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Abstract

This paper describes an evolutionary
algorithm approach to learning
Bayesian networks from incomplete
data.  This problem is characterized by
a huge solution space with a highly
multimodal landscape.  State-of-the-art
approaches all involve using
deterministic approaches such as the
expectation-maximization algorithm.
These approaches are guaranteed to find
local maxima, but do not explore the
landscape for other modes.  Our
approach evolves the structure of the
network and the missing data.  We use a
factorial design to choose a good set of
parameters for selection, crossover, and
mutation.  We show that our algorithm
produces accurate results for a
classification problem with missing
data.

1 INTRODUCTION

Bayesian networks are quickly becoming the tool of
choice of many AI researchers for problems involving
reasoning under uncertainty.  They have been
implemented in applications in areas such as medical
diagnostics, classification systems, software agents for
personal assistants, multisensor fusion, and legal analysis
of trials [Heckerman, Geiger et al. 1995].  Until recently,
the standard approach to constructing belief networks was
a labor-intensive process of eli citing knowledge from
experts. Methods for capturing available data to construct
a Bayesian network or to refine an expert-provided
network promise to greatly improve both the efficiency of
knowledge engineering and the accuracy of the models.

For this reason, learning Bayesian networks from data has
become an increasingly active area of research.  Most of
the research to date has relied on the assumption that data
are complete; that is, the values of all variables are known
for all cases in the database. This assumption is not very
reali stic, since most real world situations involve
incomplete information.

Learning a Bayesian network can be decomposed
into the problem of learning the graph structure and
learning the parameters.  The first attempts at treating
incomplete data involved learning the parameters of a
fixed network structure [Lauritzen 1995].  Very recently,
researchers have begun to tackle the problem of learning
the structure of the network from incomplete data.  A
major stumbling block in this research is that when
information is missing, closed form expressions do not
exist for the scoring metric used to evaluate network
structures.  This has led many researchers down the path
of estimating the score using parametric approaches such
as the expectation-maximization (EM) algorithm
[Dempster, Laird et al. 1977], [Friedman 1998].  The EM
algorithm is a proven approach for dealing with
incomplete information when building statistical models
[Little and Rubin 1987].  EM and related algorithms show
promise.  However, it has been noted [Friedman 1998]
that the search landscape is large and multimodal, and
deterministic search algorithms are prone to find local
optima.  Multiple restarts have been suggested as a way to
deal with this problem.

An obvious choice to combat the problem of “getting
stuck” on local maxima is to use a stochastic search
method.  This paper explores the use of evolutionary
algorithms for learning Bayesian networks from
incomplete data.  Our approach is unique in that it evolves
both the solution space of network structures and the
values of the missing data.  Network structures are
especiall y amenable for evolutionary algorithms since the
substructures of the network behave as building blocks so
we can evolve higher fit structures by exchanging
substructures of parents with higher fitness.  By evolving
samples of missing data, we are in effect approximating a



maximum likelihood approach to scoring the network.  In
addition, we can impute the values of the missing data
allowing us to use the closed form of the scoring metric.

We’ ll begin by briefly describing Bayesian networks
and the learning problem.  Next we will discuss the
scoring metric, fitness function, and the landscape.  In this
section we’ ll make the point for using a stochastic search
methods such as evolutionary algorithms.  Section 4 will
describe the design choices we made, to include results
from an experiment using a factorial design and some
results of an empirical study.  We’ ll close in section 5
with a summary of our approach and experiments and
discuss our future plans.

2 BAYESIAN NETWORKS

Bayesian networks are graphical models that encode
probabili stic relationships among variables for problems
of uncertain reasoning.  They are composed of a structure
and parameters.  The structure is a directed acycli c graph
that encodes a set of conditional independence
relationships among variables.  The nodes of the graph
correspond directly to the variables and the directed arcs
represent dependence of variables to their parents.  The
lack of directed arcs among variables represent a
conditional independence relationship.  Take, for
example, the network in Figure 1.  The lack of arcs
between symptoms S1, S2, and S3 indicate that they are
conditionally independent given C.  In other words,
knowledge of S1 is irrelevant to that of S2 given we
already know the value of C.  If C is not known, then
knowledge of S1 is relevant to inferences about the value
of  S2.
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C

