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Abstract. This paper addresses the use of particular encoding schemes in evolutionary systems. We de�ne

three paradigms of DNA encodings: non-compartmentalized DNA, partially compartmentalized DNA, and

fully compartmentalized DNA. We demonstrate that there is a signi�cant and increasing advantage to the

use of partially and fully compartmentalized models as the complexity of a structure increases. Implications

for the design of evolutionary systems including biological systems are discussed.
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1. Introduction

Transposons (MacPhee, 1991; Finnegan, 1994) are fascinating pieces of DNA which have the surprising

ability to move around, create duplicate copies, and excise themselves over successive generations and during

duplication. They are units of DNA which encode complete functions not dependent on other pieces of DNA

for their expression. Transposons are nearly ubiquitous in Nature and are thought to make up over 90% of

the DNA found in human beings. Their general capability to provide functions, generate new functions of

a cell, create genetic defects, and correct them is a rich set of e�ects that has yet to be generated by the

arti�cial life community.

Their power comes from the fact that DNA that can encode whole functions can be reconnected to produce

novel systems of fundamental importance with great e�ciency. They are a subject of intense study in the

genetic algorithm and evolutionary computation communities and should become important in the arti�cial

life community beyond the scope of the building block hypothesis and related issues.

How transposons arose is also intellectually interesting. Perhaps the simplest question centers around the

nature of the origin of these structures. Transposons certainly appear in natural systems and their analogs

appear in some evolutionary systems. However, how much of the structure of transposons depends on the

nature of the replicating system, and how much depends on the requirement to build e�cient evolutionary

systems? If transposons are simply a result of the way in which life historically arose on earth, then they

have no natural place in arti�cial systems. However, if they are a result of an evolutionary requirement, then

it would seem to be advantageous to understand that requirement and to build them into our evolutionary

models.

Many evolutionary models exist in the recent literature, each one with its own general structure. Of

these, genetic algorithms are the most common and they have been used to do a variety of things including

designing hardware and optimizing functions. Genetic algorithms are powerful due to their ability to share

information that is bene�cial. This is the basis of the building block hypothesis and forms the basis for a

great deal of genetic algorithm literature (Forrest and Mitchell, 1993). One important problem that has

been recently addressed is the identi�cation of linkages between parts of the genome and identi�cations of

recodings of the search space in such a way that these linkages are minimized (Kazadi 1997; Kazadi 1998;

Munetomo and Goldberg, 1999).

A particularly exciting application of genetic algorithms has recently been undertaken by Adrian Thomp-

son (Thompson 1999a(b,c), 1998a(b)) in studying hardware evolution of �eld programmable gate arrays

(FPGA), and is becoming more popular as a practical means of generating useful hardware designs. In these

studies, a genetic algorithm is used to generate circuits in the FPGA. However, this work does not seem to

deal with the use of advanced genetic operators nor take advantage (or even seem to be aware) of techniques

of compartmentalization.

Tierra (Ray 1992; Ray 1994; Adami 1995a) and Avida (Adami 1994; Adami 1995b; Ofria and Adami

1999) are examples of arti�cial ecosystems in which no explicit �tness function has been designed. The

evolving agents are self-replicating strings of DNA modelled to function in a virtual environment using an

analog of the 80x86 processor. The main di�erence between these two systems is that Tierra is built on a

single completely connected soup, while Avida is designed on a two-dimensional spatially separated toroidal

lattice. Each agent may replicate itself to a neighboring cell during its processor time, may compete with
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agents currently occupying the cell for the space, and has a nonzero probability of a number of addition and

alteration mutations at every replication. While these systems exhibit fascinating dynamics, they evolve at a

rate which has a power law distribution of epochs in time, a somewhat slower evolution rate than one might

wish to be restricted to.

Genetic programming (Koza 1992; Koza 1994) contains no explicit limitation in the length of the genome.

Functional trees are built up which serve to solve a practical design problem. The ability of the trees to be

used in a modular way allows subfunctions to be built up and to be incrementally added to a functional tree

system. This is an example of a partially compartmentalized model, which has advantages we clarify in this

study.

