
Autonomous Acquisition of Fuzzy Rules for Mobile Robot Control:
First Results from two Evolutionary Computation Approaches

A. G. Pipe B. Carse

Intelligent Autonomous Systems engineering Laboratory, Faculty of Engineering,
University of the West of England, Frenchay Campus,

Coldharbour Lane, Bristol BS16 1QY, United Kingdom

Email: Anthony.Pipe@uwe.ac.uk
Web Site: http://www.ias.uwe.ac.uk

Phone: (+44) 117 3442818, FAX: (+44) 117 9763873

Abstract

We describe two architectures that autonomously
acquire fuzzy control rules to provide reactive
behavioural competencies in a simulated mobile
robotics application. One architecture is a
“Pittsburgh”-style Fuzzy Classifier System
(Pitt1). The other architecture is a “Michigan”-
style Fuzzy Classifier System (Mich1). We
tested the architectures on their ability to acquire
an “investigative” obstacle avoidance
competency. We found that Mich1 implemented
a more local incremental search than the other
architecture. In simpler environments Mich1 was
typically able to find adequate solutions with
significantly fewer fitness evaluations. Since
fitness evaluation can be very time consuming in
this application, it could be a strong positive
factor. However, when the rule set must
implement a competency in more complex
environments, the situation is somewhat
different. The superior ability of Pitt1 to retain a
number of schema in the population during the
process of optimisation, is then a crucial
strength.

1 BACKGROUND
Evolutionary Computation and Reinforcement Learning are
both powerful techniques that can be utilised in creating
entities capable of autonomously acquiring useful rules
about a chosen problem domain. Well established
approaches include those that use;

a) evolutionary techniques operating at the level of
whole rule sets (Carse, Fogarty & Munro, 1996;
Smith 1980),

b) evolutionary techniques that operate at the level of
individual rules in a set (Booker, Goldberg &
Holland, 1989),

c) other “lifetime” reinforcement learning approaches
operating within a single rule set (Pipe, Fogarty &
Winfield, 1994A, 1994B, 1996; Pipe & Carse,
1994; Pipe & Winfield, 1996; Sullivan & Pipe,
1996; Sutton, 1984).

Although each of the three categories listed above are at a
quite mature stage within their own fields, the authors
believe that a comparative investigation into the
characteristics and performance of these techniques in some
appropriate shared problem domain could be a very
enlightening and fruitful area for research. We chose to
conduct such a programme of work in the area of mobile
robotics. This application area has characteristics that are
complex but easy to visualise, it is widely known, it is a
domain with which the authors have considerable
experience, and the results of the research could have some
future use in the real world. We have chosen fuzzy logic to
implement local-cued behavioural control of a wheeled
robot, the task therefore is to discover good fuzzy rules for
implementing a particular competency in an artificial
creature, or animat (Wilson, 1987). We have already
conducted a considerable amount of work in the area of
“lifetime” reinforcement learning applied to the application
domain covered by this paper, i.e. category c) above.
However, before conducting a thorough comparison we
needed to adapt existing algorithms from categories a) and
b) to our application domain. This paper therefore focuses
on the structure of, and first tests on, an architecture drawn
from each of these other two categories. In order to facilitate
the future comparative studies between all three

architectures, a common testing harness has been developed
as part of the new work presented here; it includes the
environmental and robot simulations, as well as the fuzzy
logic system that controls the robot. In order to allow the
experiments to be ratified, and perhaps extended, by others
– all of this test harness software is available by email or by
visiting our web site, both addresses are given at the head of
this paper.

Before going further it is worthwhile briefly reviewing
our existing “lifetime” reinforcement learning
architecture, that lies in category c), to help set the scene
for this paper. When used for the purpose of extracting
local-cued fuzzy rules, it is a two-stage process. The first
stage is goal-oriented. An Adaptive Heuristic Critic
(AHC) architecture builds a “potential field” spatial
cognitive map of an environment . It investigates the
environment in a step-wise fashion by using an Evolution
strategy (Rechenberg, 1973) to optimise the next move
from the current position, until some goal location is
reached. As it interacts with the environment it stores
knowledge gained about “good” and “bad” places in a
Radial Basis Function neural network. This neural
network encodes the “potential field” map. From this map
a number of useful trajectories through the environment
can be autonomously created. This ends the first stage.
During traversals of these trajectories sensorimotor data
can be stored. A fuzzy clustering approach is then used to
form local-cued rules from this data, and thus a
behavioural module is created that encapsulates some
competency (Pipe, Fogarty & Winfield, 1996; Pipe &
Winfield, 1996). A number of competencies have been
extracted in this way, including the obstacle avoidance
competency that is the subject of this paper. This
architecture is at a quite mature stage of development, it is
currently being transferred to real-world domains.

