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Abstract 
 
Recent work has shown that for finding static Bayesian 
network structures, an Evolutionary Programming (EP) 
approach that exploits the description length of single 
links is better suited than a standard Genetic Algorithm 
(GA). We extend this work to find good dynamic 
Bayesian network structures that can have large time 
lags. We do this through the use of a new representation 
of dynamic Bayesian networks for EPs and a new 
operator, swap, designed specifically with a dynamic 
Bayesian network in mind. In this paper Lam’s 
knowledge guided operator for static networks is 
compared with the new swap operator when both are 
used in conjunction with the new representation. 
Experiments are carried out on synthetic datasets and a 
real world oil refinery process time series. The results 
indicate that the new operator is better suited to finding 
good structures in a shorter amount of time. 
 
1 Introduction 
 
Many complex chemical processes record multivariate 
time series data every minute. This data will be 
characterized by a large number of interdependent 
variables whilst some variables may have no substantial 
impact on any others. There can be large time lags 
between causes and effects (over 120 minutes in some 
chemical processes). If we want to diagnose a particular 
event within the system automatically, we would first 
have to learn the dependencies between these variables 
that are evident within the data. Diagnosis, in these 
situations, will want to be performed as close to real 
time as possible and so an approximate algorithm to 
learn the dependency structure and perform inference 
must be found. This paper presents an automatic 
method to do this in order to perform the diagnosis of 
particular events. This makes use of a paradigm known 
as the dynamic Bayesian network (DBN) which is 
learnt using an EP approach. We combine a new 
representation for a DBN with a proposed swap 
operator designed, specifically, to speed the 

convergence when learning dynamic Bayesian 
networks. 
 
In the next section we introduce the Dynamic Bayesian 
Network as a tool for diagnosis and describe various 
methods for learning static Bayesian networks from 
data, including recent work on the use of evolutionary  
 
 
and genetic methods, in particular the MDLEP method 
[Lam 1998]. This makes use of the knowledge guided 
mutation operator which we analyse at the end of 
section 2. To the best of our knowledge, no research has 
been carried out on using evolutionary methods to learn 
DBNs or, indeed, any methods for learning DBNs with 
large time lags. In section 3 we propose a way of doing 
this by introducing a representation of a dynamic 
Bayesian network for EP. We then describe the 
proposed algorithms and the associated operators. 
Section 4 presents a comparison of the performances of 
the operators on a collection of synthetic datasets and a 
real world oil refinery time series. Operators with the 
fastest convergence rate will be better suited to 
problems such as those posed by diagnosis within 
process datasets where speed is essential. 
 
2 EPs and GAs for Bayesian Networks 
 
A Bayesian Network (BN) is a paradigm for modelling 
a system using probabilities [Neapolitan 1989; Pearl 
1988]. It is a way of storing the joint probability 
distribution for all variables in a domain by exploiting 
conditional dependencies between them. It consists of a 
directed acyclic graph (DAG) and a set of conditional 
probability distributions. The DAG is made up of nodes 
which represent variables in the domain and directed 
links between them which denote a conditional 
dependence between them. Each node has a probability 
distribution over each of its states, which is conditioned 
upon its parents. The set of parents of a node are those 
with a link pointing to it. By setting the probabilities of 
some nodes' states equal to 1 we can enter observations 
about the system and by using certain algorithms we 



can perform inference in the network in order to reason 
about the system. 
 
Dynamic Bayesian Networks (DBNs) are an extension 
to their static counterpart in that they model a system 
over time [Dagum 1995; Friedman 1998; Ghahramani 
1998; Kanazawa 1995]. A node represents a particular 
variable at a particular time slice. Links in DBNs occur 
between nodes within a time slice (contemporaneous) 
and over different time slices (non-contemporaneous). 
See Figure 1 for an example DBN over six time slices 
with four variables. 
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Figure 1. A DBN with four variables over six time slices. 
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Given some evidence about a set of variables at time t, 
Et,  we can infer the posterior distributions of variable 
states at differing time lags (l), Xt-l. This can be 
performed using various algorithms, stochastic 
simulation being the most commonly used when 
dealing with larger networks (see [Pearl 1988]. This is 
an approximate method as exact inference has been 
shown to be an NP hard problem [Cooper 1990]. 
Stochastic simulation works by repeatedly generating 
states for each variable in the DBN according to their 
probability distributions given any observations entered 
into the network. The method has been shown to 
converge to a close approximation of the true posterior 
probability distributions. Therefore, given the DBN 
structure and conditional probability distributions 
(which can be learnt relatively easily from a dataset 
with no missing values), we can infer the posterior 
distributions in order to automatically diagnose a 
particular set of observations.  
 