The rest of the paper is organized as follows. Section 2 discusses compartmentalization and the expected

time of construction of di�ering paradigms. Section 3 presents the theoretical distribution of epochs in

time, providing motivation for application of this theory to existing models of evolutionary systems. Finally,

Section 4 o�ers some concluding remarks.

2. A Mathematical Model of Compartmentalization

In this section, we introduce the concept of DNA compartmentalization and discuss a mathematical

justi�cation for its requirement in evolutionary systems. We focus on evolutionary systems which are built

up incrementally, weighing both the addition of new elements and the modi�cation of connections between

elements. We assume that DNA is a string made up of building blocks, which are units of DNA that may take

on one of several possible settings. On top of these building blocks are connections which must be properly

con�gured between independent blocks or groups of building blocks. We assume that the length of the DNA

is not constant and that new building blocks may be added to the structure with some probability.

2.1. The nature of compartmentalization.

De�nition 2.1. A compartment is a subset of a DNA string consisting of elements which code for the

structures which carry out a speci�c function, group of functions, or no function at all. Such a grouping

must exclude elements which in whole or in part de�ne other functions. An elemental compartment is

a compartment which is not capable of being broken up into smaller compartment, with retention of all

functions initially encoded.

Note that an elemental compartment can have multiple functions.

De�nition 2.2. A non-compartmentalized encoding is an encoding in which there exists no natural

structure within the DNA which codes a given device. Any speci�c element of DNA is equally probable of

being a part of a given substructure in the evolving system.

This includes, among others, in�nite length genetic algorithms. Unless explicitly introduced in the system,

there are no self-contained functional units within such implementations.

De�nition 2.3. A partially compartmentalized encoding is an encoding in which there exist natural

substructures which may be completely duplicated without alteration of function.

Genetic programming algorithms are also examples of partially compartmentalized encodings.

De�nition 2.4. A completely compartmentalized encoding is an encoding in which connectivity and

functionality may at once be speci�ed by the DNA or be a natural consequence of some �natural� laws

governing the behavior of the structures built by the encoding.

Each change in the design of a system is of one of two fundamental types. One changes the �tness of the

design, while the other does not. This is an important distinction, and we formally de�ne these.

De�nition 2.5. We de�ne an evolutionary step to be to be a change in a design that also changes its

�tness. We de�ne a null step to be a change in a design that produces no change in �tness.

The aftermath of an evolutionary step is an epoch, in which the new, more functional structure takes over

a population of less functional structures. By successfully competing against the others, the �tter organism

can create multiple copies of the new structure. New designs are then based on this model and will then have

a lower improvement time. A null step, on the other hand, produces no such epoch and so all alterations

must be built on top of the change in question thereby further increasing the improvement time.
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2.2. Rates of evolution. Let us assume that we are working with linear DNA made up of building blocks

of some kind and a method of encoding the connection between the building blocks. These building blocks

may generally encode a physical entity or a computational entity.

Let us assume that we haveN possible assignments for each building block. First, note that the probability

of adding a speci�c building block is typically of O
�
1
N

�
. This, of course, assumes that the addition of each

possible building block is equally likely. The probability of connecting any two building blocks correctly is

O

�
1

m(m�1)

�
where m represents the number of elements currently in the genome. So, the probability of

correctly adding and connecting a building block to a device with m� 1 elements is

pa = O

�
1

Nm (m� 1)

�
:(2.1)

Thus, the probability of a particular design containing M elements is

pd = O

 
1

N

MY
i=2

�
1

Ni (i� 1)

�!
= O

�
1

NMM ! (M � 1)!

�
(2.2)

yielding an expected time to completion of the algorithm of

� / O
�
NMM ! (M � 1)!

�
:(2.3)

If one does not require a particular order to the nodes being designed, then the probability of success is

conditioned by the number of possible identical solutions. In this case

pd / O

�
M !

NMM ! (M � 1)!

�
(2.4)

giving the expected time to completion

�n / O
�
NM (M � 1)!

�
:(2.5)

Now let us work out the analogous evolution time for the compartmentalized approach. We assume that

we have k compartments, each of length L of the same building blocks. In general, we assume that each

compartment, as shown above, has a probability of being formed as given in (2:4). The probability of

connecting each of these compartments correctly is typically of order

ppc / O

�
1

k(k � 1)L2k

�
(2.6)

making the total probability

pp / O

�
1

L2kk (k � 1)NL (L� 1)!

