
Extending Evolutionary Programming Methods to the Learning of
Dynamic Bayesian Networks

Allan Tucker & Xiaohui Liu
Department of Computer Science,

Birkbeck College, University of London,
Malet Street, London WC1E 7HX, UK.

 [atuck06, hui] @dcs.bbk.ac.uk
+44 171 631 6723 / 6711

Abstract

Recent work has shown that for finding static Bayesian
network structures, an Evolutionary Programming (EP)
approach that exploits the description length of single
links is better suited than a standard Genetic Algorithm
(GA). We extend this work to find good dynamic
Bayesian network structures that can have large time
lags. We do this through the use of a new representation
of dynamic Bayesian networks for EPs and a new
operator, swap, designed specifically with a dynamic
Bayesian network in mind. In this paper Lam’s
knowledge guided operator for static networks is
compared with the new swap operator when both are
used in conjunction with the new representation.
Experiments are carried out on synthetic datasets and a
real world oil refinery process time series. The results
indicate that the new operator is better suited to finding
good structures in a shorter amount of time.

1 Introduction

Many complex chemical processes record multivariate
time series data every minute. This data will be
characterized by a large number of interdependent
variables whilst some variables may have no substantial
impact on any others. There can be large time lags
between causes and effects (over 120 minutes in some
chemical processes). If we want to diagnose a particular
event within the system automatically, we would first
have to learn the dependencies between these variables
that are evident within the data. Diagnosis, in these
situations, will want to be performed as close to real
time as possible and so an approximate algorithm to
learn the dependency structure and perform inference
must be found. This paper presents an automatic
method to do this in order to perform the diagnosis of
particular events. This makes use of a paradigm known
as the dynamic Bayesian network (DBN) which is
learnt using an EP approach. We combine a new
representation for a DBN with a proposed swap
operator designed, specifically, to speed the

convergence when learning dynamic Bayesian
networks.

In the next section we introduce the Dynamic Bayesian
Network as a tool for diagnosis and describe various
methods for learning static Bayesian networks from
data, including recent work on the use of evolutionary

and genetic methods, in particular the MDLEP method
[Lam 1998]. This makes use of the knowledge guided
mutation operator which we analyse at the end of
section 2. To the best of our knowledge, no research has
been carried out on using evolutionary methods to learn
DBNs or, indeed, any methods for learning DBNs with
large time lags. In section 3 we propose a way of doing
this by introducing a representation of a dynamic
Bayesian network for EP. We then describe the
proposed algorithms and the associated operators.
Section 4 presents a comparison of the performances of
the operators on a collection of synthetic datasets and a
real world oil refinery time series. Operators with the
fastest convergence rate will be better suited to
problems such as those posed by diagnosis within
process datasets where speed is essential.

2 EPs and GAs for Bayesian Networks

A Bayesian Network (BN) is a paradigm for modelling
a system using probabilities [Neapolitan 1989; Pearl
1988]. It is a way of storing the joint probability
distribution for all variables in a domain by exploiting
conditional dependencies between them. It consists of a
directed acyclic graph (DAG) and a set of conditional
probability distributions. The DAG is made up of nodes
which represent variables in the domain and directed
links between them which denote a conditional
dependence between them. Each node has a probability
distribution over each of its states, which is conditioned
upon its parents. The set of parents of a node are those
with a link pointing to it. By setting the probabilities of
some nodes' states equal to 1 we can enter observations
about the system and by using certain algorithms we

can perform inference in the network in order to reason
about the system.

Dynamic Bayesian Networks (DBNs) are an extension
to their static counterpart in that they model a system
over time [Dagum 1995; Friedman 1998; Ghahramani
1998; Kanazawa 1995]. A node represents a particular
variable at a particular time slice. Links in DBNs occur
between nodes within a time slice (contemporaneous)
and over different time slices (non-contemporaneous).
See Figure 1 for an example DBN over six time slices
with four variables.

 t-5 t-4 t-3 t-2 t-1 t
Figure 1. A DBN with four variables over six time slices.

Hashed nodes are evidence, Et

Given some evidence about a set of variables at time t,
Et, we can infer the posterior distributions of variable
states at differing time lags (l), Xt-l. This can be
performed using various algorithms, stochastic
simulation being the most commonly used when
dealing with larger networks (see [Pearl 1988]. This is
an approximate method as exact inference has been
shown to be an NP hard problem [Cooper 1990].
Stochastic simulation works by repeatedly generating
states for each variable in the DBN according to their
probability distributions given any observations entered
into the network. The method has been shown to
converge to a close approximation of the true posterior
probability distributions. Therefore, given the DBN
structure and conditional probability distributions
(which can be learnt relatively easily from a dataset
with no missing values), we can infer the posterior
distributions in order to automatically diagnose a
particular set of observations.

