of the wide range of
fitness values caused by the use of a penalty function.
The replacement strategy used here is a crowding tech-
nique, which takes into consideration both the fitness
and the proximity of the points in the GA population.
The population size is an external parameter with a
default value of 10 times the dimension of the search
space. For the aircraft problem we used the default,
giving 120 individuals in the population. The initial



population is generated by randomly generating many
individuals and using the replacement strategy to keep
the population at 120.

Several crossover and mutation operators are used,
most of which were designed specifically for numerical
optimization problems of this type. GADO also uses a
search-control method that saves time by avoiding the
full evaluation of points that are unlikely to correspond
to good designs. The GA stops when either the maxi-
mum number of evaluations has been exhausted or the
population loses diversity and practically converges to
a single point in the search space.

GADO calls the simulator to evaluate a candidate
about 12, 000 times in order to converge on an answer
to the aircraft design problem, including 3, 600 calls in
the initialization phase. We have chosen to divide this
into five chunks, a first group of 4, 000 iterations to get
past the initialization, and four more chunks of 2, 000
iterations each. (The 2, 000 iteration chunk size was
based on trading off the need for a tree that was deep
enough to be realistic with the desire to make the tree
as small as possible to simplify the experimentation.)
Thus, the tree to be searched has a root representing
the initial state with problem specifications but no in-
dividuals generated yet, and five levels whose nodes
are populations after, respectively, 4, 6, 8 10, and 12
thousand calls to the evaluator.

2 Searching the Tree of Populations

Searching a tree is one of the classic tasks in Artifi-
cial Intelligence, and in Computer Science in general.
However, the tree search problem here is somewhat
different from the problems we normally think of.

• The tree is quite shallow, with a depth of at
most 5, but the branching factor is combinato-
rially large - it is the number of different popu-
lations we could possibly arrive at in 2, 000 (or
4, 000) iterations.

• the only way we have to generate children from
a node is a stochastic operator that, each time it
is applied, randomly selects which of the possible
children it will return. Furthermore, this opera-
tor takes five to ten minutes to apply, so we can
afford a fairly large amount of computing per op-
erator application for reasoning about control of
the search.

• While we care about the total time taken, and
thus the total number of operator applications, we
do not care about how long the path in the tree

is from root to the solution. This is in contrast to
planning problems where the path in the the tree
represents a sequence of steps to be carried out so
shorter paths are preferred.

Because of these differences, some search algorithms,
e.g. A∗, are irrelevant (since we do not want to op-
timize path length) and/or impossible (since we can-
not practically generate all children of a node). Fur-
thermore, finding the absolute global optimum design
almost always takes more computing time than we
can afford, so we need to trade off computing time
for result quality. One search control method that
applies naturally in this situation is Highest Utility
First Search (HUFS) [SHD98]. In this section we will
first discuss the notion of utility in general and the
particular formulation we used, then we will discuss
HUFS, and then we will describe a much simpler search
method, Waterfall, that we also tested.

2.1 Utility and Satisficing

The notion of utility comes originally from the field of
decision theory. A decision results in some outcome,
and the utility of an outcome is the overall net ben-
efit of this outcome. The utility of an action is the
average utility of the outcomes that may result from
the action, weighted by their probability of occuring.
In the literature on time-bounded computing. e.g.,
[RW91], the utility of computing some result r is seen
as a function U(r, t) of the result itself and the time,
t, at which it becomes available. By reasoning about
the expected utility of alternative actions, a control
method can handle the tradeoff between compute time
and result quality.

In much of the literature, U is further assumed to be
of the form

U(r, t) = I(r) − C(t)

where I(r) is some intrinsic value in having r, and
C(t) represents a “time cost”, usually a linear func-
tion of t, i.e. a constant cost per unit of time. For
our purposes, however, this formulation has a major
drawback in that it does not easily handle deadlines.
In most real world engineering situations, there is some
deadline by which a design simply must be produced;
a design that is produced later, no matter how good
it is intrinsically, is worth nothing. We believe that
most real world engineering design also has a satisfic-
ing character. The designer has in mind some goal
level of design quality which is “good enough”, and
the primary aim of the designer is to produce a design
that is good enough (meets or exceeds the goal level
of quality) and to do so soon enough (before the dead-



line). Thus, we assume there is some deadline, and
formulate the utility of a result as a simple threshold
function on its quality and the current time:

Ur(Q(r), t) = 1 if Q(r) ≤ Qg and t ≤ tg

0 otherwise

where Q is some quality metric (e.g., takeoff mass),
where Qg is the desired quality and tg is time the dead-
line occurs. (Note that lower Q is better.) Then the
utility of an action becomes simply the probability that
it will result in a design with quality of Qg or better
by time tg. This is of course also a simplification of
the real world, but we believe it is a better model than
using a fixed cost per unit time.

