The Distributional Biases of Crossover Operators

Soraya Rana
Computer Science Department
Colorado State University

Fort Collins, CO 80523

USA

email: rana@cs.colostate.edu

Abstract

The choice of genetic operators is one way in
which genetic algorithms can be tailored to
specific optimization problems. For bit rep-
resented problems, the choice of crossover op-
erator, or the choice not to use a crossover
operator, can dramatically affect search per-
formance. The efficacy of crossover for ge-
netic search is governed by the relationship
between the crossover biases and the search
problem itself. Crossover operators have two
forms of bias: positional bias and distribu-
tional bias. This paper analytically charac-
terizes the distributional biases that exist for
several commonly used crossover operators.
The effects of the crossover biases are empir-
ically examined for a Simple Genetic Algo-
rithm applied to two types of NK-landscapes.

1 INTRODUCTION

Striking a balance between exploration and exploita-
tion is essential for any search algorithm. Genetic op-
erators are the means by which genetic algorithms at-
tempt to achieve that balance. Selection is vital to
the execution of the genetic algorithm because it culls
the population and narrows the focus of search to re-
gions with potentially high fitness. Crossover and mu-
tation are the mechanisms for exploration; however,
both crossover and mutation are not always necessary
for exploration. In particular, the merits of crossover
for genetic search have often been questioned (Fogel
and Atmar, 1990, Spears, 1992, Jones, 1995, Eshel-
man and Schaffer, 1993).

Typically, mutation is a necessity for traditional ge-
netic algorithms because it maintains diversity in a fi-
nite population and also ensures that every point in the

search space has a nonzero probability of being visited.
On the other hand, crossover does not introduce al-
lelic diversity into the population and does not always
guarantee that every point in the search space can be
visited. Since crossover requires two parent strings,
its exploratory power depends on the differences be-
tween those parents. As the population converges, the
exploratory power of crossover diminishes. However,
even if crossover is taken out of a population-based
search paradigm, its exploratory power is still limited
by its inherent bias in how points are sampled.

There are two forms of crossover biases: positional and
distributional (Eshelman et al., 1989). Positional bias
refers to the frequency that crossover exchanges bits
occurring in particular locations on the string. For in-
stance, given the parent strings 01110 and 10001, the
offspring 00000 cannot be produced under one point
crossover because the values at both the first and the
last bit can never be exchanged concurrently. Ana-
lytical results for the positional bias distributions for
several crossover operators have been derived (Booker,
1992). Distributional bias refers to the number of bits
that are swapped under a specific crossover operator.
This paper presents mathematical descriptions for the
distribution of Hamming distances between parents
and offspring for four commonly used crossover opera-
tors. These distributions model how “large steps” are
made by crossover in the first generation of a genetic
algorithm with a randomly initialized population.

2 CROSSOVER OPERATORS AND
LOCAL SEARCH
NEIGHBORHOODS

Genetic algorithms can be viewed as a population-
based form of local search (Ulder et al., 1990, Reeves,
1994). Local search is an iterative process whereby a
point or population is continually modified and evalu-

ated until a goal state or stopping criterion is reached.
Since one generation of a genetic algorithm consists of
applying selection, crossover and mutation to a pop-
ulation to produce a new population, genetic search
fits into the paradigm of local search. Furthermore,
all three genetic operators can, in turn, be considered
as individual local search operators (Jones, 1995).

Local search operators explore the search space by
sampling points from a predefined neighborhood (Pa-
padimitriou and Steiglitz, 1982). Given a discrete
search problem defined over a set of points representing
all possible inputs S, a neighborhood N is a mapping:

N:8 - P(S)

Where P(S) is the power set of S. So the neighbor-
hood N is a function which takes a single point, s € S,
and generates a subset of points that are neighbors of
s. For most local search operators, IV is defined to be

a small change to single solution. For instance, given
an L bit string, € BL, B = {0, 1}, define:

Nl(x)z{y:yEBL such that bc(m@y):l}

where bc(x) returns the number of 1-bits in the bit
string x. So, Ni(z) is simply the single-bit flip or the
1-change neighborhood (Papadimitriou and Steiglitz,
1982). To define a k-change neighborhood about a bit
string:

Ni(z) = {y :y € B* such that bc(z & y) =k}

The local search neighborhood for the mutation oper-
ator is typically considered to be the 1-change neigh-
borhood. The local search neighborhood for crossover
cannot be immediately defined as a k-change neigh-
borhood because crossover neighborhoods must be de-
fined by pairs of input strings (Reeves, 1994, Jones,
1995, Culberson, 1992). However, a k-change neigh-
borhood can be used to model the step-sizes taken by
Crossover.