However, it is clear that this is a quite complex multi-
purpose architecture. Amongst our other aims, we wished
to investigate methods for extracting fuzzy rules from
environmental experiences in a more direct fashion. The
focus of this paper therefore is on describing two new
architectures that acquire fuzzy rules as a single stage
process, and the first results of applying them in this
common domain. Tuning of the evolutionary operators and
other parameters for these two architectures must be the
next step, followed by extensive comparative performance
testing of all three architectures; but this is future work.

2 THE APPLICATION
It is clear from studies in the natural domain that many
creatures make use of conscious and sub-conscious
cognitive processing for reasoning about the future outcome
of planned actions in the environment. Our work on
cognitive map-building architectures, that work at this level,
has been published elsewhere. However, such levels of
information processing are not the focus of this paper. The
vast majority of real (and artificial) creatures must also

make extensive use of unconscious fast reactive behaviour,
especially in the face of a volatile environment; in fact these
abilities are often crucial for survival in a large range of
circumstances. In mobile robotics, this level of control has
been one of the focuses of attention in the Adaptive
Behaviour research community for some time, and in
particular Behaviour-Based robotics (Brooks, 1986). It
seems clear from recent studies that whilst some reactive
behaviours may require “internal state, or weak internal
representations (Clark & Grush, 1999; Clark & Wheeler,
1998), many others are purely Stimulus-Response (S-R)
and are used to good effect in both natural and artificial
systems.

This paper begins the planned comparative work by making
initial investigations into the abilities of the two new
architectures to extract a useful S-R behavioural module
from environmental experiences. Such a module must
encapsulate an environmentally reactive competency.
Examples are obstacle avoidance, taking right or left turns at
a corridor T-junction, and so on. We have chosen an
“investigative” obstacle avoidance competency for these
first experiments. Because the behaviours are to be S-R at
this stage of the work, any linkages between rules are
made via the environment itself; there is no need to build
internally linked behavioural sequences, and therefore the
optimisation and/or learning tasks are simplified. We have
used robot and environmental simulations extensively in our
other previous research, the current new test harness design
has built on these experiences, and is based heavily in real
robot experimentation carried out in our laboratory. Details
of the harness are given briefly below. However, as
mentioned earlier, the C source code is freely available on
request to the email address or directly from our
laboratory’s web site.

Figure 1: sensorimotor apparatus of the simulated robot

2.1 THE SIMULATED ROBOT

The following is a general description of the simulated
twin-wheeled differential drive robot and its sensorimotor
apparatus, illustrated in figure 1. The real robots in our

laboratory possess two geared d.c. motors with an
incremental shaft encoder on each. They are used in a low-
level feedback loop to provide position and velocity
control. These controllers are coupled through a kinematic
algorithm to give a body-centred “virtual steering wheel”.
The simulated environment therefore assumes that such a
low-level control system is present, allowing control to be
effected by an equivalent steering angle and forward
velocity. In this work the robot travels through its
environment with a constant forward speed of 0.1 m/s and a
maximum continuously variable turning speed of 0.5 rad/s.
The robot has an array of five distance sensors. The
simulation supports a simple point-to-point measurement,
to which noise and bias errors may be added if required,
these are based upon ultrasonic sensors used on our real
robots. The set of distance measuring sensors form a five
element array, set at the following angles from the
“straight ahead” position; 0o, 90o to the left, 45o to the left,
45o to the right, and 90o to the right, each with a 5 metre
maximum sensing range and intended for obtaining a
local-cued environmental “signature”. A fuller description
of the kinematic details used to generate the simulation of
movement and of the type of distance sensors are also
available via email address or at our web site.

