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Abstract

This paper describes an evolutionary
algorithm  approach to leaning
Bayesian networks from incomplete
data. This problem is characterized hy
a huge solution space with a highly
multimodal landscape. State-of-the-art
approaches  all involve  using
deterministic approaches auch as the
expedation-maximization  algorithm.
These approaches are guaranteed to find
local maxima, but do not explore the
landscape for other modes. Our
approach evolves the structure of the
network and the missng data. We use a
factorial design to choose a goad set of
parameters for seledion, crosover, and
mutation. We show that our algorithm
produces accurate results for a
clasdfication problem with missng
data.

1 INTRODUCTION

Bayesian networks are quickly becoming the tod of
choice of many Al researchers for problems involving
reasoning under uncertainty. They have been
implemented in applications in areas such as medical
diagnostics, clasdfication systems, software ayents for
persona assstants, multisensor fusion, and lega analysis
of trids [Hedkerman, Geiger et al. 1995. Until recantly,
the standard approach to constructing beli ef networks was
a labor-intensive process of diciting knowledge from
experts. Methods for capturing avail able data to construct
a Bayesian network or to refine an expert-provided
network promise to greatly improve bath the efficiency of
knowledge engineaing and the accuracy of the modéels.
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For this reason, leaning Bayesian networks from data has
become an increasingly active areaof research. Most of
the research to date has relied on the assumption that data
are omplete; that is, the values of all variables are known
for al cases in the database. This assumption is not very
redisticc snce most real world sStuations involve
incomplete information.

Learning a Bayesian network can be demmposed
into the probem of learning the graph structure and
leaning the parameters. The firg attempts at treating
incomplete data involved learning the parameters of a
fixed network structure [Lauritzen 1995]. Very recantly,
reseachers have begun to tackle the problem of learning
the structure of the network from incomplete data. A
major sumbling block in this reseach is that when
information is missng, closed form expressons do not
exist for the scoring metric used to evaluate network
structures. This has led many reseachers down the path
of estimating the score using parametric approaches sich
as the expedation-maximization (EM) algorithm
[Dempster, Laird et al. 1977], [Friedman 1999. The EM
algorithm is a proven approach for dealing with
incomplete information when building gtatistical models
[Little aad Rubin 1987. EM and related algorithms show
promise. However, it has been noted [Friedman 199§
that the seach landscape is large and multimodal, and
determinigtic seach algorithms are prone to find local
optima. Multiple restarts have been suggested as a way to
deal with this probem.

An obvious choiceto combat the problem of “getting
stuck” on local maxima is to use a stochastic search
method. This paper explores the use of evolutionary
algorithms for leaning Bayesian networks from
incomplete data. Our approach isuniquein that it evolves
both the solution space of network structures and the
values of the mising data  Network structures are
especialy amenable for evolutionary algorithms since the
substructures of the network behave as buil ding bdocks so
we @n evolve higher fit structures by exchanging
substructures of parents with higher fithess By evolving
samples of missng data, we ae in effed approximating a



maximum likelihood approach to scoring the network. In
addition, we @n impute the values of the missng data
allowing usto use the dosed form of the scoring metric.

WEe'll begin by briefly describing Bayesian networks
and the leaning problem. Next we will discuss the
scoring metric, fitnessfunction, andthe landscape. In this
sedion we' Il make the paint for using a stochastic search
methods such as evolutionary algorithms. Sedion 4 will
describe the design choices we made, to include results
from an experiment using a factoria design and some
results of an empiricd study. WEell close in sedion 5
with a summary of our approach and experiments and
discussour future plans.

2 BAYESIAN NETWORKS

Bayesian networks are graphical models that encode
probabili stic relationships among variables for problems
of uncertain reasoning. They are cmposed of a structure
and parameters. The structure is a direded acyclic graph
that encodes a st of conditional independence
relationships among variables. The nodes of the graph
correspond dredly to the variables and the direded arcs
represent dependence of variables to their parents. The
lack of direded arcs among variables represent a
conditional independence relationship. Take, for
example, the network in Figure 1. The lack of arcs
between symptoms S1, S2, and S3 indicate that they are
conditionally independent given C. In other words,
knowledge of Sl is irrdevant to that of S2 gven we
aready know the value of C. If C is not known, then
knowledge of Sl isrdevant to inferences about the value