2.2 HUFS

HUFS works by estimating, for each possible parent,
the expected utility of the design process that would
result if the search were restricted to the given parent
and its descendants. In the following we will describe
how these expected utilities are estimated, and then
will describe how HUFS uses these estimates to do its
search. We start by discussing the idea of a Child Score
Distribution.

2.2.1 Scores and Child Score Distributions

We assume that we have some heuristic evaluation
function S(a) that assigns a numerical score to a pop-
ulation a. The score of a population is an estimate
of how good a result we will get if we use it as our
starting point. For simplicity we have defined S(a) to
be the quality metric of the best individual result in
a. That is, viewing population a as a set of candidate
results, since lower Q is better,

S(a) = min
r∈a

Q(r)

This means that if we stop searching and take the best
result r′ in a as our answer to the optimization prob-
lem, then Q(r′) = S(a). So, our search succeeds if we
find a population with S(a) ≤ Qg by time tg .

If we generate a child (i.e., run the GA a specified num-
ber of iterations and generate a new population) and
calculate its score, the value we get depends to some
extent on the randomized choices made by the GA
while generating the child, so we can treat the score as
a random variable. Since generating a child does not
change the parent, the score of one child has no effect
on the score we will get if we generate another child
from the same parent. Therefore for a given parent, a,

we can view the scores of its children as independent
variables with identical distributions. We define the
Child Score Distribution, Ga of a parent, a, to be this
probability distribution of its childrens’ scores. That
is,

Ga(s) = P (S(b) = s|b ∈ Ĉ(a))

where Ĉ(a) is the set of populations that might be
generated as children of a.

We assume that Ga is a normal distribution, and that
the mean and standard deviation of Ga are themselves
randomly drawn, respectively, from normal distribu-
tions M and D. We assume the standard deviations
of M and D are constants and that their means are
linear functions of the score S(a). That is, we assume

M(µ) = P (mean(Ga) = µ) = Z(µ, x ∗ S(a) + y, d)

where Z(µ, x∗S(a)+y, d) is the Gaussian “bell curve”
function with mean x ∗ S(a) + y and standard devia-
tion d, calculated at point µ, and where x, y, and d
are constants. We make a similar assumption about
D. (In all cases, the distributions are truncated so
that the probability of, e.g., µ ≤ 0 is 0.) The con-
stants are estimated for each level of the tree by some
initial exploration. This gives us an a priori estimate
of Ga based on S(a), and we update the estimate as we
generate children from a and thus sample the actual
distribution. The assumptions give only crude approx-
imations to the true distributions, but as will be seen
below the approximations are good enough to allow
HUFS to perform well in practice.

This is similar to the approach to estimating child
score distributions in [SHD98]; please see that paper
for a fuller discussion.

2.2.2 Estimating Utilities

Next, we will describe how the Child Score Distribu-
tions are used to estimate the utility of searching under
a given parent. In doing so, we will use the following
notation:

• As above, Ĉ(a) is the set of child populations that
can be generated, while C(a) is the set of children
that have been generated already.

• Smin(a) = minc∈C(a) S(c), i.e. it is the minimum
score of any child of a. If a has no children,
Smin(a) =∞.

• τ is the time needed to generate one child.

• Ur(q, t) is the expected utility of having a result
with quality q by time t



• Up(a, t) is the utility of searching under parent
a starting the search at time t. Note that while
Ur(q, t) is either 0 or 1, Up(a, t) is 0, 1, or any
number in between.

• Up(a, t|C(a)) is the expected value of Up(a, t)
given some condition C(a). E.g., Up(a, t|S(a) =
s) is the expected value of Up(a, t) given that a’s
score is s.

• We number levels in the tree upward from the low-
est level, level 0, to the root (level 5), and use su-
perscripts to denote the level. So U1

p (a, t)|S(a) =
s) is the utility of searching under a population a
at level 1 whose score is s.