Figure 1 Bayesian Network for generic disease and
symptoms

The parameters of the network are the local
probabilit y distributions attached to each variable.  The
structure and parameters taken together encode the joint
probabilit y of the variables.  Let U = { X1,...,Xn} represent
a finite set of discrete random variables.  We use upper-
case letters (e.g. X, Y, Z) to represent random variables.
Lower-case letters (e.g. x, y, z) are used to denote specific
values taken on by the random variables.  Bold upper-case
letters (e.g. X, Y, Z) specifies sets of random variables
and bold lower-case letters (e.g. x, y, z) indicates sets of
specific values.  The set of parents of X i are given by
pa(X i).  The joint distribution represented by a Bayesian
network over the set of variables U is
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where n is the number of variables in U and
p(X i|pa(X i))=p(X i) when X i has no parents.

The joint distribution for the set of variables U = { C,
S1, S2, S3} from Figure 1 is specified as
p p C p S C p S C p S C( ) ( ) ( | ) ( | ) ( | )U = 1 2 3 .  In

addition to specifying the joint distribution of U, efficient
inference algorithms allow any set of nodes to be queried
given evidence on any other set of nodes.  This means that
a single model can be used for both prediction and
classification.  For example, suppose variable C in figure
1 is a li st of possible diseases and variables S1, S2, and S3
are symptoms.  Given observations of any set of the
symptoms { S1=s1, S2=s2, and/or S3=s3} , we can
determine the likelihood P(C|S1=s1,S2=s2,S3=s3) that
any particular disease is present given the observed
symptoms.  Perhaps though, we want to predict the
symptoms given a specific disease, by instantiating a
disease in D, the network wil l return a probabilit y
distribution on the set of symptoms [Pearl 1988].

The most common approach to building Bayesian
networks is to eli cit knowledge from an expert.  This
works well for smaller networks, but when the number of
variables becomes large, eli citation can become a tedious
and time-consuming affair.  There may also be situations
where the expert is either unwil ling or unavailable.
Whether or not experts are available, if there are data it
makes sense to use it in building a model.

The problem of learning a Bayesian network from
data can be broken into two components: learning the
structure, BS, and learning the parameters, BP.  If the
structure is known1 then the problem reduces to learning
the parameters.  If the structure is unknown, the learner
must first find the structure before learning the parameters
(actuall y in many cases they are induced simultaneously).
Learning the structure can itself be decomposed into
searching for structures and evaluating structures. Until
recently most research has concentrated on learning
networks from complete datasets.  By complete, we mean
that all of the cases in the data contain values for all of the
variables.  It is clearly necessary to relax this assumption
if these methods are to have wide applicabil ity. Recently
however, a few researchers have begun working on
algorithms for learning networks from incomplete data.
One major complicating factor for incomplete data is that
the most common scoring metric used to evaluate
structures, the Bayesian Dirichlet score, exists as a closed
form expression for complete data but not for incomplete
data.  Most of the approaches for learning with
incomplete data involve approximating the score and

                                                       
1 It is more accurate to say that the structure is “given” or “provided.”
We use the term "known" to be consistent with current usage.



using greedy algorithms to search the space of network
structures.

The most common scoring approach to evaluating
structures is by the posterior probabilit y of the structure
given the observations.  That is, a structure is good to the
extent it is probable given the available information.  The
posterior probabilit y of a structure can be obtained by
applying Bayes rule:
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where, P(BS|D) is the posterior distribution of the
structure given the data, P(D|BS) is the li kelihood
function, P(BS) is the prior probabilit y of the structure,
and P(D) is the normalizing constant.  Since P(D) is not
dependent on the structure, it can be ignored when trying
to find the best scoring function.  In addition, without
prior knowledge of structures, we can assume they have
equal probabilit y and use a noninfomative prior P(BS)∝1.
However, if we do have information on structures we can
always use the prior information.  See [Gelman, Carlin et
al. 1996], [O'Hagan 1994], and [Press 1989] for a
discussion of prior probabiliti es and assignments of
priors.