Figure 1 Bayesian Network for generic disease and
symptoms

The parameters of the network are the local
probability distributions attached to each variable. The
structure and parameters taken together encode the joint
probability of the variables. Let U = {X4,...,X,} represent
a finite set of discrete random variables. We use upper-
case letters (eg. X, Y, Z) to represent random variables.
Lower-case letters (e.0. X, Y, z) are used to denote spedfic
values taken on by the random variables. Bold upper-case
letters (e.g. X, Y, Z) spedfies sts of random variables
and bdd lower-case letters (e.g. X, Y, 2) indicates sts of
spedfic values. The set of parents of X; are given by
pa(X;). The joint distribution represented by a Bayesian
network over the set of variablesU is

(V) =[] p(Xilpa(X;) (1)
=1
where n is the number of variables in U and

p(Xilpa(Xi))=p(X;) when X; has no perents.

The joint distribution for the set of variables U = {C,
S1, S2, S3} from Figure 1 is <gedfied as

p(U) = p(C) p(S1C) p(S2|C) p(S3C) . In
addition to spedfying the joint distribution of U, efficient
inference dgorithms all ow any set of nodes to be queried
given evidenceon any other set of nodes. This meansthat
a singe model can be used for bath prediction and
clasdfication. For example, suppose variable C in figure
lisalist of possble diseases and variables S1, S2, and S3
are symptoms. Given observations of any set of the
symptoms {Sl=sl, S2=s2, and/or S3=s3}, we ca
determine the likelihood P(C|S1=s1,52=s2,S3=s3) that
any particular disease is present given the observed
symptoms. Perhaps though we want to predict the
symptoms given a spedfic disease, by ingtantiating a
disease in D, the network will return a probability
distribution on the set of symptoms [Peal 1989.

The most common approach to huilding Bayesian
networks is to dicit knowledge from an expert. This
works well for small er networks, but when the number of
variables becomes large, dlicitation can become a tedious
and time-consuming affair. There may also be situations
where the expert is either unwilling or unavailable.
Whether or not experts are available, if there ae data it
makes snseto useit in building a modd.

The problem of learning a Bayesian network from
data can be broken into two components. leaning the
structure, Bs, and leaning the parameters, Bp. If the
structure is known® then the problem reduces to leaning
the parameters. If the structure is unknown, the leaner
must first find the structure before leaning the parameters
(actudly in many cases they are induced simultaneoudly).
Learning the structure can itself be decomposed into
searching for structures and evaluating structures. Until
recently most reseach has concentrated on leaning
networks from compl ete datasets. By complete, we mean
that all of the @sesin the data contain values for al of the
variables. It is clealy necessary to relax this assumption
if these methods are to have wide applicability. Recently
however, a few reseachers have begun working o
algorithms for leaning networks from incomplete data.
One major compli cating factor for incomplete data is that
the most common scoring metric used to evaluate
structures, the Bayesian Dirichlet score, exists as a closed
form expresson for complete data but not for incomplete
data. Most of the aproaches for leaning with
incomplete data involve approximating the score and

1t is more accurate to say that the structure is “given” or “provided.”
We use the term "known" to be cond stent with current usage.



using grealy algorithms to seach the space of network
structures.

The most common scoring approach to evaluating
structures is by the posterior probability of the structure
given the observations. That is, a structure is goad to the
extent it is probable given the available information. The
posterior probability of a structure can be obtained by

applying Bayesrule:
P(D|Bs) P(Bs)
P(D)

where, P(Bg|D) is the posterior digribution of the
structure given the data, P(D|Bs) is the likelihood
function, P(Bg) is the prior probability of the structure,
and P(D) is the normalizing constant. Since P(D) is not
dependent on the structure, it can be ignored when trying
to find the best scoring function. In addition, without
prior knowledge of structures, we can assume they have
equal probability and use anoninfomative prior P(Bg)J1.
However, if we do have information on structures we @n
always use the prior information. See[Geman, Carlin et
a. 1996], [OHagan 1994, and [Press 1989 for a
discusson of prior probabilities and assgnments of
priors.

