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Abstract

In this paper, we proposed simplex crossover (SPX), a multi-
parent recombination operator for real-coded genetic al-
gorithms. SPX generates offspring vector values by uni-
formly sampling values from simplex formed by m
(2 ≤ m ≤ number of parameters + 1) parent vectors. The SPX
features an independence from of coordinate systems. Ex-
perimental results using test functions, which are commonly
used in studies of evolutionary algorithms, showed SPX
works well on functions having multimodality and/or
epistasis with a medium number of parents: 3-parent on a
low dimensional function or 4 parents on high dimensional
functions.

1.  Introduction

In many Evolutionary Algorithms (EAs), a recombination
operation with two parents is commonly used to produce
offspring. However, we need not restrict ourselves to two
parents recombinations only as EAs allow us to emulate natu-
ral evolution in a more flexible manner. Recently, several
attempts studying the use of more than two parents for re-
combination in EAs have been reported [Eiben 94, 95, 96,
97, Schewefel 95, Smith 96, Voigt 95, Ono 97, Tsutsui 98a].
        The generalized multi-parent recombination operators
in GAs are scanning crossover and diagonal crossover, which
were introduced by Eiben et al. in [Eiben 94, 95 96]. In [Eiben
94, 95], these operators were evaluated on the standard test
functions with bit string representation and other types of
problems; they showed that 2-parent recombination was in-
ferior when evaluated on the test functions. In [Eiben 96],
these operators were evaluated on Kauffman's NK-land-
scapes, and their evaluation noted the superiority of sexual
recombination on mildly epistatic problems. In [Eiben 97],
Eiben and B ck extended Evolution Strategies (ESs) to multi-
parent recombination involving a variable number of par-
ents to create an offspring, then performed an empirical in-
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vestigation of multi-parent recombination. The investigated
multi-parent operators were a generalized version of inter-
mediary recombination, scanning crossover, and diagonal
crossover. Although the performance of the algorithm de-
pended on the particular combination of recombination op-
erators and objective functions, in most cases they observed
a significant increase in performance as the number of par-
ents increased.
        In recent years, several real-coded Genetic Algorithms
(GAs) for function optimization, which use real number
vector representation of chromosomes, have been studied
[Goldberg 91,Davis 91, Eshelman 93, Janikow 91,
Michalewicz 94, Wright 91, Ono 97, Herrera 98]. These GAs
have been shown to outperform traditional bit string based
representation. The effect of multi-parent recombination has
also been studied for real-coded GAs.
        In [Ono 97], Ono and Kobayashi proposed unimodal
normal distributed crossover (UNDX) for real-coded GAs.
The UNDX generates offspring using a normal distribution
defined by three parents. Offspring are generated around the
line segment connecting the two parents, Parent 1 and 2.
The third parent, Parent 3, is used to decide the standard
deviation of the distance to the axis connecting Parent 1 and
2. This operator has a feature of independence from coordi-
nate systems and is excellent in characteristics preservation
for function optimization. Ono and Kobayashi showed the
UNDX has high performance compared with the BLX-α of
Eshelman and Schaffer [Eshelman 93]. Tsutsui and Ghosh
proposed three types of multi-parent recombination opera-
tors, namely, the center of mass crossover operator (CMX),
multi-parent feature-wise crossover operator (MFX), and
seed crossover operator (SX) for real-coded GAs in [Tsutsui
98a]. Each of these operators is a natural generalization of
the 2-parent recombination operator. They used the BLX-α
as the base operator. The results showed that in these three
operators, performance with CMX improved as the number



of parents increased on functions having multimodality and/
or epistasis.
        In this paper, we propose simplex crossover (SPX), a
new multi-parent recombination operator for real-coded
GAs. The SPX is a simple crossover operator which uses
property of a simplex in the search space. The SPX has a
balance between exploration and exploitation, and is inde-
pendent from coordinate systems in generating offspring.
The experimental results showed high performance on test
functions with multimodarity and/or epistasis.
        In the next section, we give a detailed description of
the SPX operator. In Section 3, we describe experimental
methodology. Then in Section 4, an empirical analysis of
the results is given. Finally, concluding remarks are made in
Section 5.

2.  Simplex Crossover (SPX)

A well known two parents crossover operator for real-coded
GAs is the BLX-α of Eshelman and Shaffer [Eshelman 93]
shown in Fig. 1. This operator is a simple one and it is re-
ported to work well on a wide range of problems. The BLX-
α uniformly and independently picks new individuals with
values that lie in [d

i
 -αd

i
, d

i
 + αd

i
] for each diagonal axis.