The utility of searching under a parent of course de-
pends on the search algorithm used, and the utility
estimates themselves are part of the search algorithm.
We simplify this self-referential problem by assuming
a restricted search algorithm in our utility analysis: to
search under parent a at level i in the tree, generate
children of a until we find a child c whose estimated
Up is larger than that of the a, that is, until

U i−1
p (c, t) > U ip(a, t)

where t is the current time. then apply this algorithm
recursively to c. Stop when you find a child whose
score is less than (i.e. better than) Qg .

This restricted version ignores the possibility that af-
ter we switch to c and generate some of its children, we
may revise our estimated utilities and decide that some
sibling of c, or perhaps even a itself, has a higher util-
ity. In that case the actual HUFS algorithm would gen-
erate the next child from the parent with the currently-
highest Up, while the restricted algorithm would not.

To estimate U ip(a, t), where a is the parent we will work
recursively on both time and level number. There are
two base cases.

• If tg < t, i.e. the deadline has passed, all utilities
are 0.

if tg < t then Up(a, t) = 0

• If a is on level 0, we do not generate any further
children, so all we can do is take the best result
in a as our answer, and

U0
p (a, t) = Ur(S(a), t)
= 1 if S(a) ≤ Qg and t ≤ tg,

else 0

In general, U ip(a, t) depends on S(a), G(a), and, if a
has any children, on minc∈C(a) S(c).

• If we choose to stop and use the best result in a
as our answer, then as above

U ip(a, t) = Ur(S(a), t)

• If we choose to switch to generating children from
a child of a, we will choose the child with the
best utility, and the utility of our search becomes
that child’s utility. But, by the restrictions on the
algorithm discussed above, we have not generated
any children from any child of a, so all we know
about a’s children are their scores. The best child
is then one with the lowest score, so

U ip(a, t) = U i−1
p (c, t|S(c) = Smin(a))

Note that it takes no time to switch so we still use
time t.

• If we choose to generate another child from a, it
will be available at time t + τ . It will have score
s with probability Ga(s), but it will only change
U ip(a, t + τ) if it is better than the best child of
a we already have, i.e. has a lower score, so the
expected utility is

U ip(a, t) =∫ Smin(a)

0

Ga(s)U i−1
p (c, t+ τ |S(c) = s)ds

+ U i−1
p (c, t+ τ |S(c) = Smin(a), t)

∗
∫ ∞
Smin(a)

Ga(s)ds

In fact, we will choose the one of these three alterna-
tives with maximum utility, so U ip(a, t) is the maxi-
mum of these three possible values. Note that where
we recur it is on a lower level or a later time, so the
recursion terminates.



2.2.3 The HUFS algorithm

Given the discussion above, HUFS can be described as
simple best-first search where best is defined as having
the largest U ip(a, t). HUFS starts with a tree consisting
of just a root node, representing the problem specifi-
cation. The algorithm is:

• Repeatedly do the following:

– Find the node in the tree with the largest
U ip(a, t), where t is the current time. Call
this node a′.

– If U ip(a′, t) = Ur(S(a′), t), stop and return a′

as our answer, since that is the highest utility
use of a′.

– Otherwise, generate one child from a′ and use
the score of this new child to update our es-
timate of Ga′

2.3 Waterfall

As a check on whether we needed the complexity of
HUFS, we also tried a very simple search algorithm,
the Waterfall algorithm from [SHD98]. This algorithm
works from the top down. At each level it takes the
population with the lowest (best) score and generates
a fixed number of children from it, then it chooses the
best of those children and repeats.

3 Empirical Test

The empirical test was run on the aircraft optimiza-
tion problem described above. Rather than use CPU
time for t and τ we counted iterations of GADO. The
implementation uses C and LISP, and runs on SUN
workstations. Generating a population takes 5-10 min-
utes and running HUFS takes up to a minute or so per
population.

We first created 10 random problems (combinations of
number of passengers and percent supersonic) for cal-
ibration. On each problem we generated a population
at each level of the tree and generated 10 children for
each of these. From the scores of these populations we
estimated the parameters for the a priori estimates of
G(a) as a function of S(a).