In order to formally describe crossover neighborhoods,
additional terminology needs to be introduced. Let
i,j € B and define i C j to denote i is a submask of
7 to indicate that ¢ has a 0-bit wherever j has a 0-bit
and ¢ has a 0-bit or 1-bit wherever j has a 1-bit.

Crossover can be performed by applying a mask m to
a string pair z and y (Syswerda, 1989). The crossover
mask, m, contains a 1-bit where the parent strings z
and y should exchange bit values. Consider the follow-
ing example:

Let z = 11101010, y = 00101000, m = 11110000
Then m indicates the z and y should swap their first
four bit values to produce 00101010 and 11101000.

If the crossover mask m is restricted by the distance
between the parent strings « and y so m C x@®y where
the string d = z @ y is called a Hamming distance
mask, then the offspring can be produced using the
exclusive-or operator. So, given m C d the possible
offspring are z ® m and y @ m. Then the set of all
potential offspring for a string pair whose Hamming
distance mask is d can be generated for all m C d and
the resulting distance between parents and offspring is
be(m). For instance, in the previous example:

r =11101010, y = 00101000, m = 11110000
However, if m is restricted by the distance between z
and y, then m = 11000000. Then the pair of offspring
associated with (z,y) are:

@ m = 00101010 and y ® m = 11101000
and the offspring differ from the parents by 2 bits.
Note that Hamming distance between parents and off-
spring is measured conservatively so that if z is an
offspring of (z,y), then the parent-offspring distance
is min(bc(z @ z), be(y @ 2)).

Rather than explicitly defining and counting the
crossover neighborhoods for specific pairs of strings,
the task of counting all possible Hamming distances
sampled by a particular crossover operator reduces to
counting all possible crossover submasks of all possible
Hamming distance masks subject to positional bias
constraints. Over the space of all possible pairs of
strings, each of the possible 2/ Hamming distance
masks will be encountered exactly 2% times. The
set of all possible submasks with be(m) = k for a
specific Hamming distance mask, d € BY, can be
computed using a k-change neighborhood definition
over Hamming distance masks:

Ni(d) ={m :m Cd such that bc(m) =k}
where 0 <k < be(d)

This general form of the neighborhood of sub-
masks can be redefined for each particular crossover
operator in order to select only the submasks that
meet the specific positional biases of that crossover
operator.

2.1 HAMMING DISTANCE NEIGHBORS
FOR ONE POINT AND TWO POINT
CROSSOVER

One point crossover and two point crossover are
two examples of crossover operators with positional
biases. For an L bit string, one point crossover chooses
a crossover point, ¢, somewhere between the first and
last bit and creates offspring by concatenating the first
¢ bits from one parent with the remaining bits from the

Parents

101101101
k k k k k k k k k

001001000

Reduced Surrogates

Figure 1: Sample of two point crossover with reduced
surrogates.

second parent. Two point crossover uses two crossover
points to create a segment that is swapped between
the parents. In both cases, a contiguous block of bits
must be exchanged between two parents.

Reduced surrogates are a modification to traditional
crossover which ensures there is an equal chance of pro-
ducing any possible offspring (Booker, 1987). Figure 1
illustrates the use of reduced surrogates with two point
crossover. Normally, two point crossover can select
from any of the 9 possible crossover points. Reduced
surrogates constrain the set of available crossover
points by Hamming distance so that a crossover point
occurs between a pair of differing bits. In this exam-
ple, two point crossover must choose 2 out of 4 possible
crossover points. Reduced surrogates also guarantees
that when the parent strings are at least 2 bits differ-
ent, the offspring will always differ from the parents
under one or two point crossover.