Eshelman, Mathias and Schaffer extended BLX-α and pro-
posed box-BLX-α-β, pool-wise box-BLX-α-β  and direc-
tional-BLX-α-β-γ [Eshelman 96, 97]. Whether the pool-wise
or pair-wise version of box-BLXs is better depends upon
the problem. However, they discovered that if there is strong
linkage among the parameters, then the pair-wise box-BLX
is the better operator. In the pair-wise case, biases in the
population distribution are likely to reflect linkage among

parameters, so it is better to exploit these bias; in the pool-
wise case, biases in the population distribution are likely to
be spurious, so it is better to ignore these biases [Eshelman
97]. If the population distribution lies along a region that
forms a diagonal in the problem space, it makes more sense
to sample in a region that parallels the diagonal [Surry 97].
A directional-BLX is intended to introduce such a sampling
bias [Eshelman 97].
        The simplex crossover (SPX) proposed in this paper is
devised so that the operator has both box- and directional-
BLX features with properties of the simplex with the m-par-
ent (m ≥ 2) parameter vectors.
        In Rn, n+1 points that are independent of each other
form a simplex. For simplicity, let us first consider a 3-par-
ent SPX in a two-dimensional search space as shown in Fig.
2, where X(1),  X(2) and X(3) are parameter vectors of the three
parents. Then, these vectors form a simplex. As is done in
the BLX-α, we expand this simplex for each direction (X(j) -
O) by (1+ε ) (ε ≥ 0) times, where O is the center of mass of
the three parents calculated as
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We then generate three offspring by uniformly picking vec-
tor values from this expanded simplex. Thus, we generate
three offspring from these three parents.
        In general, the SPX is specified as SPX-n-m-ε, where n
is the number of parameters of the search space, m is the
number of parents and ε is a control parameter that defines
the expanding rate. The SPX shown in Fig. 2 is specified as
SPX-2-3-ε. Now let us define SPX-n-m-ε for a more gen-
eral case where m is in the range [2, n+1]. Let X = (x

1
,....,x

n
)

be an n dimensional real number vector representing a pos-
sible solution (chromosome). In SPX-n-m-ε, m ( ≤  n+1) in-
dividuals X(j) = (x

1
(j),...,x

n
(j)), j = 1,..., m are randomly selected

for crossover from the parental pool (population) {X
1
,...,X

N
}.

BLX-α uniformly picks new individuals with
values that lie in [o1-d1/2-αd1, o1+d1/2+αd1]
on axis x1 and [o2-d2/2-αd2, o2+d2/2+αd2] on
axis x2, where (o1, o2) is center of the two
parents and (d1, d2) is distance between the
parents

Fig. 1 BLX-α (n=2) [Eshelman 93]
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Then, we divide Rn into h sets of Rm-1 and one Rq spaces by
randomly combing n dimensions of coordinates with a non-
duplicate as

q

h
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where, h = integer(n/(m-1)) and q = remainder(n/(m-1)). In
each Rm-1, we develop a simplex using m parental vector ele-
ments that belong to Rm-1. We then generate m offspring vec-
tors by uniformly picking vector element values from the
simplex in each Rm-1. Finally, we  replace the generated vec-
tor element values with the vector element values of X(j) in
corresponding dimensional positions of Rn, and we obtain
the m offspring vector X' (j) = (x'

1
(j),...,x'

n
(j)), i = 1,..., m. Here,

we leave q parameter values of X' (j) that belong to Rq un-
changed, i.e.,
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        Now, let us consider another extreme where m is 2, i.e.,
SPX-n-2-ε. In this case Rm-1 is R1. Since a simplex in a one-
dimensional space is a segment, a offspring parameter value
on an axis x

i
 is obtained by uniformly sampling the value

from the segment as shown in Fig. 3. This sampling is identi-
cal with the sampling of the BLX-α in Fig. 1, i.e., BLX-
α ≡ SPX-n-2-ε. Furthermore, we can note that the value of
ε corresponds to 2 × α of the BLX-α.
        Thus, the designed SPX is an extension of BLX-α and
expected to have the following features:
(1) Since a simplex is basically independent of coordinate

systems, the SPX can inherit this independency.
(2) Since offspring vector values are uniformly sampled

around m-parent vector values, they inherit characteristic
of parents and the sampling likely reflects a certain link-
age among the parameters.