P(Bs|D) =

)

The problem is now reduced to finding the structure
with the maximum likelihood P(D|Bs). In other words,
given a dtructure, structures are evaluated according to
how probable it is that the data were generated from the
structure. Cooper and Herskovitz and Hedkerman et al.
showed that when a Dirichlet prior is used for the
parameters in the network, the likelihood P(D|Bs) can be
obtained in closed form:

o IR = n q I'(Ni}) r(Ni}k"'Niik) 3
( lBS)_Dla:llr(Ni}”Nu)Dl r(Ni) :

where n is the number of variables in the database, r; is
the number of possble states for variable X;, g is the

number of posshle states for pa(X;), Nijk are the

sufficient  statistics from the database (counts of
occurrences of configurations of variables and ther

parents), Ni}k are the hyperparameters (prior counts of

occurences of variables and their parents) spedfied for the
parameter prior (assuming an uninformative prior as in
the prior for the structure we set the hyperparameters to

1), N;= Z Ny, ad N;= Z Nj . For
=1 =1

computational convenience the number of parents
allowed for a particular variable is limited. This soring
metric (3) is commonly referred to as the Bayesian
Dirichlet metric. In practice the logarithm of (3) is

usualy used to score networks [Coaper and Herskovits
1997, [Hedkerman, Geiger et al. 1995].

With the Bayesian Dirichlet metric (3), we @n now
search over possble structures for the one that scores
best. The seach problem has been shown to be NP-hard
[Chickering, Geiger et al. 1994], so most approaches use a
grealy search by starting from an initia structure and
adding, deleting, or reversing arcs in an attempt to find a
higher scoring network structure. In order to compensate
for climbing the neaest local maximum, the seach is
usually restarted with new randomly generated structures.
This type of greedy algorithm must also make sure the
modification doesn’t produce a illegal structure by
creating a direded cycle in the graph. One way to get
around this is to spedfy a node ordering. Given a node
ordering a variable can only take on parents from the set
of variables that precale it in the order. This will dways
produce alega structure but adds an additional burden of
searching over n! node orderings (unless of course, an
expert can spedfy a node order in which case the search
spaceisreduced tremendoudly).

The probem of learning Bayesian networks from
incomplete data is much more difficult than for leaning
from complete data. First of al, the Bayesian Dirichlet
metric (3) no longer exigs in closed form when the data
areincomplete. This is because the formula involves the
sufficient statistics, which are not known when data ae
incomplete.  Arguably the most common approach to
dealing with incomplete data is to estimate the parameters
using the Expedation-Maximization (EM) algorithm
[Dempster, Laird et a. 1977. The EM dgorithm
estimates the parameters by iteratively finding the
expedation of the parameter and then finding the
maximum likelihood estimate (MLE) using the parameter
from the epedation step. Each iteration of the EM
algorithm increases the MLE until a stable fixed point is
reached. One of the first applications of EM to leaning
Bayesian networks was by Lauritzen [Lauritzen 1993.
He used EM to find the parameters of a given network
structure from incomplete data. The agorithm worked
wdl in most cases, but he noted that the problem of
leaning from incomplete data was multimodal and the
algorithm would have to be randomly restarted because it
would converge to the neaest local maximum.

Arguably the most significant advances in the aea of
leaning from incomplete data have been the work of
Friedman (see[Friedman 1998a] and [Friedman 1998bh]).
His approach isto interleave greeady search over structures
with the EM algorithm to estimate parameters. He named
this algorithm the Structural EM (SEM) algorithm. The
concept is Smilar to those for the mwmplete data problem,
except the score of the network is found wsing the EM
agorithm.  For example, he begins with an initial
structure.  The dtructure is then passd to the EM
algorithm and the MLE found by EM is returned as the
score. The next structure is found by adding, deleting, or



reversing an arc and passd to the EM. Friedman's
innovation was to save @mputation by using EM
parameter estimates for the arrent structure to evaluate
candidates for the next dtructure, and to run EM again
only for the structure actually chosen. If the MLE for the
best structure is lower than the airrent structure then the
current structure beaomes the best.  This continues until
no further improvements can be found. Friedman has aso
noted that SEM “gets guck” on local maximum.