There are various methods for scoring the structure of
either a dynamic or static BN according to how well it
represents a dataset : Bayesian Methods [Cooper 1991],
Minimum Description Length (MDL) [Lam 1994],
Maximum Likelihood (ML) [Geiger 1992]. A detailed
guide to the literature can be found in [Heckerman
1996]. The Minimum Description Length is of interest
because it penalises largely connected networks which
would be undesirable for efficient inference. The
Description Length (DL) can be calculated by summing
equations 1 and 2 below:

])1()(log[2 ∏�
∈∈

−+=
ini Fj

jii
nn

Model ssdnkDL (1)

� �
∈

=
nn Fn ni

n
niData

i ini i

i

i FnM

FM
FnMDL]

),(

)(
log),([

,
2

(2)

where n is the number of nodes; for node ni, ki is the
number of its parents,

inF is its set of parents, si is the

number of states it can be in and sj is the number of
values a particular variable in

inF can take on; d is the

number of bits needed to store a numerical value; M(.)
is the number of times a particular instantiation exists in
the database This is known as the mutual information.
Equation 1 is the DL of the model (DLmodel) and
equation 2 is the DL of the data given the model
(DLdata). The lower the DL of a particular network, the
better the model.

Once a scoring metric is decided upon some method of
search must be chosen in order to quickly find DBNs
with a good score (a low DL). Evolutionary methods
have recently been employed on static networks to find
global solutions quickly and seem to show promising
results. When these methods are applied to the networks
the application of various operators is required in order
to prevent the evolution of cyclic networks. This is
because the operators used are not closed operators. In
[Larranaga 1996] a Genetic Algorithm is used and a
‘repair’ operator is applied to remove cycles. In [Lam
1998] evolutionary programming is used with three
operators: freeze, defrost and a knowledge guided
mutation (KGM) operator. These are used to improve
the scalability and speed of convergence and ensure any
links that generate cycles are removed. The KGM
operator works by calculating the DL of all possible
single links beforehand. This information is then used in
the mutation of individuals so that links with a low DL
are more likely to be added and links with high DL are
more likely to be removed. This assumes that the DL of
a single link implies something about its effect on a
global network. By examining some real world data and
some datasets generated from a number of small
Bayesian networks we have found that this is the case.

Therefore, for each Bayesian network we can construct
a list of all the possible single links and order them
upon their DL using the data generated. Then we can
see where the original links of the network lie on this
list. Figure 2 shows the positioning of the real links
(diamonds) within the ordered list for one such network.
It can be seen that the majority of them lie in the higher
rankings. This suggests that the DL for a single link

may be a good heuristic as to whether it is part of the
global network. In the next section we exploit this
generated list in full whilst learning DBNs.

1 11 21 31 41 51
Ranking

Link from
original
Bayesian
Network

Figure 2. The ranking of the true single links in a generated

dataset from a Bayesian network.

variables

0

1

2

3

5 4 3 2 1 0

Time Lag (l)
Figure 3. A DBN with no contemporaneous links. Hashed

nodes are observed states.
3 Method

Representing a DBN for EP

A DBN with only non-contemporaneous links is
represented by a selection of N + P nodes, where N is
the number of variables and represents each variable at
time slice t, and P is the collection of nodes
representing variables at previous time slices up to
some maximum lag maxl. Note that P � N×maxl. We
can use a list of triples, (a,b,l) , to represent a possible
network where a is the parent variable, b is the child
variable and l is the time lag. Therefore, each triple
maps directly to a link in the network. So a list for N=4
and with P = 5 such as (0,1,1), (1,3,5), (2,1,2), (2,0,1),
(3,2,3) would represent the DBN in Figure 3.

EP to learn single link knowledge for seeding initial
population

[Lam 1998] use the DL of a single link to guide their
mutation. However, their method only makes use of the
heuristic once for each individual every generation. If
we want to exploit this knowledge as soon as possible
in order to find better networks in fewer generations we
can seed the entire first population with links found
from the single link analysis. What is more, we can
construct a list of these single links more rapidly by
using an EP. If speed is of the essence and we need a
good network in as short a time as possible we can

speed up the algorithm in two ways: firstly, by using an
approximate method to find a good list of single links
rather than an ordering of the entire set; secondly, by
exploiting this knowledge in the first population by
seeding it entirely with a random selection of good
links. We have found that EP is particularly efficient at
finding a good selection of links with low DL,
particularly when we make use of self-adapting
parameters. We, therefore, experiment with the use of
EP to find a good ordered list of links with low DL and
avoid having to explore every possible single link.