Reduced surrogates restrict the neighborhood of
crossover which directly impacts the count of parent-
offspring distances. In Table 1, the bit strings repre-
sent the Hamming distance masks for all possible par-
ent pairs for a 4-bit problem. The table represents the
Hamming distance between the parents and offspring if
we were to choose any of the possible crossover points
for either one point crossover or one point crossover
using reduced surrogates. Regardless of the mask d;,
traditional one point crossover always has 3 poten-
tial crossover points. The number of crossover points
varies from 0 to 3 for one point crossover with reduced
surrogates. The Hamming distances (HD) are enumer-
ated for each possible crossover point. The dy repre-
sents the case where both parents are identical. For
one point crossover, we can mate two identical parents
three ways to produce offspring that do not differ from
the parent pair. For reduced surrogates, there are no
crossover points so the offspring are simply copies of

HD-Mask One-Pt | Red.Sur
Xover Point Locations
1 2 3|0 1 2 3

do=0000 {0 O 010

di=0001 |0 O 01O

d=0010 |0 O 0] O

d3=0011 0 0 1 1

d4=0100 |0 O 0] 0

ds=0101 0 1 1 1

de=0110 0 1 0 1

K d7=0111 0 1 1 1 1

dg=1000 |0 O 0] 0

do=1001 1 1 1 1

dio=1010 |1 1 O 1

di;=1011 |1 1 1 1 1

di2=1100 |1 0 O 1

diz=1101 |1 1 1 1 1

dis4=1110 |1 1 O 1 1

dis=1111 | 1 2 1 1 2 1

Table 1: Enumeration of 4-bit space to compute Ham-
ming distance results of one point crossover with and
without reduced surrogates.

the parents (i.e. there is one way to generate the case
of HDy). Also note that for ds, there are two ways in
which traditional one point crossover can result in no
change to the parent strings.

The goal of this paper is to compute the distribu-
tions of Hamming distances between parents and all
possible offspring. The number of available crossover
points will affect the distribution, particularly if there
are cases where the same pair of offspring can occur
in multiple ways. While this type of calculation can
certainly be performed, the use of reduced surrogates
simplifies the calculations. It is assumed throughout
the remainder of the paper that crossover is performed
using reduced surrogates.

2.1.1 Hamming Distance Counts

The function, Ni(d), computes all possible submasks
of a particular Hamming distance mask. Every
crossover operator that uses reduced surrogates will
have a neighborhood defined that is a subset of Ng(d).
The subsets are determined by the specific constraints
for the crossover operators. Formalizing the con-
straints for one point and two point crossover require
additional functions to be defined.

The function pack is a mapping;:

pack: BExBY — BM where M <L

The pack function takes an L-bit string as its first
argument and an L-bit mask containing exactly M 1-
bits as its second argument. The result of pack is an

M-bit string extracted from the L-bit input string by

the bit mask. So, for example:

pack(011000,011010) = 110

Now define two additional functions, span and b;:
span: B - N

where span counts the number of bits (inclusive) be-
tween the outermost 1 bits in the string. For in-
stance span(0010010) = 4. Also, define the function
b; : BY — {0,1} to return the value at bit position 4
in the input string where by(z) returns the rightmost
bit in the string and by_;(z) returns the leftmost bit
in the string.

The two neighborhood submask descriptions for one
point crossover, NP(M), and two point crossover,
N} (M) can be expressed as:

m:mé€d such that

NZ(d) =< be(m)=Fk and (1)
span(pack(m,d)) = k and
bo(pack(m, d)) # byc(a)(Pack(m, d))

where 1 <k <|L/2| and 2k <be(d) <L
and

m:m €d such that

Nid) =93 be(m) = & and (2)

span(pack(m,d)) = k
where 1<k < |L/2] and 2k <be(d) <L

The case for string pairs resulting in 0 crossover
points, namely when bc(d) = 0 and be(d) = 1, are
handled separately.

The number of neighbors with a specific Hamming
distance, H Dy, can be computed by generating and
counting all possible neighbors for each crossover op-
erator. Starting with one point crossover, for 1 < k <
|L/2], the only strings that can produce HDj off-
spring must differ by at least 2k bits. Parent strings,
x,y are considered to be k bits away from an offspring
zifbe(x @ z) =k or be(y @ z) = k and be(z @ y) > 2k.

Since we are considering one point crossover, there
are only 2 ways to produce H Dy, neighbors when the
Hamming distance masks contain at least 2k 1-bits: to
choose crossover submasks with exactly k 1-bits to the
right or left of the crossover point. We can count both
cases by summing over all possible strings of Hamming
distance 2k to L for both cases. When there is a Ham-
ming distance of 2k, both offspring will differ by & bits
on both the left and right so this case should only be
counted once.

