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Abstract

This paper presents a study of parallel ge-
netic algorithms (GAs) with multiple popu-
lations (also called demes or islands). The
study makes explicit the relation between
the probability of reaching a desired solution
with the deme size, the migration rate, and
the degree of the connectivity graph. The
paper considers arbitrary topologies with a
�xed number of neighbors per deme. The
demes evolve in isolation until each converges
to a unique solution. Then, the demes ex-
change an arbitrary number of individuals
and restart their execution. An accurate
deme-sizing equation is derived, and it is used
to determine the optimal con�guration of an
arbitrary number of demes that minimizes
the execution time of the parallel GA.

1 INTRODUCTION

Parallel genetic algorithms (GAs) with multiple popu-
lations are di�cult to con�gure because they are con-
trolled by many parameters that a�ect their e�ciency
and accuracy. Among other things, one must decide
the number and the size of the populations (demes),
the rate of migration, and the destination of the mi-
grants.

This paper extends previous theoretical studies
that focused on the number of demes and their
sizes (Cant�u-Paz & Goldberg, 1997a; Cant�u-Paz &
Goldberg, 1997b). Those studies considered two con-
�gurations that bound the migration rate and the con-
nectivity between the populations, and resulted in use-
ful design guidelines for parallel GAs. However, the

bounding con�gurations are not commonly used by
practitioners because neither one of them is scalable.
On one extreme, where the demes are isolated, the im-
provements in quality are marginal and the total com-
putational cost grows very fast. At the other extreme,
where each deme communicates with all the others,
the communication cost quickly becomes impractical
as more demes are used.

This paper addresses the problem of scalable commu-
nications by analyzing the e�ects of the topology of
communications, the deme size, and the migration rate
on the algorithmic cost and on the solution quality.
The goal is to �nd the con�guration of multiple demes
that reaches the desired solution in the shortest time
possible.

The models assume that the demes evolve in isolation
until each deme converges to a unique solution. At
this point, the demes exchange an arbitrary number
of individuals and restart their execution. The inter-
val of time between migrations is called an epoch. The
same strategy of migration has been considered by oth-
ers (Grosso, 1985; Braun, 1990; Munetomo, Takai, &
Sato, 1993; Cant�u-Paz & Goldberg, 1997a). The cal-
culations in this paper also assume that all the demes
have the same number of neighbors, and that all of
them use the same migration rate, but there are no
other restrictions on the topologies or on the magni-
tude of the migration rates.

The paper is organized as follows. The next section
summarizes a model that predicts the quality of the
solutions that a simple GA reaches based on the size
of its population. Section 3 describes how the deme
size, the migration rate, and the degree of the con-
nectivity graph a�ect the probability that the desired
solution is reached after the second epoch. The anal-
ysis shows how to �nd a con�guration that minimizes
the execution time. Section 4 generalizes the results
to multiple epochs. It presents experiments that sug-



gest that the solutions reached by di�erent topologies
with the same degree are almost identical, and then it
focuses on one family of topologies to determine how
the quality improves after arbitrary epochs. Then, the
results of the modeling are used to �nd a con�guration
that minimizes the execution time. Finally, section 5
summarizes the results of this paper and presents the
conclusions of this study.

2 BACKGROUND

This section reviews a model that predicts the quality
of solutions found by a simple GA based on the size
of its population and the number of correct building
blocks (BBs) present initially Subsequent sections ex-
tend this model to consider multiple communicating
populations. In this paper, a correct BB is the lowest-
order schema that consistently leads to the global op-
timum.

To obtain a model of the quality of the solution of a
GA, Harik, Cant�u-Paz, Goldberg, and Miller (1997),
modeled the selection process in a GA as a biased one-
dimensional random walk. Their model considers one
partition of length k, and it assumes that decisions are
independent across partitions. The number of copies
of the correct BB in the partition is represented by the
position, x, of a particle on a one-dimensional space.
The space is bounded with absorbing barriers at x = 0
and x = n, which represent ultimate convergence to
the wrong and to the right solutions, respectively. The
initial position of the particle, x0, is the expected num-
ber of copies of the best BB in a randomly initialized
population, and is equal to x0 = n=2k, where k is the
order of the BB and n is the population size.

At each step of the random walk there is a proba-
bility, p, of obtaining one additional copy of the cor-
rect BB. This probability depends on the particular
problem faced by the GA, and it represents the prob-
ability of deciding correctly in a one-to-one competi-
tion between the best and the second best schemata
of the partition. For functions composed by adding
several uniformly-scaled subfunctions, p was computed
by Goldberg, Deb, and Clark (1992) in their study of
population sizing as

p = �

�
d

�bb
p
2m0

�
; (1)

where � denotes the cumulative distribution function
(CDF) of a normal distribution with a mean of zero
and a standard deviation of one, d is the di�erence

of the �tness contribution between the best and the
second best schemata in the partition, m0 = m � 1,
m is the number of subfunctions, and �2bb is the RMS
average variance of k-th order partitions.