(3) As a result, SPX has a balance between exploration and
exploitation in generating offspring, and it works well on
functions having multimodarity and/or epistasis among
the parameters.

(4) Since the uniform sampling in a simplex can be per-
formed with simple procedures, SPX is a simple and non-
time consuming operator.

3. Experimental Methodology

To evaluate the proposed SPX, we ran a real-coded GA.
The methodology is as follows.

3.1 Basic Evolutionary Model
The basic evolutionary model we used in these experiments
is based on the minimal generation gap (MGG) proposed
by Satoh, Yamamura and Kobayashi [Satoh 96]. The MGG
model has a desirable convergence property maintaining the
diversity of the population, and shows higher performance
than the other conventional models in a wide range of
applications. We extend MGG to multi-parent version as
follows (see also Fig. 4):
1. Set generation counter t = 0. Generate N individuals

randomly as a initial population P(t).
2. Select a set of m parents M by random sampling from the

population P(t).
3. Generate a set of m offspring C by applying the SPX-m-ε

to M. Then apply a mutation to C (see Section  3.2) and
get C'.

4.  Select a set of m individuals NEW from set M + C' using
the tournament selection of size 2. Then replace M with
NEW in population P(t) and get population P(t+1).

5. Stop if a certain specified condition is satisfied, otherwise
set t = t + 1 and go to step 2.

3.2 Mutation Operator
In evolution strategies (ESs) [Schewefel 95], mutation is used
as the main search operator. In contrast, mutation in GAs is
used as a secondary operator, although it plays an important
role in escaping from local optima. Several mutation opera-
tors for real-coded GAs are proposed in [Davis 91, Janikow
91, Michalewicz 94]. Since study in this paper places its

SPX-2-ε uniformly picks new individuals with
values that lie in [oi-ri (1)-εri (1), oi+ri (2)+εri (2)]
on each axis xi , where ri (1) = ri (2). Since ri (1) +
ri (2) correspond to di of BLX-α in Fig. 1, ε is
 2  α of BLX-α.
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main focus on testing the effect of multi-parent crossover, so
we use a simple static Gaussian mutation. The i-th parameter
x

i
 of an individuals in C (see Section 3.1) is mutated by

),0('
iii Nxx σ+=

with a mutation rate p
m
, where N(0,σ

i
) is a independent ran-

dom Gaussian number with mean of zero and standard de-
viation σ

i
. In this study, σ

i
 is fixed to (max

i
 - min

i
)/4 and p

m

is fixed to 0.2/n for all experiments, where min
i
 and max

i
 are

the lower and upper limits of the parameter range on the i-th
dimension of the search space.

3.3 Applying boundary extension by mirroring
For functions that have their optimum in the corner of the
search space, it is difficult for a simplex to cover the optimum
suitably. As a result, the possibility of the SPX generating
offspring around the optimum point decreases, and the SPX's
performance may be degraded for functions having their
optimum in the corner of the search space. This feature in
the SPX is very similar to that of the center of mass crossover
(CMX) proposed in [Tsutsui 98a]. To cope with this  problem
in CMX, we have proposed the boundary extension by
mirroring (BEM) method [Tsutsui 98b]. This method allows
individuals to be located beyond the boundary of the search
space to some extent, as shown in Fig. 5. The functional
values of individuals located beyond the boundary of the
search space are calculated as if they are located inside the
search space at points symmetrical to the boundary. We have
introduced an extension rate r

e
 (0<r

e
<1) for a control

parameter. The search space is centered in an extended space
extended by a factor of 1+r

e
 along each dimension. The

functional value of individual j with real vector X(j) =
(x

1
(j),...,x

n
(j)) is obtained as

 f(X(j)) = f(Y(j)),
where,
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The min
i
 and max

i
 are the lower and upper limits of parameter

range on the i-th dimension of the search space, respectively.
By applying the BEM with the extension rate values of [0.2,
0.3] to CMX, the CMX's performance on the test functions
which have their optimum on the corner of the search space
was much improved. Moreover, the technique did not cause
side effects for the functions whose optima are located around
the center of the search space [Tsutsui 98b]. We applied the
BEM method with extension rate r

e
 of 0.25 in this study.