The formula for computing the total number of H Dy,
neighbors produced under a one point crossover oper-
ator with reduced surrogates is:

When £ =0

o (0)+() v

when 1 <k < |L/2].

L (L L
o= 252 (1)) - ()
For two point crossover, the number of H D, neighbors
is exactly the same as for one point crossover because
there are the same number of Hamming distance masks
that result in no crossover points. Given a Hamming
distance mask, d, with at least 2k 1-bits, there are
be(d) pairs of crossover points that will produce sub-
masks with exactly k£ 1-bits. Thus the counting for-
mula for the HDj, neighbors for two point crossover
with reduced surrogates is:

When k=0

o (0)+() v

when 1 <k < |L/2].

L

HDy =) ’L(f)

=2k

2.2 HAMMING DISTANCE NEIGHBORS
FOR UNIFORM CROSSOVER

Two crossover operators which have no positional bias
are uniform crossover and HUX(Eshelman, 1991).
Uniform crossover can be thought of as n point
crossover because each bit that differs between par-
ents can be flipped independently of one another. It
is assumed that uniform crossover will also be applied
with reduced surrogates. HUX is a variant of uniform
crossover that, by definition, toggles exactly half of the
differing bits between parents.

The two neighborhood submask descriptions for uni-
form crossover, N¥(d), and HUX, N/(d) can be ex-
pressed as:

Ni(d)={ m:med suchthat be(m)=k } (3)

where 0 <k < |L/2] and 2k <bc(d) <L
and

Nl(d)={ m:m €d such that bc(m)=4k } (4)

where 0 <k < |L/2|] and 2k <bc(d) <2k+1

For uniform crossover, the only way to produce an
HDj, neighbor is to have a Hamming distance mask
with at least 2k 1-bits. Given Hamming distance
masks with ¢ 1-bits where 2k < ¢ < L, there are (;)
ways to generate crossover submasks with &k bits set.
When the Hamming distance mask has exactly 2k bits
set, then both parents will produce offspring with a
distance of k, so this case should only be counted once.

The formula for counting the possible H Dy, neighbors
under uniform crossover is:

moe= [55 () ()] - (5)(2)

when 0 < k < |L/2].

HUX randomly flips exactly half of the differing bits.
In order to produce offspring that are HDj from a
parent under HUX, the parents need to differ by either
2k or 2k + 1 (when k < [L/2]) bits.

The formula for computing the number of offspring
under HUX is:

when 0 < k < [L/2].

D= (2Lk) (2:) " <2kL+ 1) <2k/: 1)

when k = L/2 (i.e. kisexactly half of the string length

and L is even),
L
0= ()

2.3 THE DISTRIBUTIONS OF HAMMING
DISTANCES FOR CROSSOVER

Normalizing the counting formulas for Hamming dis-
tances 0 through L/2 forms the distribution of all
possible Hamming distance neighbors for crossover.
The distributions represent the exact distribution of
parent-offspring distances for crossover if all strings
are paired uniformly at random and also represent the
exact distributional biases that exist for this set of four
crossover operators.

Figure 2 shows the distributions for parent-offspring
distances for one and two point crossover using re-
duced surrogates. The values on the horizontal axis
represent the set of possible Hamming distances. The
values on the vertical axis represent the proportion of
crossover events resulting in specific parent-offspring

Exact Distribution of Crossover Step-Sizes
One Point and Two Point

M one Point
0.3007 [Two Point
0.250
1%
c
i<l
g 0.200
Q
o
4
o 0.150
0.100
0.050
0.000 T] T T T !
0 1 2 3 4 5 6 7 8 9 10

Hamming Distances

20-variables

Figure 2: Exact sampling distributions for one and two
point crossover with reduced surrogates.