A well-known result about random walks is the prob-
ability that a particle will eventually be captured by
the absorbing barrier at x = n (Feller, 1966):

Pbb =
1�

�
q
p

�x0
1�

�
q
p

�n � 1�
�
q

p
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where q = 1�p. For increasing values of n, the denom-
inator of the equation above approaches 1 very quickly,
and therefore it may be ignored in the calculations.

We measure the quality of the solutions as the number
of partitions with the correct BB at the end of a run,
and we denote the desired target quality as Q̂. Us-
ing the assumption that partitions are independent,

we can solve Pbb = Q̂
m for n to obtain the following

population sizing equation:

n =
2k ln(�)

ln q
p

; (3)

where � = 1� Q̂
m .

When there are multiple populations, success is de-
�ned when at least one of the populations reaches the
desired target quality Q̂. An equivalent success crite-
rion is to require that the highest quality found by any
of the r demes equals the target quality. The e�ect of
this is that the quality required in each deme can be
relaxed in the following way (Cant�u-Paz & Goldberg,
1999):

P̂ =
Q̂

m
� �r:r
2
p
m
� Q̂

m
�
p
ln rp
2m

; (4)

where �r:r is the expected value of the highest-order
statistic of a standard normal distribution. The val-
ues of �r:r have been tabulated extensively (Harter,
1970), and the approximation used above for �r:r was
suggested by Beyer (1993). Note that P̂ varies very
slowly with respect to r, and that when r = 1, P̂ = Q̂.



3 DEGREE OF CONNECTIVITY

An important property of the connectivity graph be-
tween the demes is its degree, which is the number of
neighbors of each deme. This paper assumes that all
the demes have the same degree, and we denote it as
�. The degree completely determines the cost of com-
munications, and as we shall see, it also in
uences the
size of the demes and consequently the time of com-
putations.

This section analyzes how the deme size, the migration
rate, and the degree of the topology a�ect the proba-
bility that the parallel GA reaches the desired solution.
The analysis of this section considers only the �rst two
epochs of the algorithm, because closed-form expres-
sions may be derived easily. The next section extends
the analysis to multiple epochs.

The analysis has several steps. First, we compute how
many copies of the correct BB are necessary to reach
the target quality per deme (P̂ , given by equation 4).
Next, the probability that a given con�guration brings
together the critical number of BBs is calculated. The
success probability is then used to derive a deme siz-
ing equation, which in turn is used to minimize the
execution time.

The �rst step of the analysis is straightforward. To
determine how many BBs cx1 are needed at the begin-
ning of the second epoch to reach P̂ , we may use the
solution of the gambler's ruin problem. Making

P̂ = 1�
�
q

p

�bx1
;

and solving for cx1 results in
cx1 = ln(1� P̂ )

ln
�
q
p

� : (5)

The next step is to determine the probability that a
deme receives at least cx1 BBs from its � neighbors.
The probability that one neighbor sends the right BB
is the same probability that it converged correctly in
the �rst epoch, and is given by Pbb. Assuming that all
the neighbors of a deme use the same migration rate,

�, then at least �̂ = bx1
�nd

neighbors must contribute the
correct BB. Since the demes have evolved in isolation
until this moment, the probability of receiving at leastcx1 BBs has a binomial probability:

Px1 = 1�
�̂�1X
i=0

�
�

i

�
P i
bb(1� Pbb)

��i; (6)
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Figure 1: Plot of the probability of success with di�er-
ent con�gurations of deme sizes and number of neigh-
bors (eq. 7). The migration rate in this example is
10%.

which can be approximated as

Px1 = 1� �

 
�̂ � �Pbbp

�Pbb(1� Pbb)

!
: (7)

With higher migration rates, the number of neigh-
bors that must contribute the right BB decreases, and
therefore it is more likely that the deme receives the
critical number of BBs and succeeds to �nd the solu-
tion. This observation is consistent with other theo-
retical results that show that the solution's quality in-
creases with higher migration rates (Cant�u-Paz, 1998).