�
(2.7)

The expected time of construction in the partially compartmentalized model is

�p / O
�
k2NL (L� 1)!L2k (k � 1)

�
:(2.8)

Removing the time due to the connection of compartments yields the expected time to build in the com-

partmental model. Thus,

�c / O
�
kNL (L� 1)!

�
:(2.9)

This means that the ratio of the times is

�p

�n
=
NL (L� 1)!L2kk2 (k � 1)

NM (M � 1)!
:(2.10)

If we then let M = kL, we have

�p

�n
=
NL (L� 1)!L2kk2 (k � 1)!

NkL (kL� 1)!
:(2.11)

The corresponding ratio for the compartmental model is

�c

�n
=

kNL (L� 1)!

NkL (kL� 1)!
:(2.12)
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Example 2.6. Suppose that we have k = 2 and L = 4. Then equation (2:11) is

�p

�n
=

2N43!44

N87!
=

6N4256

1260N8
=

1536

420N4
� 3:66N�4:(2.13)

If we let N = 10, a reasonable choice for many evolutionary algorithms, the ratio is

�p

�n
' 3:66� 10�4:(2.14)

Clearly, this is a signi�cant advantage with a very small level of compartmentalization. The corresponding

calculation for the compartmentalization model is

�c

�n
=
N43!

N87!
=

1

24N4
� 4:2� 10�6(2.15)

an even more signi�cant advantage.

2.3. Types of compartmentalization. The use of compartmentalization in generating more e�cient evo-

lution algorithms is of paramount interest in this work, and we now turn to implications of this formalism.

The ability of a device to be built up incrementally from discrete modules allows one to evolve the modules

individually. This greatly reduces the expected time of completion from factorial in the number of building

blocks to factorial in the number of building blocks per node multiplied by a linear term in the number

of compartments. This also increases the time of completion by a factor that is factorial in the number of

building compartments, but quadratic in the number of building blocks per compartment. Thus, as long as

the number of building blocks is signi�cantly larger than the number of compartments, the development time

will improve greatly. We also note that this represents a worst case scenario; the situation is signi�cantly

easier if several of the building blocks are similar and may be duplicated.

These mathematical de�nitions lead us back to our previous de�nitions. We can see that there are

three fundamental types of DNA encodings, coupled strongly to the physical system in which they live.

Non-compartmentalized encoding is characterized by equation (2:5). These types of systems make use of

absolutely no structural information and have no well-de�ned functional groups. Often times the data

concerning functional groupings is scattered and must be dealt with across the genome. In�nite dimensional

or incremental genetic algorithms, in which the number of elements in a vector is unbounded, are such

algorithms. Algorithms which are not include genetic programming, and the Avida and Tierra systems by

Adami et. al. and T. S. Ray, respectively.

The second class of structures which are partially compartmentalized include those previously mentioned:

Tierra, Avida, and genetic programming. These models have implicit structure, and have elements evolving

which are partially compartmental. In Tierra and Avida these might be evolving subroutines whose com-

binations produce the functional creature. In genetic programming these are the subtrees, which may be

moved about intact and combined with other trees. These algorithms quickly create good behaviors, but

have a hard time creating a large number of functional subgroups. Rather, these paradigms should generate

progressively larger subgroups as the genome increases in length in order to keep the connection term of e-

quation (2:8) small. As the length of the compartments rises, the probability of �nding a useful compartment

decreases factorially leading to a convergence in the compartmentalization and size of compartment. This

leaves the algorithm to develop compartments of high quality and may lead to stagnation of the paradigm.

These types of algorithms, while providing a great advantage over the completely non-compartmentalized

model, can converge due to the second term of equation (2:8). If the number of compartments increases, so

too does the di�culty in generating the design, owing only to the correct interaction between compartments.