The problem is now reduced to finding the structure
with the maximum likelihood P(D|BS).  In other words,
given a structure, structures are evaluated according to
how probable it is that the data were generated from the
structure.  Cooper and Herskovitz and Heckerman et al.
showed that when a Dirichlet prior is used for the
parameters in the network, the likelihood P(D|BS) can be
obtained in closed form:
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where n is the number of variables in the database, ri is
the number of possible states for variable X i, qi is the
number of possible states for pa(X i), Nijk  are the

sufficient statistics from the database (counts of
occurrences of configurations of variables and their

parents), Nijk
' are the hyperparameters (prior counts of

occurences of variables and their parents) specified for the
parameter prior (assuming an uninformative prior as in
the prior for the structure we set the hyperparameters to
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computational convenience, the number of parents
allowed for a particular variable is limited.  This scoring
metric (3) is commonly referred to as the Bayesian
Dirichlet metric.  In practice, the logarithm of (3) is

usually used to score networks [Cooper and Herskovits
1992], [Heckerman, Geiger et al. 1995].

With the Bayesian Dirichlet metric (3), we can now
search over possible structures for the one that scores
best.  The search problem has been shown to be NP-hard
[Chickering, Geiger et al. 1994], so most approaches use a
greedy search by starting from an initial structure and
adding, deleting, or reversing arcs in an attempt to find a
higher scoring network structure.  In order to compensate
for climbing the nearest local maximum, the search is
usually restarted with new randomly generated structures.
This type of greedy algorithm must also make sure the
modification doesn’ t produce an illegal structure by
creating a directed cycle in the graph.  One way to get
around this is to specify a node ordering.  Given a node
ordering a variable can only take on parents from the set
of variables that precede it in the order.  This wil l always
produce a legal structure but adds an additional burden of
searching over n! node orderings (unless, of course, an
expert can specify a node order in which case the search
space is reduced tremendously).

The problem of learning Bayesian networks from
incomplete data is much more diff icult than for learning
from complete data.  First of all, the Bayesian Dirichlet
metric (3) no longer exists in closed form when the data
are incomplete.  This is because the formula involves the
sufficient statistics, which are not known when data are
incomplete.  Arguably the most common approach to
dealing with incomplete data is to estimate the parameters
using the Expectation-Maximization (EM) algorithm
[Dempster, Laird et al. 1977].  The EM algorithm
estimates the parameters by iteratively finding the
expectation of the parameter and then finding the
maximum likelihood estimate (MLE) using the parameter
from the expectation step.  Each iteration of the EM
algorithm increases the MLE until a stable fixed point is
reached.  One of the first applications of EM to learning
Bayesian networks was by Lauritzen [Lauritzen 1995].
He used EM to find the parameters of a given network
structure from incomplete data.  The algorithm worked
well in most cases, but he noted that the problem of
learning from incomplete data was multimodal and the
algorithm would have to be randomly restarted because it
would converge to the nearest local maximum.

Arguably the most significant advances in the area of
learning from incomplete data have been the work of
Friedman (see [Friedman 1998a] and [Friedman 1998b]).
His approach is to interleave greedy search over structures
with the EM algorithm to estimate parameters. He named
this algorithm the Structural EM (SEM) algorithm.  The
concept is similar to those for the complete data problem,
except the score of the network is found using the EM
algorithm.  For example, he begins with an initial
structure.  The structure is then passed to the EM
algorithm and the MLE found by EM is returned as the
score.  The next structure is found by adding, deleting, or



reversing an arc and passed to the EM. Friedman's
innovation was to save computation by using EM
parameter estimates for the current structure to evaluate
candidates for the next structure, and to run EM again
only for the structure actuall y chosen.  If the MLE for the
best structure is lower than the current structure then the
current structure becomes the best.  This continues until
no further improvements can be found.  Friedman has also
noted that SEM “gets stuck” on local maximum.

Additional analysis of the geometry of the search
space for the incomplete data problem by [Geiger and
Meek 1998] and [Settimi and Smith 1998] further confirm
this is a very diff icult problem.  Given the huge search
space, multiple dimensions, and extreme multi-modal
landscape for this problem, it is no wonder deterministic
algorithms continue to require multiple random restarts.
We investigate the use of evolutionary algorithms for
searching for “good” scoring structures from this very
complex search space.