There are various methods for scoring the structure of 
either a dynamic or static BN according to how well it 
represents a dataset : Bayesian Methods [Cooper 1991], 
Minimum Description Length (MDL) [Lam 1994], 
Maximum Likelihood (ML) [Geiger 1992]. A detailed 
guide to the literature can be found in [Heckerman 
1996]. The Minimum Description Length is of interest 
because it penalises largely connected networks which 
would be undesirable for efficient inference. The 
Description Length (DL) can be calculated by summing 
equations 1 and 2 below: 
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where n is the number of nodes; for node ni, ki is the 
number of its parents,

inF is its set of parents, si is the 

number of states it can be in and sj is the number of 
values a particular variable in

inF can take on; d is the 

number of bits needed to store a numerical value; M(.) 
is the number of times a particular instantiation exists in 
the database This is known as the mutual information. 
Equation 1 is the DL of the model (DLmodel) and 
equation 2 is the DL of the data given the model 
(DLdata). The lower the DL of a particular network, the 
better the model. 
 
Once a scoring metric is decided upon some method of 
search must be chosen in order to quickly find DBNs 
with a good score (a low DL). Evolutionary methods 
have recently been employed on static networks to find 
global solutions quickly and seem to show promising 
results. When these methods are applied to the networks 
the application of various operators is required in order 
to prevent the evolution of cyclic networks. This is 
because the operators used are not closed operators. In 
[Larranaga 1996] a Genetic Algorithm  is used and a 
‘repair’ operator is applied to remove cycles. In [Lam 
1998] evolutionary programming is used with three 
operators: freeze, defrost and a knowledge guided 
mutation (KGM) operator. These are used to improve 
the scalability and speed of convergence and ensure any 
links that generate cycles are removed. The KGM 
operator works by calculating the DL of all possible 
single links beforehand. This information is then used in 
the mutation of individuals so that links with a low DL 
are more likely to be added and links with high DL are 
more likely to be removed. This assumes that the DL of 
a single link implies something about its effect on a 
global network. By examining some real world data and 
some datasets generated from a number of small 
Bayesian networks we have found that this is the case. 
 
Therefore, for each Bayesian network we can construct 
a list of all the possible single links and order them 
upon their DL using the data generated. Then we can 
see where the original links of the network lie on this 
list. Figure 2 shows the positioning of the real links 
(diamonds) within the ordered list for one such network. 
It can be seen that the majority of them lie in the higher 
rankings. This suggests that the DL for a single link 



may be a good heuristic as to whether it is part of the 
global network. In the next section we exploit this 
generated list in full whilst learning DBNs. 
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Figure 2. The ranking of the true single links in a generated 

dataset from a Bayesian network. 
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Figure 3. A DBN with no contemporaneous links. Hashed 

nodes are observed states. 
3 Method 
 
Representing a DBN for EP 
 
A DBN with only non-contemporaneous links is 
represented by a selection of N + P nodes, where N is 
the number of variables and represents each variable at 
time slice t, and P is the collection of nodes 
representing variables at previous time slices up to 
some maximum lag maxl. Note that P � N×maxl. We 
can use a list of triples, (a,b,l) , to represent a possible 
network where a is the parent variable, b is the child 
variable and l is the time lag. Therefore, each triple 
maps directly to a link in the network. So a list for N=4 
and with P = 5 such as (0,1,1), (1,3,5),  (2,1,2), (2,0,1), 
(3,2,3) would represent the DBN in Figure 3. 
 
EP to learn single link knowledge for seeding initial 
population 
 
[Lam 1998] use the DL of a single link to guide their 
mutation. However, their method only makes use of the 
heuristic once for each individual every generation. If 
we want to exploit this knowledge as soon as possible 
in order to find better networks in fewer generations we 
can seed the entire first population with links found 
from the single link analysis. What is more, we can 
construct a list of these single links more rapidly by 
using an EP. If speed is of the essence and we need a 
good network in as short a time as possible we can 

speed up the algorithm in two ways: firstly, by using an 
approximate method to find a good list of single links 
rather than an ordering of the entire set; secondly, by 
exploiting this knowledge in the first population by 
seeding it entirely with a random selection of good 
links. We have found that EP is particularly efficient at 
finding a good selection of links with low DL, 
particularly when we make use of self-adapting 
parameters. We, therefore, experiment with the use of 
EP to find a good ordered list of links with low DL and 
avoid having to explore every possible single link.  
 
If the initial population contains links with low DLs as 
found using an EP, it would be useful if the next stage 
of search emphasised the recombination of these links. 
For this reason we have developed a new operator, 
swap, which will maximise the recombination of the 
high-ranking DL links.  What is more, if we look at how 
the DL of a triple varies with differing lags we find that 
it is a relatively smooth curve (see Figure 4 for an 
example of the DL of a link with differing time lags). 
For this reason we have designed a specific ‘sliding‘ 
mutation for swap where each mutation is only applied 
to the lags of a triple and is such that each mutation is 
an addition or subtraction to the previous value of the 
lag. 
 