Note that even if a deme receives less than cx1 BBs,
it may still reach the right solution, because the deme
itself could have converged correctly in the �rst epoch,
and it may contain enough BBs to converge correctly
again. Also, a deme may start the second epoch with
less than cx1 BBs and converge correctly sometimes.
However, we ignore these two possibilities and conser-
vatively assume that a deme does not converge to the
right answer if it does not receive at leastcx1 BBs from
its neighbors. Under this assumption, Px1 is the prob-
ability that at the end of the second epoch the deme
will converge correctly.

There are di�erent con�gurations that can bring to-
gether the critical number of BBs with the same prob-
ability (see �gure 1). Con�gurations with large demes
and few neighbors have the same chance of success
than some con�gurations with smaller demes but with
more neighbors. This is the usual tradeo� between
computation and computations: smaller demes require
more neighbors to succeed. We would like to use the
con�guration that achieves the desired objective with



the minimum cost.

The execution time of the parallel program is the sum
of communication and computation times:

Tp = gndTf + �Tc; (8)

where g is the domain-dependent number of gener-
ations until convergence, nd is the deme size, Tf is
the time of one �tness evaluation, and Tc is the time
required to communicate with one neighbor. Tc; Tf ;
and g can be easily determined empirically, but the
required deme size depends on the degree of the topol-
ogy, the migration rate, and the desired quality.

3.1 FINDING THE DEME SIZE

To �nd the deme size we need to make Px1 = P̂ and
solve for nd. First, the normal distribution of Px1
has to be approximated as �(z) = (1+ exp(�1:6z))�1
(Valenzuela-Rend�on, 1989). With this approximation,
Px1 becomes

Px1 = 1� (1 + exp(�1:6z))�1; (9)

where z = �̂��Pbbp
�Pbb(1�Pbb)

is the normalized number of

successes. We may bound z by considering that the
variance is maximal when Pbb = 0:5, and thus it be-
comes z � 2p

�
(�̂��Pbb) (In the remainder we conserva-

tively ignore the inequality.). Additionally, Pbb may be
roughly approximated as Pbb � cn

2k
, where c = 1� q=p.

Substituting this form of Pbb and �̂ = bx1
�nd

into the
bound of z gives

z =
2p
�

� cx1
�nd

� �
cnd
2k

�
:

Making the approximate form of Px1 = P̂ and solv-
ing for z yields the ordinate where the probability of
success reaches the required value:

ẑ = 0:625 ln

 
P̂

1� P̂

!
:

Making z = ẑ, solving for nd, and simplifying terms
gives the deme size:

nd =
2k�2p

�

ẑ +
q
ẑ2 + cbx1

�2k�2

c
: (10)

Observe that the deme size decreases with higher mi-
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Figure 2: Comparison of theoretical (thick line) and
experimental (thin line) execution times (in microsec-
onds) of eight demes connected by topologies with dif-
ferent degrees.

gration rates and as the number of neighbors increases,
which is what we expected. For clarity, this deme-
sizing equation may be rewritten in a more compact
form by grouping all the domain-dependent constants
into one (n0) as follows:

nd =
n0p
�
: (11)

Now, the total execution time as given by equation 8
may be easily optimized with respect to � by making
@Tp
@� = 0 and solving for �:

�� =

�
gn0Tf
2Tc

�2=3

; (12)

and the optimal deme size can be found by substituting
�� in equation 10.

Figure 2 compares the theoretical predictions of the
execution time with experimental results on a net-
work of eight IBM workstations. The �tness function
is
P20

i=1 f4(u4i), where u4i is the number of bits set to 1
in the substring that starts at position 4i, and f4 is a
fully deceptive trap function of order k = 4 de�ned
as: (u4i; f4(u4i)) = ((0; 3); (1; 2); (2; 1); (3; 0); (4; 4)).
In this example there are m = 20 copies of the trap
function, and the di�erence between the best and sec-
ond best BB is d = 1. The �tness variance in the par-
tition is �2bb = 1:215, and therefore p = 0:5585. The
objective is to �nd a solution with at least 16 partitions
correct (Q̂ = 0:8). The time to evaluate a single indi-
vidual is Tf = 51 microseconds, the communications
time is Tc = 29 ms, and the number of generations un-
til convergence is g = 50. The �gure shows the average
of 100 runs using pairwise tournament selection, two-
point crossover with probability 1.0, and no mutation.



The migration rate was � = 0:1.

4 CONSIDERING MULTIPLE

EPOCHS

The previous section showed how to �nd the optimal
degree of connectivity that minimizes the execution
time for a particular domain. However, even with
a �xed degree there are

�
r�1
�

�
ways to connect the

demes, and we still face the question of how to choose
a particular topology. Certainly, if the algorithm is
only executed for two epochs, it does not matter how
the demes are connected, because only the immedi-
ate neighbors a�ect the search. But if more than two
epochs are used, a deme would receive indirect contri-
butions from other demes. The purpose of this section
is to quantify the e�ect of those contributions on the
quality of the search, and to determine how to mini-
mize the execution time after multiple epochs.