For some algorithms, though, it might be possible to build which remove this term. These algorithms

would have the interactions built as part of their structure, so that a particular compartment in the design

would only be able to interact with a handful of other compartments in the design. This would allow the

number of interactions to be severely curtailed, yielding a nearly linear computation time in the number

of compartments. This is what biological life is capable of accomplishing through the use of proteins and

embedding of this level in the physics of the universe. Such fully compartmentalized models represent a

great advantage to any type of evolution.
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Figure 1: The fully compartmentalized model.

As one can see, Figure 1 illustrates this model. Compartmentalization in the evolutionary process organizes

the DNA string based on functionality. By doing this, the number of interactions between compartments and

the time for completion are reduced to a minimum while the DNA string's full capabilities for adaptability

and survival are exploited. The product of the new DNA element is automatically incorporated properly

with the previous one, without the need for evolution of this compatibility. The way in which this is done is

model speci�c and embedded in the system.

Thus, we provide this table of paradigms and computation times.

Paradigm Computation Time

Non-compartmentalized �n / O
�
NkL (kL� 1)!

�
Partially Compartmentalized �p / O

�
k2NL (L� 1)!L2k (k � 1)

�
Fully Compartmentalized �c / O

�
kNL (L� 1)!

�
Table 2.1: Table of computational design expressions for di�erent paradigns

3. Compartmentalization in the Generation of Epochs

An evolutionary system represents a balance between two competing requirements, the ability to shield

existing systems from mutation and the need to adapt to the environment. Evolutionary systems have a

tendency to leave existing designs unchanged, as the set of useful designs for a particular task are typically

sparse in the space of all possible designs. Recklessly changing a design would be unlikely to produce a

feasible design, resulting in the extinction of the species in question. The competing tendency, of modifying

existing designs, also exists in order to produce more capable o�spring. This tendency to change things

requires a method of changing DNA without signi�cantly negatively altering the functionality of it. Thus,

the problem for an evolutionary design system is to preserve the function of evolving agents while still

improving.

If we again assume that DNA is essentially a string of building blocks, we may estimate the probability

that an improvement will occur. Let us also assume that we have some method for copying segments of

DNA into new additional segments of DNA. This copying mechanism must then depend on the choice of the

beginning and ending segments of DNA. We begin by investigating the non-compartmental model.

First, we assume that we have a length-independent mutation rate 0 < r < 1 which gives the likelihood

that at each iteration a given building block will mutate. Then, if we have a sequence of L building block

elements and N ways to mutate each one, the probability of choosing and correctly mutating S of them,

given that each mutation is independent, is

pnM / O

�� r
N

�S
(1� r)

L�S

�
:

Now, the probability of correctly copying any given DNA sequence

pnc / O

�
1

M (M � 1)

�
(3.1)

for each pair of cutting/copying points. So, the total probability of correctly copying the chosen DNA set

and correctly mutating it (creating a new functional piece of DNA) is
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pncr / O

 
1

M (M � 1)

M�S�1X
i=0

(M � S � i)
� r
N

�S
(1� r)

i

!
(3.2)

=
1

M (M � 1)S2

� r
N

�S (1� r)
h
(1� r)

M�S
� 1
i
+ r (M � S)

r2
(3.3)

Once the correct changes have been made, it is necessary to incorporate these changes into the genome.

This involves both correctly removing and adding the linkages between the existing and new structures

respectively. In non-compartmentalized models, these are done independently so that in general, the proba-

bilities are of order

pninc / O

 �
1

M hLi

�S!
(3.4)

where hLi is the expected length of the advantageous mutation. The product of these probabilities gives us

the total probability of an epoch-generating event. Thus, the total probability is of order

pn = O

0
@rS�2 (1� r)

h
(1� r)

M�S
� 1
i
+ r�1 (M � S)

M (M � 1)S (S � 1) (MN hLi)
S

1
A(3.5)

yielding a time of order

�n / O

0
@ M (M � 1)S (S � 1) (MN hLi)

S

rS�2 (1� r)
h
(1� r)

M�S
� 1
i
+ r�1 (M � S)

1
A(3.6)

If r � 1 then

�n / O

 
rM (M � 1)S (S � 1) (MN hLi)

S

rS�1 (M � S) r + (M � S)

!
(3.7)