Next we created 4 more problems for testing. We then
ran HUFS and Waterfall 12 times on each and also
ran plain GADO 12 times on each problem, for each
of several different t values. Since repeated runs of
GADO are independent, we simulated the process of
repeating GADO by repeatedly randomly choosing a
run from the 12 we had done on a given problem. We

0.4

0.5

0.6

0.7

0.8

0.9

1

12 24 36 48

Iterations x 1000

HUFS

Waterfal l

Repeat GA

Figure 1: P(Success) averaged over 4 test problems

did this 1000 times for each combination of problem
and t.

The Qg was set for each problem so that repeating
GADO would take about 48000 iterations to have a
90% chance of success, i.e. of achieving Qg.

Results are shown in Figure 1. It can be seen that if
it is worthwhile doing extra GADO iterations (beyond
the 12,000 needed for one full run of GADO) in order
to improve the probability of success, then doing a tree
search guided by HUFS can get the same probability of
success in half the GADO iterations or less compared
to simply repeating GADO over and over.

Waterfall’s performance is also much better than that
of repeated GADO, but not as good as HUFS. On the
other hand, HUFS is much more complex.

4 Related Work

Several research efforts have applied genetic algo-
rithms to engineering optimization and search prob-
lems in a variety of domains, including control sys-
tem design [KK96], architectural and civil engineer-
ing design [GKS97, Ros97], VLSI design [LT93], me-



chanical design [CJ96] and aircraft design [OYN97].
Deb [DG97, Deb97] developed a GA called GeneAS for
engineering design optimization with mixed variables
(both discrete and continuous). He demonstrated the
merit of his GA in the domain of mechanical compo-
nent design. Powell [Pow90, Ton88] has built a mod-
ule called Inter-GEN, part of the ENGINEOUS system
[TPG92]. It contains a genetic algorithm and a numer-
ical optimizer, and uses a rule-based expert system to
decide when to switch between the two. Powell tested
his system on a realistic design task (jet engine de-
sign). Combining GAs and knowledge-based systems
was also done in [RMB96].

Several research efforts have focused on preventing pre-
mature convergence in GA search. An important class
of methods are replacement strategies that take into
consideration other factors in addition to fitness (such
as preserving diversity in the population for example).
Each such strategy is called a crowding heuristic and
the reader is referred to [Mah95] for a detailed discus-
sion of these methods. Another class of methods fo-
cus on carefully choosing the population size and the
reader is referred for example to [HCPGM97].

Several research efforts have used utility based decision
making to improve design optimization, e.g., [RW91]
and [Etz91]. [SHD98] is the closest of these to the work
described here. It uses the HUFS algorithm to control
search in a tree whose levels are problem solutions at
different levels of abstraction, and it uses a constant
cost per unit time in its formulation of utility, but
otherwise is quite similar in approach to this paper.

To the best of our knowledge, no research efforts have
attempted to combine utility based decision making
with GA search in a way similar to the proposed ap-
proach, nor has any previous work looked at searching
the space of GA populations.

5 Conclusions

We have demonstrated that, in a realistic engineering
optimization problem, it can be useful to think of a
GA as generating a virtual tree of populations, and to
explicitly search this tree, either with HUFS or Water-
fall as the search control method. These results clearly
need to be replicated on additional problems and with
other GAs. We believe that the idea of searching the
space of populations, rather just using the GA’s oper-
ators to generate a sequence of populations, will be a
very fruitful one to explore.

We have also added a data point regarding the gen-
erality of HUFS, showing that is is useful even when
the tree being searched is not made up of design ab-

straction levels. Rather, HUFS seems to apply more
generally to trees with small, limited depth, combina-
torially large branching factors, and an operator that
generates random children.

Acknowledgements

The work presented here is part of the “Hypercomput-
ing & Design” (HPCD) project, and benefited greatly
from both the intellectual and software environments
provided by our colleagues on that project. Thanks
also to Prof. Robert Berk.

This work is supported (partly) by ARPA under con-
tract DABT-63-93-C-0064 and by NSF under Grant
Number DMI-9813194. The content of the informa-
tion herein does not necessarily reflect the position of
the Government and official endorsement should not
be inferred.

References

[CJ96] C. D. Chapman and M. J. Jakiela. Ge-
netic algorithm-based structural topol-
ogy design with compliance and topology
simplification considerations. Journal of
Mechanical Design, 118(1):89–98, 1996.

[Deb97] Kalyanmoy Deb. Geneas: A robust
optimal design technique for mechani-
cal component design. In Evolutionary
Algorithms in Engineering Applications,
pages 497–514. Springer-Verlag, 1997.