Exact Distribution of Crossover Step-Sizes
Uniform and HUX

B uniform
0-3007 O Hux

0.250

0.200

Proportions

0.150 1

0.100

0.050

0.000
0 1 2 3 4 5 6 7 8 9 10

Hamming Distances

20-variables

Figure 3: Exact sampling distributions for uniform
crossover and HUX.

distances. Due to the conservative calculation of dis-
tance, the maximum Hamming distance between par-
ents and offspring is % Note that this distribution
is heavily weighted to the left which means that these
two operators are biased to make moves that are of low
Hamming distances. In practice, a genetic algorithm
would not sample the distribution in this manner. The
genetic algorithm will tend to bias the sampling even
more heavily towards the lower Hamming distances be-
cause selection drives the population to become more
uniform. This sampling distribution illustrates that
there are practical limits to the exploratory power of
crossover operators.

Figure 3 shows the distributions for parent-offspring
distances for uniform crossover and HUX. In this case,
this distribution represents the step-sizes that would
be taken by uniform crossover and HUX if they were

applied to a population with all strings in equal pro-
portion and if all strings were randomly paired. Note
that these distributions produce offspring with much
larger Hamming distances (on average) than one or
two point crossover.

3 EXAMPLE: SGA APPLIED TO
NK-LANDSCAPES

The distributions computed in the previous section as-
sume that all strings are paired with equal probabil-
ity. While this may seem impractical, given a sim-
ple genetic algorithm (SGA) (Goldberg, 1989) with
a large population, the distributions are a very close
approximation to the distribution of parent-offspring
distances sampled in the first generation. To illus-
trate how the initial population of an SGA samples
offspring, the distances between parent strings and re-
sulting offspring for an SGA with a population size
500 were measured on two forms of NK-landscapes.
The SGA was run for 250 generations. The SGA used
elitism and tournament selection with a tournament
size of 2. Selection pressure was kept relatively low
and mutation (p,,=0.0125) was used so the popula-
tion would maintain some diversity throughout all 250
generations.

Kauffman’s NK-landscapes are a class of problems
used in theoretical biology to study rugged fitness
landscapes (Kauffman, 1993). NK-landscapes require
two input parameters, N and k. N represents the
number of bits and k controls the epistatic interac-
tions, or bit interactions, in the problem. For each of
the IV variables, a set of k distinct variables are chosen
to interact with that variable. So, there are N sets of
k + 1 variable combinations constrained so that each
variable occurs in at least one set. In order to ensure
that the variable combinations interact epistatically, a
uniform random fitness between 0 and 1 is assigned to
all possible 281 values for each set of variable com-
binations. These N2%+1 values are stored in a lookup
table. An example of the lookup table for an NK-
landscape with N=4, k=1 is:
Variables | Settings for (vg, v1)
(’00,1)1) 00 01 10 11
(0,1) 01 02 05 08
(1,2) 03 07 02 06
(2,0) 09 03 07 04
(3,1) 04 06 09 0.1
So each row in the table corresponds to a function
that is enumerated over all possible values of the vari-
ables occurring as an ordered pair in the leftmost
column. To evaluate an input string, the fitnesses
of specific bit combinations are retrieved from the
lookup table and averaged together. For example,

Distances Sampled By Crossover

One Point and Two Point
0.180 9

H one Point
0150 [Two Point

0.120 1

0.090 1

Proportions

0.060 1

0.030 1

0.000
0 12 3 45 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Hamming Distances

80-variables

Figure 4: Distribution of step-sizes taken by one and
two point crossover in the first generation of an SGA.

Distances Sampled By Crossover

Uniform and HUX
0180

mn B uniform
0150 O Hux

0.1201

0.090 1

Proportions

0.060 -

0.030 1

0.000 .
0 12 3 45 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Hamming Distances

80-variables

Figure 5: Distribution of step-sizes taken by uniform
crossover and HUX in the first generation of an SGA.

£(0101) = 1(0.5+ 0.7+ 0.4+ 0.4) = 0.5.

The bit interactions for NK-landscapes can be chosen
randomly or fixed so all interactions occur at adjacent
bits. Since the set of four crossover operators have dif-
ferent forms of positional biases, the method for choos-
ing bit interactions can affect the relative performance
of crossover. For this reason, two sets of 100 instances
of NK-landscapes, with N = 80 and k = 3, were used
for the experiments.

To empirically verify that the distributional bias for-
mulae are correct, the parent-offspring distances were
tracked in the first generation and were accumulated
for each problem in the set. The distances are tracked
solely based on crossover before mutation was applied.
Since the population size is 500 and there are 100 prob-
lems in each set, the number of samples per problem
set is approximately 50000 x p. and p. = 0.6 for all
four crossover operators (where p. is the probability
that crossover occurs).