Additiona analysis of the geometry of the seach
space for the incomplete data problem by [Geiger and
Meek 1999 and [Settimi and Smith 199§ further confirm
this is a very difficult probdem. Given the huge seach
space, multiple dimensions, and extreme multi-modal
landscape for this problem, it is no wonder deterministic
algorithms continue to require multiple random restarts.
We investigate the use of evolutionary algorithms for
searching for “good” scoring structures from this very
complex search space

3 EVOLUTIONARY ALGORITHM

The very large, multi-dimensional, multi-modal
landscape immediately suggests the use of evolutionary
algorithms. Closer inspedion of the eguation for the joint
digtribution (1) of the variables in a Bayesian network
sugeest the network can be broken down into local
structures that can be considered genes. Each local
structure is a mmponent of the joint distribution and has
its own conditiona probability, P(Xjpa(X;). The
conditional probabili ties correspond to a node and its
parents in the structure of the network. Further, the
Bayesian Dirichlet metric (3) suggests a fitness function
that can be broken into parts corresponding to a node and
its parents and is additive in log form. This means the
fitness function can be @mputed component-wise for
each gene and added to produce the fitness of the
network. Of course, this asaimes the Bayesian Dirichlet
is closed which is the @se for complete data. For
incomplete data, we a@ther have to find ameansto convert
the incomplete problem into a mmplete problem or
estimate the parameters.

31 PREVIOUSWORK

Evoalutionary algorithms have been used by Larranga,
et al., for leaning Bayesian networks from complete data
[Larranaga, Murga € al. 1996. Their approach compared
four evolutionary algorithmic approaches. seady state,
hybrid steady state, ditist, and hybrid dlitist. The steady
state approaches creded a single new individual each
generation that replaced the worst individual from the
previous generation if it had better fithess With the ditist
approaches, the A best individuas from the parents and
offspring were seleded to survive to the next generation.
The hybrid approach they refer to is an artifact of the fact
that as the number of parents of a node increase, the

computational complexity increases factorialy. The
hybrid approach sdeds the k best parent nodes from the
parent row of each node, where ksm and m is the
maximum number of parents allowed. The remaining
parameters of the algorithm are as foll ows: rank seledion
to seled parents for reproduction, 1-point crossover, and
mutation. The network structure was represented as a
connedion matrix where =1 if (j is a parent node of i)
and (i > j), otherwise G=0. The inequality i > j, upper-
trianguation of the mnnedion matrix, guarantees a node
ordering thus assurring a legal structure (i.e. direded
agyclic graph). They ran their algorithm on a dataset
generated from a known network, the ALARM network,
used to diagnosed potential anesthesia problems in
operating rooms [Beinlich, Suermonct et al. 1989. The
tests were run using a node ordering derived from the
origina network. The results were networks that in many
tests had higher Bayesian Dirichlet scores than the
origina network. In another set of experiments,
Larranga, et al., lifted the node order restriction on the
connedion matrix. Building structures from the full
connedion matrix may result in illega structures, i.e
cyclic direded graphs. When illegal structures were
encountered they used a repair operator to remove any
offensive arcs. The results from this experiment were
similar to the ones abowe except the node ordering
produced overall better results [Larranaga, Poza et al.
19949.

Larranga, et al., approach showed that evolutionary
algorithms can find very good network structures for the
complete data problem. However, since there ae
currently several greedy algorithms that produce similar
results, their research did not prove ax advantage for
using evolutionary algorithms over a deterministic greedy
search. However, they did pave the way for additional
reseach in thisarea

32 ALGORITHM

Recall from Sedion 2 that the seach space for the
incomplete data leaning problem is very multi-modal.
The date-of-the-art approaches are dl based upon
deterministic gready search algorithms. These algorithms
al suffer the fate of “getting stuck” at the neaest local
optimum. Our approach isto use evolutionary algorithms
to increase the eploration of the seach space Also
recll that the dosed form expresson (3) for the Bayesian
Dirichlet score applies only for complete data. In order to
avoid using computationally costly parametric estimation
approaches, we impute samples of the missng data into
the database. Thisreduces the problem to a mmplete data
problem and allows us to use the logarithm of (3) as the
fitnessfunction.