3.4 Test functions
We use test functions commonly used in the literature, which
includes the De Jong test suite (except F4), and the 20-pa-
rameter Rastrigin (F

Rastigin
), the 20-parameter rotated Rastrigin

F
rotated-Rastigin

, the 10-parameter Schwefel (F
Schwefel

 ) and the 10-
parameter Griewank (F

Griewank
) functions. These functions are

summarized in Table 1. F1 is a simple unimodal function
and has the global minimum at (0, 0, 0). F2 has strong inter-
parameter linkage (epistasis) and has the global minimum
at (1, 1). F3 is a discontinuous function with the global mini-
mum in the range x

i
 ∈ [-5.12, -5.0) for i = 1,...,5, i.e., in one

corner of the search space. F5 is basically a continuous func-
tion, but it has 25 deep holes, and has the global minimum
at (-31.978, -31.978). F

Rastigin
 is a multimodal function and

the global minimum is at (0,...,0). There are many local
minima around the global minimum. F

rotated-Rastigin
 is obtained

by randomly rotating the original F
Rastigin

 function on 20*(20-
1)/2 = 190 pairs of a 2-dimensional hyperplane around the
origin [Ono 97]. This is a multimodal function and has a
strong epistasis among parameters. The global minimum is
at (0,...,0). F

Schwefel
 is also a multimodal function and the glo-

bal minimum is at (420.968746,...,420.968746), very close
to one corner of the search space. F

Griewank
 is a multimodal

function and the global minimum is at (0,...,0). This func-
tion has an inter-parameter linkage due to the presence of
the product term. However, the effect of decreases as the
number of parameters increases. Thus, there is weak epista-
sis in the 10 parameter version used here.

3.5 Performance measure
We evaluated the algorithms by measuring their #OPT (num-
ber of runs in which the algorithm succeeded in finding the
global optimum) and MNT (mean number of trials to find
the global optimum in those runs where it did find the opti-
mum). We used the ∆x

i
 value for resolution (borrowed from

w
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min max

e-min e-max
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Fig. 5 Boundary extension by mirroring (BEM)



bit string based GAs, Table1) to determine whether the op-
timal solution is found. If the solution detected is within the
∆x

i
 range of the actual optimum point, we assume that the

solution is detected. Let us represent the optimal solution of
a function by (o

1
,...,o

n
). Then, we assume that the real coded

GA is able to find the optimal solution if all parameters
(x

1
,...,x

n
) of the best individual are within the range [ (o

i
 -

∆x
i
/2) ,  (o

i
 + ∆x

i
/2) ] for all i. The real number is repre-

sented as type of data double in C language. The experi-
ments were performed on a workstation with UltraSPARC
chips.

4.  Empirical Analysis of Results

Twenty (20) runs were performed. Each run continued until
the global optimum was found or a maximum of 300,000
trials (function evaluations) was reached. A population size
of 50 was used for functions F1, F2, F3 and F5. For the
multimodal functions F

Rastigin
, F

rotated-Rastigin
, F

Schwefel
 and F

Griewank
,

the population size of 500 was used.
        The control parameters for SPX-n-m-ε are set as fol-

lows. The value of ε was set to 1.0, which corresponds to the
α value of 0.5 in BLX-α. This value was used as a standard
value in [Eshelman 93, 96, 97]. We tested the performance
by varying m from 2 to n+1 for function F1, F2, F3 and F5.
For 10 parameter functions (F

Schwefel
, F

Griewank
,), we tested the

performance by varying m = 2, 3, 4, 5, 6 and 11 (n+1). For
20 parameters function (F

Rastigin
, F

rotated-Rastigin
), we tested the

performance by varying m = 2, 3, 4, 5, 6, 11 and 21 (= n+1).
        The results are summarized in Table 2. We evaluated
both the with and without BEM methods. Note again that
the SPX for m = 2 corresponds to BLX-α with α at 0.5.
        The results on functions F1 (unimodal, no epistasis)
showed slight improvement in performance as the number
of parents increased. On function F2 (unimodal, strong epista-
sis) the performance for m = 3 was significantly higher than
the performance for m = 2. On function F3 (corner), the SPX
without BEM showed clear performance degradation as the
number of parents increased from 2, as predicted. The SPX
with BEM did not show this degradation and showed almost
similar performance for m =  2, 3, 4. However, for m = 5 and 6,
a significant performance degradation was observed and the

∆x
i
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worst performance was scored for m = 6 (= n+1). The results
on function F5 (discontinuous) showed slight performance
degradation for m = 3 compared with the performance for m =
2.
        The results on function F