Figures 4 and 5 show the sampling distributions of the

Step-Sizes Taken During Search

Four Crossover Operators

Step Size

1 25 50 75 100 125 150 175 200 225 250

Generation

80 variables

Figure 6: Average step sizes taken by crossover over
250 generations.

resulting parent-offspring distances. Again, the hor-
izontal axis represents the set of Hamming distances
and the vertical axis represents the proportion of the
occurrence of the particular Hamming distances. For
both graphs, the range of Hamming distances was
truncated to 30 because Hamming distances larger
than 30 were not encountered. Although the prob-
lem size is 80 bits rather than 20 bits, the distribu-
tions generated for the 20 variable exact sampling dis-
tributions are similar to those found empirically for
80 variable problems. These distributions were gen-
erated from the set of NK-landscapes with adjacent
bit interactions; however, it should be noted that the
distributions generated from the NK-landscapes with
randomly chosen bit interactions were indistinguish-
able from these results.

Figure 6 tracks the average parent-offspring Ham-
ming distances (or step-sizes) over 250 generations.
Each point is the average of 100 problem instances.
Again, the plot represents results from the set of NK-
landscapes with adjacent bit interactions but the re-
sults are illustrative of the results for NK-landscapes
with random bit interactions. Syswerda has noted
that the parent distances in an initial population are
approximately 50% of the string length, so crossover
should exchange approximately 25% of the total num-
ber of bits (Syswerda, 1992). This graph illustrates
that the actual number of useful swaps can be much
lower than 25% of the string length and drops off
quickly as search progresses. The use of a large pop-
ulation, small tournament size and mutation were in-
tended to maintain diversity throughout execution, so
the results are not an unreasonable indication of how
quickly the exploratory power of crossover diminishes
over time.

Operator Random Adjacent
7 o Im o
Mutation | 0.7528 0.01585 | 0.7474 0.01519
OnePt 0.7602 0.01454 [0.7587 0.01503
TwoPt 0.7607 0.01546 [0.7585 0.01488
Uniform | 0.7622 0.01634 | 0.7548 0.01522
HUX 0.7629 0.01553 | 0.7540 0.01524

Table 2: Final results of SGA using four crossover op-
erators on two types of NK-landscapes.

The relative performance of the various crossover op-
erators varied between the two types of NK-landscapes
as is illustrated in Table 2. The fitness values for NK-
landscapes fall in the range [0,1) and the SGA maxi-
mized fitness. Table 2 shows the mean and standard
deviation for the best fitness found after 250 gener-
ations on both sets of 100 NK-landscapes. For the
NK-landscapes with randomly chosen bit interactions,
all crossover operators performed similarly. There
were no statistically significant differences between the
crossover operators. For the NK-landscapes with ad-
jacent bit interactions, a one-way ANOVA statistical
test confirmed that the crossover operators with posi-
tional bias performed significantly different from the
crossover operators with no positional bias (p < 0.01).
A one-tailed t-test confirmed there is no significant dif-
ference between one and two point crossover; however,
both uniform crossover and HUX performed signifi-
cantly worse than either one or two point crossover
(p < 0.05).

For both sets of NK-landscapes, the crossover opera-
tors used in conjunction with mutation significantly
outperform mutation alone. Since using crossover
and mutation together always outperformed mutation
alone regardless of the specific crossover operator or
specific problem set, the distributional biases for each
crossover were categorically beneficial for either set
of NK-landscapes. The relative performance of the
crossover operators may change if the algorithm or al-
gorithm parameters were tuned to the specific problem
sets; however, an assessment of the utility of crossover
for any other purpose than a means of making ”large
steps” was beyond the scope of this paper.

4 CONCLUSION

It is not uncommon for algorithms to adapt search
step-sizes so that a large step-size is used early in ex-
ecution and decreases as search progresses. The most
common means for a genetic algorithm to adapt its
search step-size is through the use of crossover. When
initialized with a random population, the genetic algo-
rithm will sample points that are distant in Hamming

space according to the neighborhood sampling distri-
bution for the specific crossover operator. The de-
gree to which crossover continues to explore the search
space depends on the amount of diversity in the pop-
ulation. In addition to population diversity, the ex-
ploratory power of crossover is limited by its inherent
positional and distributional bias.