3 EVOLUTIONARY ALGORITHM

The very large, multi-dimensional, multi-modal
landscape immediately suggests the use of evolutionary
algorithms.  Closer inspection of the equation for the joint
distribution (1) of the variables in a Bayesian network
suggest the network can be broken down into local
structures that can be considered genes.  Each local
structure is a component of the joint distribution and has
its own conditional probabilit y, P(X i|pa(X i)).  The
conditional probabili ties correspond to a node and its
parents in the structure of the network.  Further, the
Bayesian Dirichlet metric (3) suggests a fitness function
that can be broken into parts corresponding to a node and
its parents and is additive in log form.  This means the
fitness function can be computed component-wise for
each gene and added to produce the fitness of the
network.  Of course, this assumes the Bayesian Dirichlet
is closed which is the case for complete data.  For
incomplete data, we either have to find a means to convert
the incomplete problem into a complete problem or
estimate the parameters.

3.1 PREVIOUS WORK

Evolutionary algorithms have been used by Larranga,
et al., for learning Bayesian networks from complete data
[Larranaga, Murga et al. 1996].  Their approach compared
four evolutionary algorithmic approaches: steady state,
hybrid steady state, elitist, and hybrid eli tist.  The steady
state approaches created a single new individual each
generation that replaced the worst individual from the
previous generation if it had better fitness.  With the eli tist
approaches, the λ best individuals from the parents and
offspring were selected to survive to the next generation.
The hybrid approach they refer to is an artifact of the fact
that as the number of parents of a node increase, the

computational complexity increases factoriall y.  The
hybrid approach selects the k best parent nodes from the
parent row of each node, where k<m and m is the
maximum number of parents allowed. The remaining
parameters of the algorithm are as follows: rank selection
to select parents for reproduction, 1-point crossover, and
mutation.  The network structure was represented as a
connection matrix where cij=1 if (j is a parent node of i)
and (i > j), otherwise ci j=0.  The inequality i > j, upper-
triangulation of the connection matrix, guarantees a node
ordering thus assuring a legal structure (i.e. directed
acycli c graph).  They ran their algorithm on a dataset
generated from a known network, the ALARM network,
used to diagnosed potential anesthesia problems in
operating rooms [Beinli ch, Suermondt et al. 1989].  The
tests were run using a node ordering derived from the
original network.  The results were networks that in many
tests had higher Bayesian Dirichlet scores than the
original network.  In another set of experiments,
Larranga, et al., lifted the node order restriction on the
connection matrix.  Building structures from the full
connection matrix may result in ill egal structures, i.e.
cycli c directed graphs.  When illegal structures were
encountered they used a repair operator to remove any
offensive arcs.  The results from this experiment were
similar to the ones above except the node ordering
produced overall better results [Larranaga, Poza et al.
1996].

Larranga, et al., approach showed that evolutionary
algorithms can find very good network structures for the
complete data problem.  However, since there are
currently several greedy algorithms that produce similar
results, their research did not prove an advantage for
using evolutionary algorithms over a deterministic greedy
search.    However, they did pave the way for additional
research in this area.

3.2 ALGORITHM

Recall from Section 2 that the search space for the
incomplete data learning problem is very multi-modal.
The state-of-the-art approaches are all based upon
deterministic greedy search algorithms.  These algorithms
all suffer the fate of “getting stuck” at the nearest local
optimum.  Our approach is to use evolutionary algorithms
to increase the exploration of the search space.  Also
recall that the closed form expression (3) for the Bayesian
Dirichlet score applies only for complete data.  In order to
avoid using computationally costly parametric estimation
approaches, we impute samples of the missing data into
the database.  This reduces the problem to a complete data
problem and allows us to use the logarithm of (3) as the
fitness function.

By imputing samples into the data, the search space
becomes more complex.  We now must search over the
missing data and network structures.  We take the unique
approach that evolves both the missing values (samples)



and the structures simultaneously.  This approach requires
that we define a representation for both the missing data
and the structures.  The missing data representation is
straightforward.  We represent each cell from the dataset
that has a missing value as a gene.  The gene takes on
sampled values from the set of values of the
corresponding variable.  The chromosome is a string of
missing values.