Rastrigin
 (highly multimodal)

showed a significant increase in performance as the number
of parents increased for m = 2, 3 and 4; the best perfor-
mance was observed for m = 4. For m = 5, 6, 11 and 21 (=
n+1), the performance degraded as the number of parents

increased.
        The results on function F

rotated-Rastrigin
 (highly multimodal,

strong epistasis) showed clear characteristics of the SPX.
No optimal solution was found for m = 2 (BLX-0.5), but
SPX found an optimal solution fairly well for m = 3 and 4,
and the MNTs were almost similar to the MNTs on function
F

Rasrigin
. Again the best value of MNT was observed for m =

4. For m = 5, 6, 11 and 21 (= n+1), the performance de-
graded as the number of parents increased as it did on func-

F1

F2

F3

F5

F
Rastrigin

F
rotated-Rastrigin

F
Schwefel

F
Greiwank

2

m (number of parents)

3 2111654

MNT
(STD)

#
O

P
T

20

20

20

20

r
eFunctions

0.0

0.25

0.0

0.25

0.25

0.0

0.25

0.0

1,362.2
(183.9)

0.0

MNT
(STD)

MNT
(STD)

MNT
(STD)

MNT
(STD)

MNT
(STD)

MNT
(STD)

#
O

P
T

#
O

P
T

#
O

P
T

#
O

P
T

#
O

P
T

#
O

P
T

0.25

0.25

0.25

0.25

0.0

0.0

0.0

1,155.8
(158.1)

1,042.4
(316.2)

1,180.1
(127.3)

1,418.5
(128.5)

1,188.0
(562.6)

9,318.0
(737.9)

4,840.5
(911.9)

21,535.1
(2418.8)

5,935.9
(1124.2)

5,529.5
(894.6)

4,605.0
(921.9)

2,296.2
(373.5)

1,350.0
(246.7)

1,387.4
(224.5)

1,366.6
(243.1)

3,389.4
(467.5)

7,145.9
(1345.5)

46,942.1
(8409.2)

9,091.1
(1695.3)

4,965.9
(1848.1)

4,923.6
(802.5)

7,145.9
(1345.5)

5,770.6
(856.7)

130,974.4
(104,449.5)

21,649.4
(2,283.3)

24,680.2
(1,468.9)

32,764.7
(1,520.7)

61,505.8
(4,868.8)

-74,988.1
(68,908.5)

20,396.1
(1,496.6)

23,179.6
(1,462.6)

31,639.9
(1,765.7)

57,070.9
(4,232.9)

48,948.0
(-)1515202020

091920 20 20

88,049.7
(3,752.0)

20

202020202020

20 20 20 20 20 20

1951,142.5
(2,726.5)

58,607.7
(6,501.1)

75,250.3
(10,657.1)

125,250.5
(16,098.1)

151,616.7
(18,068.7)

221,872.6
(12,030.5)

85,424.6
(5,211.0)

47,888.6
(2,368.7)

53,514.7
(9,518.8)

72,550.4
(9,000.2)

115,637.2
(8,398.7)

143,740.9
(36,046.9)

229,467.7
(14,521.4)

127,146.1
(14,102.5)

105,238.9
(21,555.0)

67,365.5
(9,392.3)

101,765.6
(4,470.6)

195,960.8
(18,997.7)

164,471.0
(20,047.5)

120,615.2
(17,795.9)

99,173.4
(12,485.9)

65,771.4
(16,231.4)

97,240.9
(3,787.6)

196,514.8
(23,125.0)

178,772.3
(13,883.8) 181819 171919

2020182020 190

0

-

-

20 120,770.0
(8,686.8)

251,312.0
(19,278.0)

279,754.5
(301.5)

255,418.2
(25,477.1)

260,909.5
(17,605.5)

00622

220202020

- -

0 -93,002.1
(4,702.6)

96,522.6
(6,770.9)

112,676.7
(18,701.6)

108,850.0
(15,214.8)