By imputing samples into the data, the seach space
becomes more mmplex. We now must seach over the
missng data and network structures. We take the unique
approach that evolves both the missng values (samples)



and the structures simultaneously. This approach requires
that we define a representation for both the missing data
and the structures. The missing data representation is
straightforward. We represent each cdll from the dataset
that has a missing value as a gene. The gene takes on
sampled values from the set of values of the
corresponding variable. The chromosome is a string of
missing values.
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Figure 2 Structure Chromosome

The structure Bs can be represented as an adjacency
list, see Figure 2, where each row represents a variable V;
and the members of each row, with the exception of the
firss member, are the parents of V;, pa(V;)). The first
member of each row, i.e. thefirst column of the adjacency
list, isthevariable V;. Although we show it in the picture
for clarity, the internal representation encodes the parents
only, with the variable being encoded by position. The
adjacency list can be thought of as a chromosome, where
each row is a gene and the pa(V;) are the aldes. This
representation is convenient because from (3), the
logarithm of the scoring metric isthe summation of scores
for each variable. Because of this, each gene can be
scored separately and added to generate the fitness score
for the entire sructure.

The dlde values that each gene can take on can
become enormous. The values can range from no parents
to n-1 parents, where n is the number of variables in the

i(nl_lj possble

values where m is the maximum set of parents a variable
can have axd nis the number of variables in the dataset.
As an example of the large size of allele values take n=11
and m=4, the number of possble values for a given alee
is 376, while if n=41 and m=4, the number grows to
102,091.

In addition to the large cmbination of allele values
per gene, the genes are highly correlated. Thisis because
the dldes are combinations of other genes as parents.
Many combinations can lead to illega structures; in other
words, dructures that are not direded acyclic graphs.
This problem is alleviated by arbitrarily assgning ill egal
structures a very low score. The reason for alowing
illegal dructures is the chromosome may contain very
goad genes and if seleded as parents the genes can be
recmnstituted as building Hocks for even better structures
through recombination or mutation.

To help dedde which evolutionary algorithm
parameters to use we performed a factorial design where

dataset. Thus an dlee can take on

the factors were sdedion scheme, probabilities for
parameterized uniform crosover for bath missng data
and gructure, and probability of mutation for structure.
The population size was kept small, 20-40, because of the
computation time required scoring the fitness function.
The sdedion schemes considered for the factoria design
are fitness proportional, rank proportional, and hinary
tournament seledion.

The genetic operators require some explanation. For
the missng data chromosomes we diose uniform
parameterized crosover [Syswerda 1989, [Delong and
Spears 199Q. Early tests indicated that parameterized
uniform crossover worked better for these diromosomes.
This may be due to the small population size. Mutation
for the missng data chromosome differs ©mewhat from
the canonical genetic dgorithm. Ingtead of flipping a
binary bit, we randomly sdect from the remaining
possble values of the @rresponding veriable. We aso
chose to use uniform parameterized crosover for the
structure chromosome.  Figure 3 demonstrates how
crosover kegps local structure for anode intact.

parents offspring
A AB A AB
BA B BA B
CA «—>CB mmp CB CA
DBC DB DBC DB
EC <«— ECD ECD EC
® ® @® ®
PR
LR X LR LR
® ® \ O] ®

Figure 3 Crosover for Bayesian Network Structure

The mutation operator for the structure chromosome
is tailored to the representation we used and its mapping
to a direded graph phenotype. Reall the gene of the
structure chromosome represents the gene's parent nodes
in the graph. We include two basic modifications to a
gene: add anode and delete anode. These operators have
the dfect in the phenotype of adding and deleting arcs,
respedively. We also include athird basic modification,
reversal of an arc, which is implemented genotypically by
deleting the parent-child arc and adding the chil d-parent
arc.

The dgorithm is depicted graphicdly in Figure 4.
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crossover

md = missng data

observed |

Data data
Structure

1
data ;'
1

seledion Y \
mutation :

B-parent =—=<» Bc-offspring L

Figure 4 EA for Learning Bayesian Networks from
Incompl ete Data



4 ANALYSISAND RESULT

Our approach was to fird run a set of experiments to
find a “good” set of agorithm parameters and then
perform experiments to demonstrate the EA leans
Bayesian networks from incomplete data that has grong
predictive power. The first set of experiments was based
on a factorial design with the dgorithm parameters as
main effects. We began with a known seven variable
network and randomly generated 1000 samples for the
training set and another 1000 samples for the test set. We
then randomly seleded a percentage of the cdls in the
dataset as missng. Each experiment was repeated 10
times. The parameters were sdeded based on their
Bayesian Dirichlet score (posterior probability of the
structure given the data).
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Figure 6 Main Effects of Genetic Operators
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The main effeds plots of Figure 5 show the 95
percent credible intervals for the seedion schemes. For
those unfamiliar with Bayesian Analysis, see Pressfor a
description of credible intervals [Press 1989. The plots
indicae there is a strong correlation between rank
sdedion and tournament sdledion and the response
variable, the Bayesian Dirichlet metric. This is consistent
with Goldberg and Deb's anadysis of selection schemes
for function optimization [Goldberg and Deb 1997.