2.2 THE SIMULATED ENVIRONMENT

The environmental mazes are set on rectangles of any
size, although for the experiments reported in this paper
they are square, being either 4metres or 10metres on each
side. Any number of rectangular obstacles, of any
dimension, may be placed in a maze. If there are start and
goal positions, they may also be placed anywhere. It
should be stressed that choosing rectangular shapes for
the obstacles and the maze was purely an expedient in
generating the maze simulation. The animat itself has no
such restrictions in its sensory or motor parts. All
measurements made and movements executed by the
robot are continuous real valued, so for this simulation
there is no concept of a “grid” or discretised state space.

When operated in normal mode, simulated animats sense
and act in real time; for example velocities and sensory
sampling intervals, established from observing actual
vehicles in the laboratory, are tied to a real time clock
with a period of 100ms. The simulation may also be
operated in “super” real time. Under these circumstances
100ms of simulated time equates to approximately 10ms of
real time on our 300MHz Pentium II PC, but the speed-up
factor is then computer dependent. All other characteristics
are, however, unaffected. This feature is useful since this
simulation generates fitness evaluations for the two
architectures tested and, like many evolutionary
computation applications, it is fitness evaluation that is the
primary time consuming factor.

2.3 IMPLEMENTING LOCAL-CUED S-R
BEHAVIOURS USING FUZZY LOGIC

In the work presented in this paper, the fuzzy membership
functions are fixed beforehand for both the input and
output spaces, rule acquisition is limited to the creation
and deletion of rules. When active as the robot's controller
the Fuzzy Logic System (FLS) is run through one forward
pass every 100ms simulation clock cycle, providing an
updated steering angle for that period. The fuzzy controller
has five inputs, one from each of the distance sensors and a
single output defining steering angle. If fuzzy rule strength
falls below a minimum threshold, then motion continues on
a “straight-ahead” setting, so that minimally active rules are
not able to influence the steering control.

Figure 2: fuzzy membership function distributions

The FLS is a “Mamdani”-style system (Mamdani &
Assilian, 1975). A conventional distribution of unit-height
triangular membership functions was chosen. All functions
were identical and equally spaced, with the exception of
each function placed at the end of the range of an input or
output, as shown in figure 2. For fuzzy AND a product of
membership function activations was used for a given rule
as opposed to the simpler MIN operator, since it requires
little extra processing and is known to produce superior
interpolation properties (Harris, 1992). Defuzzification was
performed by conventional centre of gravity calculations.
The use of 3 membership functions at each input and 17 at
the output was established during previous research as being
appropriate for this type of fuzzy controller in this
application (Pipe, Fogarty & Winfield, 1996; Pipe &
Winfield, 1996) and incorporated into this test harness. The
reasons for choosing these parameters are given in that
paper.

Table 1: format for a fuzzy rule

0 45L 90L 45R 90R OUT

1.0

0.0 2.0 4.0 6.0 8.0

1.0

-1.0 -0.5 0.0 0.5 1.0
 radians x π

metres

 a
ct

iv
at

io
n

 a
ct

iv
at

io
n

output

any
input

Each fuzzy rule was of the form shown in table 1, where;
each of the six fields is an integer specifying a fuzzy
membership function to use for that input or the output in
forming a rule - counting from left to right on each graph
shown in figure 2 (i.e. the interval (1-3) for each input and
(1-17) for the output),

0 Membership Function (MF) number to use for
front pointing distance sensor,

45L MF number to use for distance sensor pointing
450 to the left of front,

90L MF number to use for distance sensor pointing
900 to the left of front,

45R MF number to use for distance sensor pointing
450 to the right of front,

90R MF number to use for distance sensor pointing
900 to the right of front,

OUT MF number to use for output angle field in
radians x π – where positive values indicate a
clockwise turning angle from the current
orientation

All rules must specify a membership function for each
input, i.e. in these first versions of the algorithms no
“don’t care” symbol is used.

Table 2: Details of Pitt1

Rule set size 50
Population size
(no. rule sets)

40

Crossover
operator

Single point, restricted to valid split
between one complete rule and another
in a rule set. Probability = 0.9.

Mutation
operator

Two-point, one in a randomly selected
input for a rule and changing its value to
a randomly selected new membership
function for that input, the other
randomly selecting any valid new
output membership function for the
same selected rule with equal
likelihood. Probability = 0.01, evaluated
separately for each point.

Selection
operator

“Roulette” wheel with “elitism”, i.e. the
highest fitness population member is
retained in the subsequent generation,
but with fitness re-evaluated. Each
selection identifies two parent rule sets
used to create a single offspring.