If the initial population contains links with low DLs as
found using an EP, it would be useful if the next stage
of search emphasised the recombination of these links.
For this reason we have developed a new operator,
swap, which will maximise the recombination of the
high-ranking DL links. What is more, if we look at how
the DL of a triple varies with differing lags we find that
it is a relatively smooth curve (see Figure 4 for an
example of the DL of a link with differing time lags).
For this reason we have designed a specific ‘sliding‘
mutation for swap where each mutation is only applied
to the lags of a triple and is such that each mutation is
an addition or subtraction to the previous value of the
lag.

Early experimentation showed that autoregressive links
(triples where a=b) with a time lag of one were always
the most common in chemical process data. For this
reason, these links were excluded from possible triples
and automatically inserted into the networks before
evaluation.

300

310

320

330

340

350

360

370

380

390

400

1 11 21 31 41 51

Lag

D
L

DL of link
(4,6) over
differing lags

Figure 4. The DL of a single link with varying time lag. Note

the smoothness of the graph.

We can now describe the two algorithms in full.
Algorithm 1 uses the KGM operator and Algorithm 2
uses swap on a population that is seeded with links of
low DL.

Algorithm 1

1. Given a multivariate time series, discretize any

variables that are continuous.
2. Generate a list of all single links ordered on their

DL (summing equations 1 and 2).
3. Set the initial population to a random selection of

P triple-lists where for each triple, (a,b,l), 0 � a
< N, 0 � b < N, 1 � l � maxl, a�b.

4. Generate the DBN represented by each triple-list.
5. Calculate the DL of each DBN.
6. For i = 1 to Generations DO

• Apply KGM Operator to two random parents
in the top OpRate of the population in order to
generate offspring

• Add all valid offspring to the population and
remove the least fittest individuals thus
reducing the population to its original size,
PopulationSize

7. The best network structure will be the network with
the smallest DL within the last generation.

Algorithm 2

1. Given a multivariate time series, discretize any

variables that are continuous.
2. Set ListSize equal to Limit% of all possible

single links.
3. Set the initial population of List of size ListSize

to a random selection of single triples (a,b,l)
where 0 � a < N, 0 � b < N, 1 � l � maxl, a�b.

4. For i = 1 to ListGenerations DO
• Make a copy of each triple and apply

Preprocess_Op to each duplicate
• Add the mutated duplicates back to the

population
• Remove the lower ranking links until the

population is back to its original size,
ListSize

5. Set the initial population in the main algorithm to a
random selection of P triple-lists from List.

6. Generate the DBN represented by each triple-list.
7. Calculate the DL of each DBN.
8. For i = 1 to Generations DO

• Apply Swap Operator to generate offspring.
Different forms of this are described below

• Add all valid offspring to the population and
remove the least fittest individuals thus
reducing the population to its original size,
PopulationSize

9. The best network structure will be the network with
the smallest DL within the last generation.

Preprocess_Op:

This EP operator uses the notion of self-adapting
parameters. Each gene, xi, is given a parameter, σi . This
is used as the standard deviation of a normal
distribution with which mutation is applied to xi
(equation 3). The standard deviations, themselves, are
updated according to equations 4 where s is calculated
from equation 5 for each chromosome and si is
calculated from equation 6 for each gene (taken from
[Baeck 1996]) where n is 3, i.e. the size of a triple:

),0(iii Nxx σ+=′ (3)

)exp(iii ss +⋅=′ σσ (4)

)
2
1

,0(
n

Ns = (5)

)
2

1
,0(

n
Nsi = (6)

1) KGM Operator

1. Choose two random individuals within the top

OpRate × PopulationSize fittest individuals and
clone them.

2. For each clone do the following:
• Add a new link from the generated list with a

high probability of having a low DL
• Remove a random link from the network with

a higher probability of deleting one with high
DL

3. Randomly mutate one triple.

2) Swap Operator

1. Choose two random parents, par1, par2 , within the

top OpRate × PopulationSize fittest individuals.
2. Set the first offspring equal to par1 and the other to

par2.
3. For the first offspring, exchange each triple with

the other offspring’s according to a random number
generator with a probability of 50%.