Early experimentation showed that autoregressive links 
(triples where a=b) with a time lag of one were always 
the most common in chemical process data. For this 
reason, these links were excluded from possible triples 
and automatically inserted into the networks before 
evaluation. 
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Figure 4. The DL of a single link with varying time lag. Note 

the smoothness of the graph. 
 

We can now describe the two algorithms in full. 
Algorithm 1 uses the KGM operator and Algorithm 2 
uses swap on a population that is seeded with links of 
low DL. 
  
 
 



Algorithm 1 
 
1. Given a multivariate time series, discretize any 

variables that are continuous. 
2. Generate a list of all single links ordered on their 

DL (summing equations 1 and 2). 
3. Set the initial population to a random selection of 

P triple-lists where for each triple, (a,b,l),   0 � a 
< N, 0 � b < N, 1 � l � maxl, a�b. 

4. Generate the DBN represented by each triple-list. 
5. Calculate the DL of each DBN. 
6. For i = 1 to Generations DO 

• Apply KGM Operator to two random parents 
in the top OpRate of the population in order to 
generate offspring 

• Add all valid offspring to the population and 
remove the least fittest individuals thus 
reducing the population to its original size, 
PopulationSize 

7. The best network structure will be the network with 
the smallest DL within the last generation. 

 
Algorithm 2 
 
1. Given a multivariate time series, discretize any 

variables that are continuous. 
2. Set ListSize equal to Limit% of all possible 

single links. 
3. Set the initial population of List of size ListSize 

to a random selection of  single triples (a,b,l) 
where 0 � a < N, 0 � b < N, 1 � l � maxl,  a�b. 

4. For i = 1 to ListGenerations DO 
• Make a copy of each triple and apply 

Preprocess_Op to each duplicate 
• Add the mutated duplicates back to the 

population 
• Remove the lower ranking links until the 

population is back to its original size, 
ListSize 

5. Set the initial population in the main algorithm to a 
random selection of P triple-lists from List. 

6. Generate the DBN represented by each triple-list. 
7. Calculate the DL of each DBN. 
8. For i = 1 to Generations DO 

• Apply Swap Operator to generate offspring. 
Different forms of this are described below 

• Add all valid offspring to the population and 
remove the least fittest individuals thus 
reducing the population to its original size, 
PopulationSize 

9. The best network structure will be the network with 
the smallest DL within the last generation. 

 
 
 
 

Preprocess_Op: 
 
This EP operator uses the notion of self-adapting 
parameters. Each gene, xi, is given a parameter, σi . This 
is used as the standard deviation of a normal 
distribution with which mutation is applied to xi 
(equation 3). The standard deviations, themselves, are 
updated according to equations 4 where s is calculated 
from equation 5 for each chromosome and si is 
calculated from equation 6 for each gene (taken from 
[Baeck 1996]) where n is 3, i.e. the size of a triple: 
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1) KGM Operator 
 
1. Choose two random individuals within the top 

OpRate × PopulationSize fittest individuals and 
clone them. 

2. For each clone do the following: 
• Add a new link from the generated list with a 

high probability of having a low DL 
• Remove a random link from the network with 

a higher probability of deleting one with high 
DL 

3. Randomly mutate one triple. 
 
2) Swap Operator 
 
1. Choose two random parents,  par1, par2 , within the 

top OpRate × PopulationSize fittest individuals. 
2. Set the first offspring equal to par1 and the other to 

par2. 
3. For the first offspring, exchange each triple with 

the other offspring’s according to a random number 
generator with a probability of 50%. 

4. For a random 10% of each individual’s triples DO 
• Add or subtract a random value up to a 

maximum of 10% of the maxl, to the lag. This 
is the sliding mutation 

 
4 Results 
 
The algorithms are evaluated in the following two ways. 
Firstly a set of experiments were carried out involving 
synthetic datasets generated from a DBN. The two 
operators were then tested for the number of 



generations until the original structure was found. 
Secondly a real world oil refinery process dataset was 
used to find the structure with the lowest DL.  
 
Synthetic Data 
 
Firstly, a synthetic dataset was produced from a DBN 
with maximum lag being set at 30 minutes. See an 
example in Figure 5. The performance of the operators 
were compared and the number of generations taken to 
converge to the correct solution was recorded. This 
experiment was repeated with 10 randomly generated 
network structures. For the algorithms in section 3 the 
following parameter values were used: Generations = 
500, PopulationSize = 20, OpRate = 80%, MutationRate 
= 1%, Limit = 25, P = 5,  and ListGenerations = 30. 
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Figure 5. An example DBN used to generate the synthetic 
data. Maximum lag to search for was set to 30 minutes. 