3 USING A “PITTSBURGH”-STYLE
FUZZY CLASSIFIER SYSTEM

An evolutionary algorithm operating at this population
based level, is analogous to the well known natural
processes of evolution. In this early work, a “vanilla” GA
was used to encode a population of fixed-size rule sets. The

rule sets are evaluated for fitness by running a trial of the
animat through a chosen simulated environment for each
rule set in the population. When all rule sets have been
evaluated in this way, the GA applies its operators to
produce the next generation. This carries on until the
process is halted by the designer, or the maximum number
of generations is reached. Table 2 shows the details of
operators, fitness function, and parameter values used.

Table 3: Details of Mich1

Population size
(no. of rules in
rule set)

200

Number of
parent rules

50

Crossover
operator

Two point, one at a randomly selected
boundary between two input, the other
selecting one or the other output MF
identifier from the two selected parents
with equal likelihood. Probability = 0.9.

Mutation
operator

Two-point, one in a randomly selected
input for a rule and changing its value to
a randomly selected new membership
function for that input, the other
randomly selecting any valid new
output membership function for the
same selected rule with equal
likelihood. Probability = 0.01, evaluated
separately for each point.

Selection
operator

“Roulette” wheel with a form of
“elitism”, i.e. all parent rules retained in
the subsequent generation, but with
fitness re-evaluated. Each selection
identifies two parent rules used to create
a single offspring.

4 USING A “MICHIGAN”-STYLE
FUZZY CLASSIFIER SYSTEM

In our “Michigan”-style approach to this problem, an
evolutionary algorithm acts upon some subset of a single set
of rules. The elements of the evolutionary algorithm’s
population are therefore rules of a single rule set, rather than
a group of rule sets as in the previous architecture. Again,
for this early work, a simple system was created. A
“vanilla” GA applies its operators to create a new single rule
set at each generation. A group of the highest fitness scoring
rules are used as parents for creating a new generation. An
“elitism” operator retains this group into that next
generation, but with fitness re-evaluated at that time. Fitness
evaluation also now operates at the level of individual rules,
carried out during a single simulation trial of the animat in a
maze. Each rule’s fitness is evaluated during this trial, the
GA then produces the next generation, and so on. Table 3
shows the details for this implementation.

5 EXPERIMENTS
As mentioned earlier, in all of the experiments below, the
acquisition of an obstacle avoidance competency was the
overall aim. Of course for such a competency to be useful,
investigation of the environment must be encouraged,
otherwise a stationary animat could be deemed highly fit
for the purpose. Therefore the fitness functions for both
architectures included a measure of the maximum
“straight-line” distance travelled by the animat from the
start location during a trial in the environment. In fact just
this single factor was adequate to form the fitness
function for Pitt1.

Figure 3: best Pitt1 member at generation 7

However, in the case of Mich1, each rule had to have its
own fitness value, and therefore an additional factor
related to cumulative activation of the rule was included.
Since this is computed as part of the fuzzy inference
process anyway, this did not incur a significant processing
overhead; the rule activity was simply accumulated over
the trial and then multiplied by the same “distance
travelled” factor used as the fitness function for the other
architecture. Any environmental trial was terminated
under either of two conditions, if a maximum time
allocation of 200 simulated seconds was reached, or there
was an environmental collision before this time.

Many experiments were conducted, a typical sample is
described below. In all of these examples good, and
interesting, individuals were created before the maximum
number of GA generations was reached, and particular
examples like this are used in the discussion because they
possess some feature that is noteworthy. However in
approximately 80% of the experiments conducted to date
on both architectures the population would converge on a
good solution, if the parameters were set to those given in
tables 2 & 3. In the other 20% of cases the population

converged on a good solution, and then diverged again,
with insufficient generations remaining for re-
convergence.

We started experiments with a “corridor”-style 4metre
square maze, as shown in figure 3. Either of the two
architectures were able to form good obstacle avoiding
trajectories through this environment within 20
generations. Even here though, the superior global search
of Pitt1 found adequate solutions in fewer generations,
this trend was more exaggerated in later experiments.
Figure 3 shows a robot trajectory that begins on the left of
the figure, but it is actually 5 successive traversals
overlaid on each other. The simulation was terminated at
this point for reasons of clarity, but there is no reason to
believe that it would not continue indefinitely. This rule
set was discovered at generation 7, but there was an
adequate solution in the initial randomly selected
population for this run, and this was not untypical for this
architecture and this maze.