4. For a random 10% of each individual’s triples DO
• Add or subtract a random value up to a

maximum of 10% of the maxl, to the lag. This
is the sliding mutation

4 Results

The algorithms are evaluated in the following two ways.
Firstly a set of experiments were carried out involving
synthetic datasets generated from a DBN. The two
operators were then tested for the number of

generations until the original structure was found.
Secondly a real world oil refinery process dataset was
used to find the structure with the lowest DL.

Synthetic Data

Firstly, a synthetic dataset was produced from a DBN
with maximum lag being set at 30 minutes. See an
example in Figure 5. The performance of the operators
were compared and the number of generations taken to
converge to the correct solution was recorded. This
experiment was repeated with 10 randomly generated
network structures. For the algorithms in section 3 the
following parameter values were used: Generations =
500, PopulationSize = 20, OpRate = 80%, MutationRate
= 1%, Limit = 25, P = 5, and ListGenerations = 30.

variables
0
1
2
3
4

 18 11 2 1 0
Time Lag (l)

Figure 5. An example DBN used to generate the synthetic
data. Maximum lag to search for was set to 30 minutes.

Figure 6 shows the performance of the two operators
on one of the synthetic datasets. Both methods
converged rapidly to a near solution. However, the
swap operator performed better reaching the correct
solution after 79 generations whilst the KGM took
190. It should be noted that KGM was very close to
the optimal after 81 generations but took a long time
to find the correct time lags.

1700

1800

1900

2000

2100

2200

2300

2400

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

16
6

17
7

18
8

19
9

Generation

D
L KGM

Swap

Figure 6. The Performance of the KGM and swap operators

on a synthetic dataset.

Table 1 shows the average number of generations to
find the original DBN over all ten datasets for both
operators. It can be seen that the swap operator is

consistently faster at converging to the correct
structure with a significantly lower average.

Algorithm / Operator used Average Number of

Generations
Algorithm1 / Knowledge

Guided Mutation

217.1
Algorithm2 /

swap

96.6
Table 1. The average number of generations to find the

correct original DBN structure for KGM and swap.

Oil Refinery Data

Figure 7 compares the performance of the different
operators when applied to the multivariate oil refinery
time series. This was a multivariate time series with 11
variables and 1000 minutes of data. All continuous
variables had been previously discretized. If we set the
maximum time lag to 60 minutes and exclude any
autoregressive links then the number of possible
network structures will be 211×10×60 . To find a good
structure from this huge number of candidates is a very
challenging task.

For the algorithms in section 3 the following parameter
values were used: Generations = 2000, PopulationSize
= 30, OpRate = 80%, MutationRate = 1%. Limit = 25, P
= 15 and ListGenerations = 50.

66000

66500

67000

67500

68000

68500

69000

69500

70000

70500

1 101 201 301 401 501 601 701 801 901 1001 1101

Generation

D
L KGM

Swap

Figure 7. Comparison of the operators swap and KGM on the oil

refinery dataset.

Once again it is apparent that the fastest convergence
was obtained through the use of the swap operator. It
started off with a lower DL and continued to improve at
a faster rate than KGM. The swap operator had the head
start, probably due to the seeding of the initial
population; maximal recombination and slide mutation
then ensured a fast convergence to a good structure. The
structure found using the swap operator after 2000
generations is shown in Figure 8. This corresponded to
the best triple-list in the final population : { (0,6,1),
(1,10,53), (1,8,52), (1,3,16), (1,6,1), (2,0,1), (5,9,1),
(7,9,24), (7,3,15), (7,2,10), (10,1,59), (10,4,52),
(10,5,36), (10,7,15), (10,8,1) }.

0

1

2

3

4

5

6

7

8

9

10

 Variable

 59 53 52 36 24 16 15 10 1 0

Time Lag

Figure 8. The Network learnt using swap after 2000 generations with the autoregressive links added.

 The network structure found after 2000 generations
contained many links which were expected from the
refinery dataset. Those being between variables that
were known to be related such as Sponge Oil
Temperature affecting Top Temperature with a delay of
approximately 5 minutes. However, other unexpected
links were found from likely effects to likely causes.
This could have been due to a large dependency from
one variable to another resulting in a high mutual
information between the variables in the opposite
direction. A few other unexpected links occurred where
the data was shown to exhibit little variation.

5 Conclusions and Future work

The learning of dynamic Bayesian networks with large
time lags has great potential for many applications in
the process industry. The number of possible network
structures can be huge, even when dealing with a small
number of variables due to the consideration of large
possible time lags. So far we have not seen any attempt
in learning such networks. This paper has shown
evolutionary programming to be a promising way of
tackling this challenging problem.