[DG97] Kalyanmoy Deb and Mayank Goyal.
Optimizing engineering designs using a
combined genetic search. In Proceedings
of the Seventh International Conference
on Genetic Algorithms. Morgan Kauf-
mann, 1997.

[Etz91] Oren Etzioni. Embedding decision-
analytic control in a learning architec-
ture. Artificial Intelligence, 49:129–159,
1991.

[GKS97] John S. Gero, Vladimir A. Kazakov, and
Thorsten Schinier. Genetic engineering
and design problems. In Evolutionary
Algorithms in Engineering Applications,
pages 47–68. Springer-Verlag, 1997.

[GSS96] Andrew Gelsey, M. Schwabacher, and
Don Smith. Using modeling knowl-
edge to guide design space search. In
Fourth International Conference on Ar-
tificial Intelligence in Design ’96, 1996.



[HCPGM97] Harik, Cantu-Paz, Goldberg, and Miller.
The gambler’s ruin problem, genetic al-
gorithms, and the sizing of populations.
In IEEECEP: Proceedings of The IEEE
Conference on Evolutionary Computa-
tion, IEEE World Congress on Compu-
tational Intelligence, 1997.

[KK96] Sourav Kundu and Seiichi Kawata. AI
in control system design using a new
paradigm for design representation. In
Fourth International Conference on Ar-
tificial Intelligence in Design ’96, 1996.

[LT93] Jens Lienig and K. Thulasiraman. A ge-
netic algorithm for channel routing in
VLSI circuits. Evolutionary Computa-
tion, 1(4):293–311, 1993.

[Mah95] Samir Mahfoud. A comparison of
parallel and sequential niching meth-
ods. In Proceedings of the Sixth In-
ternational Conference on Genetic Al-
gorithms, pages 136–143. Morgan Kauf-
mann, July 1995.

[OYN97] S. Obayashi,
Y. Yamaguchi, and T. Nakamura. Multi-
objective genetic algorithm for multidis-
ciplinary design of transonic wing plat-
form. Journal of Aircraft, 34(5):690–693,
1997.

[Pow90] David Powell. Inter-GEN: A hybrid ap-
proach to engineering design optimiza-
tion. Technical report, Rensselaer Poly-
technic Institute Department of Com-
puter Science, December 1990. Ph.D.
Thesis.

[Ras98] Khaled Rasheed. GADO: A genetic
algorithm for continuous design opti-
mization. Technical Report DCS-TR-
352, Department of Computer Science,
Rutgers University, New Brunswick,
NJ, January 1998. Ph.D. Thesis,
http://www.cs.rutgers.edu/∼krasheed/thesis.ps.

[RHG97] Khaled Rasheed, Haym Hirsh, and An-
drew Gelsey. A genetic algorithm for
continuous design space search. Artificial
Intelligence in Engineering, 11(3):295–
305, 1997. Elsevier Science Ltd.

[RMB96] James L. Rogers, Collin M. McCulley,
and Christina L. Bloebaum. Integrat-
ing a genetic algorithm into a knowledge

based system for ordering complex de-
sign processes. In Fourth International
Conference on Artificial Intelligence in
Design ’96, 1996.

[Ros97] M. A. Rosenman. The generation of form
using an evolutionary approach. In Evo-
lutionary Algorithms in Engineering Ap-
plications, pages 69–86. Springer-Verlag,
1997.

[RW91] Stuart Russell and Eric Wefald. Do the
Right Thing. MIT Press, 1991.

[SHD98] Louis Steinberg, J. Storrs Hall, and
Brian Davison. Highest utility first
search across multiple levels of stochastic
design. In Proceedings of the Fifteenth
National Conference on AI, pages 477–
484, Madison, July 1998.

[Ton88] S. S. Tong. Coupling symbolic manipu-
lation and numerical simulation for com-
plex engineering designs. In Interna-
tional Association of Mathematics and
Computers in Simulation Conference on
Expert Systems for Numerical Comput-
ing, Purdue University, 1988.

[TPG92] Siu Shing Tong, David Powell, and San-
jay Goel. Integration of artificial in-
telligence and numerical optimization
techniques for the design of complex
aerospace systems. In 1992 Aerospace
Design Conference, Irvine, CA, February
1992. AIAA-92-1189.