Since touwrnament seledion performed dightly better than
rank sdledion for these tests, we cose to implement
tournament seledion for the enpiricd analysis presented
later. Tournament seledion should also be considered for
future experiments because it is much easier to implement
and more dficient computationaly than rank seledion
[Goldberg and Deb 1991]].

From Figure 6, we seethat there is a dight advantage
to using a mutation rate of 0.05. Since the credible
intervals for bath the crosover parameters intersed the
origin we an make a claim that one value is better than
the other. We cose to use the more common uniform
crosover probability of 0.5.

The objedive of the seaond set of experiments was to
demonstrate that stochastic seach finds “good” predictive
networks. For this st of experiments we used a Bayesian
network known as ASIA. The ASIA network was
initially presented by Lauritzen and Spiegelhalter
[Lauritzen and Spiegelhdter 1988. It is a smal (nine
variable) fictitious model of medical knowledge
concerning the reationships between visits to Asia,
tuberculosis, smoking, lung cancer, and kronchitis. Our
approach, as above, was to generate 1000 samples each
from the origina network for training and test. We used
the set of “good” parameters found in the previous
experiments. The dgorithm was run with 0%, 5%, 15%,
and 30% missng data. The experiment was run 10 times
for each level of missng data. The stopping criterion for
the dgorithm was arbitrarily set at 500 generations.
Using the “best” network from each run we alculated the
log loss

The log lossis a mmmonly used metric appropriate
for probabili stic leaning algorithms. It is a member of
the family of proper scoring rules. Proper scoring rules
have the tharacteritic that they are maximized when the
leaned probability distribution corresponds to the
empiricdly observed probabilities. Mathematicdly, the
log lossis the average over all test cases of the log of the
joint probahility the test case was generated by the model.

Figure 7 depicts the 95 percent credible intervals for
the Bayesian Dirichlet for each level of missng data. The
Bayesian Dirichlet is the log probability of the structure
given the data so the higher the score the better. Figure 8
shows the 95 percent credible interval for the log loss
score for each level of missng data. The lower the log
loss sore the better since it is a measure of predictive
power. For comparison purposes the Bayesian Dirichlet
of the original network is —2172.9 and the log loss sore
for the set of test datais2.1953.

As can be seen from the figures, the EA finds good
predictive networks at 0%, 5%, and 15% missng data. At
30% the predictive accuracy degrades sharply as can be
expeded.
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5 SUMMARY AND FUTURE WORK

In this paper we describe a novel evolutionary
algorithm for leaning Bayesian networks from
incomplete data. This problem is extremely difficult for
deterministic algorithms and is characterized by a large,
multi-dimensional, multi-modal seach space Previous
attempts to solve this problem with deterministic
algorithms have led reseachers to the @nclusion that
they must use random restarts. We believe stochastic
algorithms will give better results. Our approach was to
find a “good” set of parameters for the evolutionary
algorithm by first conducting experiments based on a
factorial design. Then we demonstrated that we culd
lean networks from incompl ete data that perform well in
terms of predictive accuracy.

Though the algorithm we used was unique in that we
evolved two populations smultaneously, we did not
explore more advanced techniques from evolutionary
algorithm literature. An interesting experiment we intend

to perform is to add spedation to increase eploration
[Spears 1994. We ae also exploring the use of adaptive
operators. Other important future work includes Markov
Chain Monte Carlo (MCMC) agorithms and an
Evolutionary Markov Chain Monte Carlo (EMCMC)
approach that combines the benefits of evolutionary
algorithms and MCMC dgorithms.  We believe the
EMCMC will offer advantages researchers in bath
evolutionary algorithms and datigics will find very
useful.
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