Lam’s Knowledge Guided Mutation operator made use
of the description lengths of single links. We have
extended this work to dynamic Bayesian networks
where the number of possible networks can be very
much greater. We have done this by proposing a new
representation and by seeding the initial population with
single links of low DL. We have also designed a new
operator, swap, which maximises the recombination of
these single links and exploits the smoothness of the DL
graph of a single link with differing time lags. Our
experiments appear to show that the performance of this
operator is superior to the knowledge guided mutation
operator when tested on synthetic time series data and
real world oil refinery time series.

Further work will include:

1. Exploring how different evolutionary methods
compare when various other Bayesian network metrics
are used such as the Bayesian measure [Cooper 1991].
2. Learning a library of dynamic Bayesian networks and
applying quickly-converging EPs on new refinery data
in order to classify the current control structure of the
refinery process.
3. Looking at ways to improve the accuracy of the
networks such as looking at continuous Bayesian

networks or quickly learning a good discretization
policy [Friedman 1996] through the use of an EP.

Acknowledgements

The authors would like to thank their sponsors: The
Engineering and Physical Science Research Council,
UK; Honeywell Hi-Spec Solutions, UK and Honeywell
Technology Centre, USA. We would also like to thank
BP Oil for supplying the dataset, Andrew Ogden-Swift
for his help in understanding the oil refinery data, and
Stephen Swift for his general help and advice.

References

Baeck, T. Evolutionary Algorithms in Theory and
Practice, Oxford University Press, 1996.

Cooper, G. Computational complexity of probabilistic
inference using Bayesian belief networks (Research
Note). Artificial Intelligence 42. pp 393-405, 1990.

Cooper, G., Herskovitz, E. A Bayesian Method for
Constructing Bayesian Belief Networks from
Databases, Proceedings of the 7th Conference on
Uncertainty in AI, pp 86-94, 1991.

Dagum, P., Galper, A., Horvitz, E., Seiver, A.
Uncertain Reasoning and Forecasting, International
Journal of Forecasting 11, pp 73-87, 1995.

Fogel, D.B. Evolutionary Computation – Toward a
New Philosophy of Machine Intelligence, IEEE
Press, 1995.

Fogel, L.J., Owens, A.J., Walsh, M.J. Artificial
Intelligence Through Simulated Evolution, John
Wiley & sons, 1966.

Friedman, N., Goldszmidt, M. Discretizing
Continuous Attributes while Learning Bayesian
Networks, Proceedings of the 13th International
Conference on Machine Learning, pp 157-165, 1996.

Friedman, N., Murphy, K, Russell, S. Learning the
Structure of Dynamic Probabilistic Networks,
Proceedings of the 14th Conference on Uncertainty
in AI, pp139-147, 1998.

Geiger, D. An Entropy Based Learning Algorithm of
Bayesian Conditional Trees, Proceedings of the 8th
Conference on Uncertainty in AI, pp. 92-97, 1992.

Ghahramani, Z. Learning Dynamic Bayesian
Networks, Adaptive Processing of Sequences & Data
Structures. Lecture Notes in AI, Springer, pp 168-
197, 1998.

Heckerman, D. A Tutorial on Learning with Bayesian
Networks, Technical report, MSR-TR-95-06,
November 1996.

Kanazawa, K., Koller, D., Russell, S. Stochastic
simulation algorithms for dynamic probabilistic
networks. Proceedings of the 11th Conference on
Uncertainty in AI, pp 346-351, 1995.

Lam, W., Bachus, F. Learning Bayesian Networks.
An approach based on the MDL principal,
Computational Intelligence 10(3), pp 269-293, 1994.

Lam, W., Leung, K., Wong, M., Ngan, P.
Discovering Probabilistic Knowledge from Databases
using Evolutionary Computation and MDL Principal,
Proceedings of the 3rd Annual Genetic Programming
Conference, pp 786-794, 1998.

Larranaga, P., Poza, M., Yurramendi, Y., Murga, R.,
Kuijpers, C. Structure Learning of Bayesian
Networks using GAs, IEEE Pattern Analysis and
Machine Intelligence 18(9), pp 912-926, 1996.

Neapolitan, R. Probabilistic Reasoning in Expert
Systems, Theory & Algorithms, Wiley, 1989.

Pearl, J. Probabilistic Reasoning in Intelligent
Systems, Networks of Plausible Inference, Morgan
Kaufmann, 1988.