Consider the topologies with degree � = 2 depicted in
�gure 3. These are only three of the

�
7
2

�
= 21 possi-

ble topologies of degree two. Figure 4 shows the re-
sults of experiments with a 20-BB 4-bit fully deceptive
trap function on eight demes connected with the two
topologies of �gure 3 and a bi-directional ring. The
results are averaged over 100 repetitions at each deme
size; the demes used pairwise tournament selection,
two-point crossover with probability 1.0, and no muta-
tion. The migration rate was set to its maximal value
of � = 1=3. The �gure shows the proportion of correct
BBs per deme after one, two, three, and four epochs.
The quality of the solutions improves after successive
epochs, and the largest increase occurs after the second
epoch. As one would expect, the results for di�erent
topologies after the �rst two epochs are indistinguish-
able, and the di�erence after three and four epochs is
not signi�cant. This observation will be used to derive
a model of solution quality that depends only on the
degree of the connectivity graph and on the migration
rate, but that ignores the speci�c topology. Before do-
ing so, we �rst introduce the concept of the extended
neighborhood of a deme.

4.1 EXTENDED NEIGHBORHOODS

To visualize how the choice of topology a�ects the
quality of the search, imagine a tree rooted on a partic-
ular deme. The descendants of a node in the tree are
the immediate neighbors of the deme it represents, and
the � -th level in the tree contains the demes that are
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(c) +2+3 topology.

Figure 3: Di�erent topologies with two neighbors.
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Figure 4: Average quality per deme after one, two,
three, and four epochs (from bottom to top) using
eight demes connected with di�erent topologies of de-
gree two.
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Figure 5: A tree representation of the extended neigh-
borhood of deme 0 in the +1+2 topology with 16
demes. The black nodes represent the new members
of the extended neighborhood after each epoch. The
white nodes represent demes that already belong to
the neighborhood, and they are not expanded to avoid
clutter in the graph.

reachable from the root deme after � epochs. These
demes form the extended neighborhood of the root and
are taken into account only the �rst time they are
reached1. Figure 5 shows such a tree that corresponds
to the +1+2 with 16 demes.

A simple way to bound the contribution from the ex-
tended neighborhood is to assume that the demes form
panmictic groups as soon as they come in contact with
others. In this view, after � epochs the aggregate pop-
ulation size would be r�nd, where r� is the number
of demes in the extended neighborhood after the � -th
epoch, and nd is the size of each deme. Under this
assumption, the solution quality would be given by
Pbb(r�nd). Of course, demes do not become panmictic
as soon as they reach one another, and therefore the
size of the extended neighborhood should be adjusted
with a mixing coe�cient cm < 1, and the quality be-
comes Pbb(cmr�nd).

1For the mathematically inclined, the de�nition of the
extended neighborhood is as follows. Consider a directed
graph G = (V;E), where V is the set of vertices that rep-
resent the demes, and E is the set of edges that represent
connections between demes. The extended neighborhood

of a deme v is the set R� =
S

�

i=0
a : a

i

! v, where a
i

! v

denotes a path of length i from a to v. r� = jR� j.

4.2 DESIGNING FOR MULTIPLE

EPOCHS

The observation that topologies of the same degree
reach almost identical solutions has an important im-
plication: if an accurate quality predictor can be de-
rived for one topology, it would be accurate for any
topology of the same degree.

Some topologies are easier to study than others be-
cause the size of their extended neighborhoods in-
creases in a regular form. In particular, there are
topologies where the size of the extended neighbor-
hood is simply r� = �(� � 1) + 1 = �� 0 + 1. Examples
of such topologies are the +1+2 binary topology de-
picted in �gure 3 and a +1+2+3 ternary topology. We
will use this family of topologies to study the e�ect of
the degree of the network on the solution quality after
several epochs.