This paper presents exact calculations for the Ham-
ming distances sampled by: one point, two point, uni-
form and HUX crossover operators. The calculations
are representative of the sampling that occurs in the
early generations for a genetic algorithm with a large
population. The distributional bias for crossover is the
Hamming distances between parents and offspring, so
these calculations can be used to characterize the dis-
tributional bias for practical crossover operators.

The analytical results were verified empirically by ex-
amining the distances sampled by crossover during
the execution of an SGA on two variants of NK-
landscapes. The NK-landscapes results illustrate that
the analytical formulae for computing the distribution
of distances between parents and offspring accurately
models the distributions of distances occurring in the
first generation of a simple genetic algorithm. Addi-
tionally, the results illustrate that the large-steps taken
by crossover resulted in improved performance over us-
ing mutation alone for both variants of NK-landscapes.

Acknowledgments

Soraya Rana was funded by a National Physical Sci-
ence Consortium fellowship.

References

[1] Booker, L. (1987). Improving search in genetic al-
gorithms. In Davis, L., editor, Genetic Algorithms
and Simulated Annealing, chapter 5, 61-73. Morgan
Kaufmann.

[2] Booker, L. B. (1992). Recombination distributions
for genetic algorithms. In Whitley, D., editor, Foun-
dations of Genetic Algorithms - 2, 29-44. Morgan
Kaufmann.

[3] Culberson, J. (1992). Genetic invariance: A new
paradigm for genetic algorithm design. Technical
Report TR-92-02, University of Alberta, Edmonton,
Alberta, Canada.

[4] Eshelman, L. (1991). The chc adaptive search al-
gorithm. how to have safe search when engaging in
nontraditional genetic recombination. In Rawlins,
G., editor, Foundations of Genetic Algorithms, 265—
283. Morgan Kaufmann.

[5] Eshelman, L. J., Caruana, R. A., and Schaffer,
J. D. (1989). Biases in the crossover landscape. In
Schaffer, J. D., editor, Proceedings of the Third In-
ternational Conference on Genetic Algorithms, 10—
19.

[6] Eshelman, L. J. and Schaffer, J. D. (1993).
Crossover’s niche. In Forrest, S., editor, Proceedings
of the Fifth International Conference on Genetic Al-
gorithms, 9-14.

[7] Fogel, D. B. and Atmar, J. W. (1990). Comparing
genetic operators with gaussian mutations in sim-
ulated evolutionary processes using linear systems.
Biolgical Cybernetics, 63(2):111-114.

[8] Goldberg, D. (1989). Genetic Algorithms
in Search, Optimization and Machine Learning.
Addison-Wesley Publishing, Co., Reading, MA.

[9] Jones, T. (1995). Evolutionary Algorithms, Fitness
Landscapes and Search. PhD thesis, University of
New Mexico, Albuquerque, New Mexico.

[10] Kauffman, S. A. (1993). Origins of Order. Oxford
Press.

[11] Papadimitriou, C. H. and Steiglitz, K. (1982).
Combinatorial Optimization: Algorithms and Com-
plexity. Prentice-Hall.

[12] Reeves, C. R. (1994). Genetic algorithms and
neighourhood search. In T.C.Fogarty, editor, Evo-
lutionary Computing: AISB Workshop, Leeds, UK.
Springer-Verlag.

[13] Spears, W. M. (1992). Crossover or mutation?
In Whitley, L. D., editor, Foundations of Genetic
Algorithms - 2, 221-238. Morgan Kaufmann.

[14] Syswerda, G. (1989). Uniform crossover in genetic
algorithms. In Schaffer, J. D., editor, Proceedings
of the Third International Conference on Genetic
Algorithms. Morgan Kaufmann.

[15] Syswerda, G. (1992). Simulated crossover in ge-
netic algorithms. In Whitley, L. D., editor, Founda-
tions of Genetic Algorithms - 2, 239-255.

[16] Ulder, N., Aarts, E., Bandelt, H., Laarhoven,
P. V., and Pesch, E. (1990). Genetic local search
algorithms for the traveling salesman problem. In
Parallel Problem Solving from Nature, 109-116,
Dortmund, Germany.