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

Table 2 Summary of results



0.0001

0.001

0.01

0.1

1

10

100

1000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

trials

tion F
Rastrigin

. Thus, we can see that the SPX with more than
two parents has a clear feature of relative independence from
coordinate systems. This feature of the SPX is a natural re-
sult of using simplexes in generating offspring, because a
simplex is basically independent of coordinate systems and
in SPX there is no sampling bias against coordinate systems
in generating offspring. This feature of SPX should hold for
m = n+1 (SPX-20-21-ε). However, the results for m = 21
with F

rotated-Rasrigin
 were slightly worse than for m = 21 with

F
Rasrigin

.
         The results on function F

Schwefel
 (highly multimodal, cor-

ner) without BEM showed very poor performance for more
than 2 parents. #OPTs for m = 3, 4 and 5 were 2, 2 and 6,
respectively. No optimal solution was found for m = 6 and
11. Thus, as on function F3, the SPX without BEM did not
work well on F

Schwefel
, which has its optimum in the corner of

the search space. On the other hand, the SPX results with
BEM showed significant performance improvement with the
best performance obtained for m = 2. However, the SPX
with BEM did not work well for m = 6 and 11 (#OPTs of 2
and 0, respectively).
        The results on function F

Griewank
 (highly multimodal,

weak epistasis) showed a significant increase in performance
as the number of parents increased for m = 2, 3 and 4. The
best performance was observed for m = 4. For m = 5, 6 and
11, the performance degraded as the number of parents in-
creased and the worst performance was observed for m = 11
(= n+1) (without BEM #OPT: 0 and with BEM #OPT: 1).
        Thus, SPX worked well on functions F2 (strong epista-
sis), F

Rasrigin
 (highly mutimodality), F

rotated-Rasrigin
 (highly

mutimodality, strong epistasis) and F
Griewank

 (highly
mutimodality). In addition, the number of parents that showed

stable performance was 3 (F2) or 4 (highly dimensional func-
tions). By applying the BEM to SPX, the SPX performance
on the test functions with an optimum on the corner of the
search space (F3 and F

Schwefel
) was greatly improved. Fur-

thermore, the BEM technique did not cause side effects for
the functions whose optima are located around the center of
the search space by choosing the appropriate extension rate
r

e
.

        In the early stage of this study, we estimated that the
SPX with m = n+1 (SPX-n-n+1-ε ) would work well since it
uses a complete simplex in Rn, but the results of SPX-n-
n+1-ε showed poor performance on high dimensional func-
tions.
        Fig. 6 shows a typical convergence process on function
F

Griewank
 for m = 4 and for m = 11. No mutation was applied

in these runs. The vertical axes of the figure show mean val-
ues (MEAN) and the standard deviation (STD) of each pa-
rameter in the population with trials, respectively. An opti-
mal solution was found at trial number 19,553 for m = 4 and
no optimal solution was found for m = 11. For m = 4, the
STDs of 10 parameters converged with an almost equal rate
of decrease as the search proceeded, and MEANs converged
to the values of the optimal solution (0,...,0). However, for
m = 11, STDs converged faster than STDs for m = 4 with a
variety of decreasing rates among parameters as search pro-
ceeded. This means the population rapidly loses diversity,
and vector values in some specific dimensions converge faster
than vector values in other dimensions. Here, simplexes re-
produce dimensions. In this situation, a simplex becomes a
hyperplanes in R10 and SPX has difficulty exploring the
search space effectively (as the population finally gets
trapped by a local optimal).
        We may say an SPX with a large number of parents has
sampling biases that reflect biases in the population distri-
bution too much. We can prevent the over-sampling biases
with a medium number of parents.

5.  Conclusions

In this paper, we proposed simplex crossover (SPX), a multi-
parent recombination operator for real-coded genetic algo-
rithms. SPX generates offspring vector values by uniformly
sampling values from the simplex formed by m (2 ≤ m ≤ n)
parents vectors. The SPX features an independence from
coordinate systems. The experimental results with test func-
tions commonly used in the studies of evolutionary algo-
rithms showed SPX works well on functions having
multimodality and/or epistasis with a medium number of
parents: 3-parent on a low dimensional function or 4 par-
ents on high dimensional functions.
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Fig. 6 A typical convergence process on function Fgriewank
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        There are many opportunities for further research re-
lated to the proposed SPX. We have now some theoretical
results to determine the appropriate values for expansion
rate ε, which produce good performance. We mainly ana-
lyzed SPX using #OPT and MNT. The detailed convergence
properties of the SPX are still under investigation. A theo-
retical analysis of the SPX, comparing the SPX with other
varieties of crossover operators in the literature and explor-
ing SPX on real life problems are also  to be tried.
        This research is partially supported by the Ministry of
Education, Science, Sports and Culture of Japan under Grant-
in-Aid for Scientific Research number 10680396.
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