Using the simple model introduced in the previous
subsection, the quality after � epochs is Pbb� =
Pbb(cmr�nd). For simplicity, we use n� = cmr�nd to
represent the number of individuals in the extended
neighborhood. The key to obtain an accurate quality
prediction is to adjust n� with an appropriate cm. We
can deduce the value of the mixing coe�cient by con-
sidering some of the properties it should have. First,
n� should grow linearly as � increases, and when � = 1
the value of n� should be equal to nd, because the
demes are isolated during the �rst epoch. In addi-
tion, the previous section showed that the deme size
nd / 1p

�
. Putting everything together, we may write

n� as:

n� = (
p
�� 0 + 1)nd; (13)

which means that cm =
p
�� 0+1
�� 0+1 � 1p

�
. Experimen-

tal tests were performed to assess the accuracy of this
model. The experiments use eight demes connected by
a +1+2 topology (and the same experimental condi-
tions as previous experiments in this paper: 100 repeti-
tions at each deme size, pairwise tournament selection,
two-point crossover with probability 1.0, and no mu-
tation). The quality was measured at the end of the
�rst four epochs. Figure 6 shows that the predictions
of Pbb(n� ) match very well the experimental results.

Despite the accuracy of the predictions of Pbb(n� ), a
word of caution is necessary at this point. Note that
lim�!1 Pbb(n� ) = 1. The derivation of n� is based on
the concept of extended neighborhoods, but the size
of the extended neighborhood n� is bounded by the
sum of the sizes of all the demes (rnd). Therefore,
making n� � rnd, and solving for � gives a bound
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Figure 6: Theoretical predictions (line) and experi-
mental results (dots) of the average quality per deme
after 1, 2, 3, and 4 epochs (from right to left) using
eight demes connected by a +1+2 topology.

on the number of epochs on which the predictions are
valid:

� � r � 1p
�

+ 1: (14)

The next step of the analysis is to �nd a deme-
sizing equation. The procedure is straightforward us-
ing the gambler's ruin model. Making Pbb(n� ) =

1�
�
q
p

�n�=2k
= P̂ and solving for nd results in

nd =
1p

�� 0 + 1

2k ln(1� P̂ )

ln q
p

; (15)

which can be rewritten in a much compact form by
grouping all the problem-dependent constants (the
second term above) into one constant n0, so nd =

n0p
�� 0+1

:

This form of the deme size with � = 2 is similar to
the equation found in the previous section. With a
closed-form expression for the deme size after multiple
epochs, the execution time of the parallel GA may be
easily minimized. In this case, the time is

Tp = � (gndTf + �Tc) ; (16)

and � is restricted by equation 14.

To simplify the calculations, nd may be approximated
as n0p

�� 0
. Making

@Tp
@� = 0 and solving for � gives the

optimal degree of the topology as

�� =

�
gn0Tf
2� 0Tc

�2=3

; (17)

which is equivalent to the optimum found in the pre-
vious section when � = 2.

An important point to note is that �� depends on r,
because n0 depends on �r:r. However, since �r:r varies
very slowly with respect to r, �� also varies very slowly.
This is signi�cant because if �� does not change much
as more demes (processors) are used, then the execu-
tion time (equation 16) would not change much either.
This issue must be explored in more detail in the fu-
ture, but we should be careful not to dismiss the algo-
rithm's capability to reduce the execution time. After
all, �� strongly depends on the number of epochs � ,
and both �� and the execution time will decrease sig-
ni�cantly as more epochs are used.

This raises another point: sometimes the choice of
topology is restricted by hardware constraints. In this
case, � may be considered to be constant and the exe-
cution time may be optimized with respect to � . Mak-
ing

@Tp
@� = 0 and solving for � gives the optimal number

of epochs:

�� = 1 +

s
gn0Tf
�3=2Tc

: (18)

The corresponding deme size may be found by substi-
tuting �� (or ��) in equation 15.

5 SUMMARY AND CONCLUSIONS

This paper presented accurate predictions of the qual-
ity of the solutions that multiple-population parallel
GAs are expected to reach. The �rst part of the pa-
per described the relation between the deme size, the
migration rate, and the degree of the topology with
the probability of success after two epochs. It showed
how to �nd the con�guration that optimizes the execu-
tion time while reaching a predetermined target qual-
ity. These results were generalized to multiple epochs
in the second part of the paper.

After multiple epochs, the topology would seem to be
an important factor in the solution quality because
a deme receives indirect contributions from varying
number of demes. However, section 4 showed that dif-
ferent topologies with the same degree reach almost
identical solutions after any number of epochs. The
small di�erences may be explained by the di�erent
sizes of the extended neighborhoods, but most impor-
tantly, the equivalence of topologies with the same de-
gree facilitated the derivation of a general model of



solution quality. The quality model was transformed
into an accurate deme sizing equation, which in turn
was used to �nd the degree and the number of epochs
that minimize the execution time.

The results of this paper facilitate the use of multi-
population GAs, because they eliminate the need to
guess or to do excessive experimentation to �nd appro-
priate values for the deme sizes or the topology of com-
munications. Instead, the equations presented here
enable users to optimize the algorithms to their par-
ticular hardware environment and problem domain.
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