 
Figure 6 shows the performance of the two operators 
on one of the synthetic datasets. Both methods 
converged rapidly to a near solution. However, the 
swap operator performed better reaching the correct 
solution after 79 generations whilst the KGM took 
190. It should be noted that KGM was very close to 
the optimal after 81 generations but took a long time 
to find the correct time lags. 
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Figure 6. The Performance of the KGM and swap operators 

on a synthetic dataset. 
 
Table 1 shows the average number of generations to 
find the original DBN over all ten datasets for both 
operators. It can be seen that the swap operator is 

consistently faster at converging to the correct 
structure with a significantly lower average. 
 
Algorithm / Operator used Average Number of 

Generations 
Algorithm1 / Knowledge 

Guided Mutation  
 

217.1 
Algorithm2 / 

swap 
 

96.6 
Table 1. The average number of generations to find the 

correct original DBN structure for KGM and swap. 
 
Oil Refinery Data 
 
Figure 7 compares the performance of the different 
operators when applied to the multivariate oil refinery 
time series. This was a multivariate time series with 11 
variables and 1000 minutes of data. All continuous 
variables had been previously discretized. If we set the 
maximum time lag to 60 minutes and exclude any 
autoregressive links then the number of possible 
network structures will be 211×10×60 . To find a good 
structure from this huge number of candidates is a very 
challenging task. 
 
For the algorithms in section 3 the following parameter 
values were used: Generations = 2000, PopulationSize 
= 30, OpRate = 80%, MutationRate = 1%. Limit = 25, P 
= 15 and ListGenerations = 50. 
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Figure 7. Comparison of the operators swap and KGM on the oil 

refinery dataset. 
 

Once again it is apparent that the fastest convergence 
was obtained through the use of the swap operator. It 
started off with a lower DL and continued to improve at 
a faster rate than KGM. The swap operator had the head 
start, probably due to the seeding of the initial 
population; maximal recombination and slide mutation 
then ensured a fast convergence to a good structure. The 
structure found using the swap operator after 2000 
generations is shown in Figure 8.  This corresponded to 
the best triple-list in the final population : { (0,6,1), 
(1,10,53), (1,8,52), (1,3,16), (1,6,1), (2,0,1), (5,9,1), 
(7,9,24), (7,3,15), (7,2,10), (10,1,59), (10,4,52), 
(10,5,36), (10,7,15), (10,8,1) }. 
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Figure 8. The Network learnt using swap after 2000 generations with the autoregressive links added. 
 
 

 The network structure found after 2000 generations 
contained many links which were expected from the 
refinery dataset. Those being between variables that 
were known to be related such as Sponge Oil 
Temperature affecting Top Temperature with a delay of 
approximately 5 minutes. However, other unexpected 
links were found from likely effects to likely causes. 
This could have been due to a large dependency from 
one variable to another resulting in a high mutual 
information between the variables  in the opposite 
direction. A few other unexpected links occurred where 
the data was shown to exhibit little variation.  
 
5 Conclusions and Future work  
 
The learning of dynamic Bayesian networks with large 
time lags has great potential for many applications in 
the process industry. The number of possible network 
structures can be huge, even when dealing with a small 
number of variables due to the consideration of large 
possible time lags. So far we have not seen any attempt 
in learning such networks. This paper has shown 
evolutionary programming to be a promising way of 
tackling this challenging problem.  
 

Lam’s Knowledge Guided Mutation operator made use 
of the description lengths of single links. We have 
extended this work to dynamic Bayesian networks 
where the number of possible networks can be very 
much greater. We have done this by proposing a new 
representation and by seeding the initial population with 
single links of low DL. We have also designed a new 
operator, swap, which maximises the recombination of 
these single links and exploits the smoothness of the DL 
graph of a single link with differing time lags. Our 
experiments appear to show that the performance of this 
operator is superior to the knowledge guided mutation 
operator when tested on synthetic time series data and 
real world oil refinery time series. 
 
Further work will include: 
 
1. Exploring how different evolutionary methods 
compare when various other Bayesian network metrics 
are used such as the Bayesian measure [Cooper 1991]. 
2. Learning a library of dynamic Bayesian networks and 
applying quickly-converging EPs on new refinery data 
in order to classify the current control structure of the 
refinery process. 
3. Looking at ways to improve the accuracy of the 
networks such as looking at continuous Bayesian 



networks or quickly learning a good discretization 
policy [Friedman 1996] through the use of  an EP. 
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