A
BA
CA
DBC

A

B C

D

Figure 2 Structure Chromosome

The structure BS can be represented as an adjacency
list, see Figure 2, where each row represents a variable Vi

and the members of each row, with the exception of the
first member, are the parents of Vi, pa(Vi).  The first
member of each row, i.e. the first column of the adjacency
list, is the variable Vi.  Although we show it in the picture
for clarity, the internal representation encodes the parents
only, with the variable being encoded by position.   The
adjacency list can be thought of as a chromosome, where
each row is a gene and the pa(Vi) are the alleles. This
representation is convenient because from (3), the
logarithm of the scoring metric is the summation of scores
for each variable.  Because of this, each gene can be
scored separately and added to generate the fitness score
for the entire structure.

The allele values that each gene can take on can
become enormous.  The values can range from no parents
to n-1 parents, where n is the number of variables in the

dataset.  Thus an allele can take on 
n
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values where m is the maximum set of parents a variable
can have and n is the number of variables in the dataset.
As an example of the large size of allele values take n=11
and m=4, the number of possible values for a given allele
is 376, while if n=41 and m=4, the number grows to
102,091.

In addition to the large combination of allele values
per gene, the genes are highly correlated.  This is because
the alleles are combinations of other genes as parents.
Many combinations can lead to illegal structures; in other
words, structures that are not directed acycli c graphs.
This problem is alleviated by arbitraril y assigning illegal
structures a very low score.  The reason for allowing
ill egal structures is the chromosome may contain very
good genes and if selected as parents the genes can be
reconstituted as building blocks for even better structures
through recombination or mutation.

To help decide which evolutionary algorithm
parameters to use we performed a factorial design where

the factors were selection scheme, probabiliti es for
parameterized uniform crossover for both missing data
and structure, and probabilit y of mutation for structure.
The population size was kept small, 20-40, because of the
computation time required scoring the fitness function.
The selection schemes considered for the factorial design
are fitness proportional, rank proportional, and binary
tournament selection.

The genetic operators require some explanation.  For
the missing data chromosomes we chose uniform
parameterized crossover [Syswerda 1989], [DeJong and
Spears 1990]. Early tests indicated that parameterized
uniform crossover worked better for these chromosomes.
This may be due to the small population size.  Mutation
for the missing data chromosome differs somewhat from
the canonical genetic algorithm. Instead of flipping a
binary bit, we randomly select from the remaining
possible values of the corresponding variable.  We also
chose to use uniform parameterized crossover for the
structure chromosome.  Figure 3 demonstrates how
crossover keeps local structure for a node intact.
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Figure 3 Crossover for Bayesian Network Structure

The mutation operator for the structure chromosome
is tailored to the representation we used and its mapping
to a directed graph phenotype.  Recall the gene of the
structure chromosome represents the gene’s parent nodes
in the graph.  We include two basic modifications to a
gene: add a node and delete a node.  These operators have
the effect in the phenotype of adding and deleting arcs,
respectively.  We also include a third basic modification,
reversal of an arc, which is implemented genotypicall y by
deleting the parent-child arc and adding the child-parent
arc.

The algorithm is depicted graphicall y in Figure 4.

md-parent

BS-parent

md-offspring

BS-offspring

observed
data

data

P(BS|D)

fitness

fitness
t+1

selection
mutation
crossover

selection
mutation
crossover

t+1

Data
Structure

md = missing data

Figure 4 EA for Learning Bayesian Networks from
Incomplete Data



4 ANALYSIS AND RESULT

Our approach was to first run a set of experiments to
find a “good” set of algorithm parameters and then
perform experiments to demonstrate the EA learns
Bayesian networks from incomplete data that has strong
predictive power.  The first set of experiments was based
on a factorial design with the algorithm parameters as
main effects.  We began with a known seven variable
network and randomly generated 1000 samples for the
training set and another 1000 samples for the test set.  We
then randomly selected a percentage of the cell s in the
dataset as missing.  Each experiment was repeated 10
times.  The parameters were selected based on their
Bayesian Dirichlet score (posterior probabilit y of the
structure given the data).
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Figure 5 Main Effects for Selection Scheme
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Figure 6 Main Effects of Genetic Operators

The main effects plots of Figure 5 show the 95
percent credible intervals for the selection schemes.  For
those unfamil iar with Bayesian Analysis, see Press for a
description of credible intervals [Press 1989].  The plots
indicate there is a strong correlation between rank
selection and tournament selection and the response
variable, the Bayesian Dirichlet metric.  This is consistent
with Goldberg and Deb’s analysis of selection schemes
for function optimization [Goldberg and Deb 1991].