In compartmentalized models, creating copies of DNA pieces can be done simply by choosing the compart-

ment of interest and directly copying it. This means that the probability of choosing the correct compartment

is

pcc = O

�
1

k

�
(3.8)

where k is again the number of compartments. The probability of modifying the copy correctly is given as

pcm / O

 
rS (1� r)

L�S

NS

!
(3.9)

giving the expected time to correct modi�cation as

�cm / O

 
NSk

rS (1� r)
L�S

!
(3.10)

which becomes, if r � 1,

�cm / O

�
NSk

rS (1� (L� S) r)

�
(3.11)

A partially compartmentalized model requires that the compartment of interest be correctly connected, and

the previous connection be correctly disconnected. Thus, the probability of disconnecting and reconnecting

the appropriate compartments is given by

ppc / O

 �
1

kL

�S!
(3.12)

making the time

�c / O

�
(kL)

S
�
:(3.13)
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Thus, the total time is

�p / O

 
NSk (kL)

S

rS (1� r)
L�S

!
(3.14)

Finally, a completely compartmentalized model has the connection taken care of by the underlying structure.

Thus, the expression (3:15) is altered, becoming

�c / O

 
NSk

rS (1� r)
L�S

!
(3.15)

If we again take kL =M , we may form another comparative table of the three evolutionary models.

Paradigm Improvement Time

Non-Compartmental � / O

�
r(kL)((kL)�1)S(S�1)((kL)NhLi)S

rS�1((kL)�S)r+((kL)�S)

�
Partially Compartmental �cm / O

�
NSkS+1LS

rS(1�r)L�S

�
Fully Compartmental �cm / O

�
NSk

rS(1�r)L�S

�
Table 3.1: A summarizing table of the di�erent expected computation times for improvements in the di�erent

models.

Typical performances of the three models are as given in Figure 2.

(a)
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Compartmentalized
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3 31

-2e18
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(b)

Non-Compartmentalized
Partially Compartmentalized
Compartmentalized

Comparison of Levels of Compartmentalization
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x
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o
m

p
u
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o
n
 T

im
e
)

Number of Compartments3 31

20.4

8.3

Figure 2: This gives the typical expected performance of the three compartmental models in linear (a) and log (b)

format. The advantages of the partially and fully compartmentalized models are clearly visible.

Table 3.1 and Figure 2, illustrate the advantage of a compartmental model in generating epochs, or sweeping

displacements of the current dominant species in an arti�cial evolutionary system. Evolutionary time is

measured in epochs, rather than years, as these are the only important time measures. Because of the

existence of epochs, the time required for a design or adaptation is additive rather than multiplicative.

Any evolutionary system which is capable of generating evolutionary change which results in an epoch will

come to be the dominant system in use. Clearly compartmentalization exhibits a signi�cant and increasing

advantage in the generation of any given improvement in any particular trait. Thus, it would seem that

compartmentalization is a signi�cantly advantageous design paradigm for evolutionary systems, both natural

and arti�cial.

4. Conclusion

In this paper, we've motivated the existence of compartments in the DNA of evolutionary systems by

examining the probability that a given structure may be built, given that it is composed of a speci�c

number of building blocks of a �nite number of types and equal probabilities. Three general types of

evolutionary paradigms have been formulated based on their use of compartmentalization. These are non-

compartmentalized, partially compartmentalized, and fully compartmentalized models. The main di�erence

in the models derives from the creation of linkages between building blocks which model the system. The

gains in using full compartmentalization in the design of complex structures are large when compared to the

use of standard non-compartmentalized DNA.

Though no known natural or arti�cial system completely satis�es the assumptions of this model in that

building blocks are normally not independent in their impact on the design of a piece of hardware or a
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biological system, the model is general enough that its main implications may be viewed as representative of

other systems. Thus, we believe that these results are generally applicable to current paradigms, and may

be used as a motivation for the alterations of these paradigms.

More importantly, we have understood that the removal of the di�culty in producing correct linkages is

of fundamental importance when considering building complex structures. The single most di�cult part of

designing an improvement to an existing structure resides in this term. Models that partially or completely

remove this term may be expected to perform many orders of magnitude better than those that do not. The

design of new paradigms that incorporate this �physical� term into the design of the system rather than the

structure may be expected to be useful tools in the design of new and interesting structures.
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