Since tournament selection performed slightly better than
rank selection for these tests, we chose to implement
tournament selection for the empirical analysis presented
later.  Tournament selection should also be considered for
future experiments because it is much easier to implement
and more eff icient computationally than rank selection
[Goldberg and Deb 1991].

From Figure 6, we see that there is a slight advantage
to using a mutation rate of 0.05.  Since the credible
intervals for both the crossover parameters intersect the
origin we can make a claim that one value is better than
the other.  We chose to use the more common uniform
crossover probabilit y of 0.5.

The objective of the second set of experiments was to
demonstrate that stochastic search finds “good” predictive
networks.  For this set of experiments we used a Bayesian
network known as ASIA.  The ASIA network was
initiall y presented by Lauritzen and Spiegelhalter
[Lauritzen and Spiegelhalter 1988].  It is a small (nine
variable) fictitious model of medical knowledge
concerning the relationships between visits to Asia,
tuberculosis, smoking, lung cancer, and bronchitis.  Our
approach, as above, was to generate 1000 samples each
from the original network for training and test.  We used
the set of “good” parameters found in the previous
experiments.  The algorithm was run with 0%, 5%, 15%,
and 30% missing data.  The experiment was run 10 times
for each level of missing data.  The stopping criterion for
the algorithm was arbitraril y set at 500 generations.
Using the “best” network from each run we calculated the
log loss.

The log loss is a commonly used metric appropriate
for probabili stic learning algorithms.  It is a member of
the family of proper scoring rules.  Proper scoring rules
have the characteristic that they are maximized when the
learned probabilit y distribution corresponds to the
empiricall y observed probabili ties.  Mathematicall y, the
log loss is the average over all test cases of the log of the
joint probabilit y the test case was generated by the model.

Figure 7 depicts the 95 percent credible intervals for
the Bayesian Dirichlet for each level of missing data.  The
Bayesian Dirichlet is the log probabilit y of the structure
given the data so the higher the score the better.  Figure 8
shows the 95 percent credible interval for the log loss
score for each level of missing data.  The lower the log
loss score the better since it is a measure of predictive
power.   For comparison purposes the Bayesian Dirichlet
of the original network is –2172.9 and the log loss score
for the set of test data is 2.1953.

As can be seen from the figures, the EA finds good
predictive networks at 0%, 5%, and 15% missing data.  At
30% the predictive accuracy degrades sharply as can be
expected.
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Figure 7 95 Percent Credible Interval for Bayesian
Dirichlet
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Figure 8 95 Percent Credible Interval for Log Loss

5 SUMMARY AND FUTURE WORK

In this paper we describe a novel evolutionary
algorithm for learning Bayesian networks from
incomplete data.  This problem is extremely diff icult for
deterministic algorithms and is characterized by a large,
multi-dimensional, multi-modal search space.  Previous
attempts to solve this problem with deterministic
algorithms have led researchers to the conclusion that
they must use random restarts.  We believe stochastic
algorithms will give better results.  Our approach was to
find a “good” set of parameters for the evolutionary
algorithm by first conducting experiments based on a
factorial design.  Then we demonstrated that we could
learn networks from incomplete data that perform well in
terms of predictive accuracy.

Though the algorithm we used was unique in that we
evolved two populations simultaneously, we did not
explore more advanced techniques from evolutionary
algorithm literature.  An interesting experiment we intend

to perform is to add speciation to increase exploration
[Spears 1994].  We are also exploring the use of adaptive
operators.  Other important future work includes Markov
Chain Monte Carlo (MCMC) algorithms and an
Evolutionary Markov Chain Monte Carlo (EMCMC)
approach that combines the benefits of evolutionary
algorithms and MCMC algorithms.  We believe the
EMCMC will offer advantages researchers in both
evolutionary algorithms and statistics wil l find very
useful.
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