Figure 4: best Pitt1 member at generation 4

However this superior global search is not without
penalty. Each generation, Pitt1 runs a robot through the
maze 50 times in order to evaluate the fitness of each rule
set. Mich1, by comparison, only runs a single robot trial
per generation. If “super” real time simulation were to
remain useful for real world applications, then this will
not be a significant penalty for Pitt1. However, if there
was a requirement for some significant number of
evaluations to be carried out on a real robot, then this
could be a highly negative aspect. In fact the “about-turn”
repetitive nature of the trajectory that was created in this
run was a side-product of evolution, since fitness is
calculated from the furthest “straight-line” distance
travelled to, at any point in a trial. For both architectures,
although there were normally less than 5 rules with large
turning angles as output in the best individual, typically

20 to 50 rules became active at some point in a trial.
These other rules were responsible for maintaining
stability during gradual turns; their removal soon revealed
this fact.

A harder maze, shown in figure 4, was used for the
remainder of the experiments reported on in this paper.
This was a bigger, 10metre square maze; it was meant to
represent a “warehouse”-style environment. There is an
area at the top-right that is quite closed-in, a pair of
parallel walls in the centre with two smaller openings, a
collection of larger objects at the bottom-left, and some
quite large open spaces. The reason that this environment
was harder for these architectures to learn obstacle-
avoiding rules for, lies in the differing characteristics of
the sections in the environment. For example, different
categories of rules are required in the closed in areas,
compared with the open spaces. This means that the
architectures must be more efficient in storing knowledge
in their rule sets, in order to have adequate behavioural
coverage within the same size of fuzzy logic system as the
previous experiments. Figure 4 also shows a trajectory
generated by the best rule set at generation 4 of Pitt1. The
trajectory begins at the top left. It starts with some general
avoidance behaviour in the upper-left quadrant. After two
unsuccessful attempts, it then passes through one of the
“doorways” in the central wall section. In fact there were
some quite fit individuals in the first generation of this
run, but it took until generation 4 for avoidance
manoeuvring to emerge in the bottom-right quadrant.

Figure 5: Mich1 at generation 37

Figure 5 shows an example trajectory generated by Mich1
at generation 37, with the same starting position. It is
clear from figures 4 and 5 that in neither case had the
rules acquired the ability to deal with closed-in
environments. Both of them terminated before the
maximum time allocation was reached, after collision in

one of the closed in areas. In fact this problem was never
surmounted despite 20 repetitions of these experiments on
each architecture. However the nature of the fitness
function did not encourage the creation of “close
quarters” rules under these circumstances, both of the
controllers illustrated in figures 4 and 5 were highly fit
individuals.

However, simply changing the start location so that it was
within the closed in section at the top-right of the maze
effected a crucial change in the learning experience. The
architectures were forced to create “close-quarters” rules
in order to escape into the more open sections, and
thereby earn high fitness values. This proved to be quite a
lot harder for Mich1 than Pitt1.

Figure 6: best Pitt1 member at generation 8

Figure 6 shows a trajectory generated by the best
individual at only generation 8 of Pitt1. In subsequent
generations the population converged on a slight variant
of the best generation 8 individual. The trajectory stops in
the mid-left of the figure because the maximum time
allocation was reached; when this was doubled the animat
continued move around in the environment for that
increased time.

Figure 7 shows an example of Mich1 at generation 44. In
this run performance did not improve significantly over
the next 156 generations, and this was typical for this
architecture when presented with this kind of problem. In
fact there were only 16 rules that were active for
significant amounts of time during this trial. There was a
set that caused the early cycling behaviour close to the
start location, and a second set that were responsible for
the sharp turns. During the long straight runs no rules
were active beyond a very minimal level, and were all
below the cut-off threshold for steering control of the
robot. As mentioned earlier, the result is “straight-ahead”
motion at the standard speed until either one or more rules

becomes active at a level greater than the threshold, or
collision occurs.

Figure 7: Mich1 at generation 44

The values of the parameters for each algorithm were
determined experimentally. More work could be carried
out in this area, but some indicative understanding has
already been gained. The effects of changing parameter
values of Pitt1 is described first. Reducing the rule set
size caused incremental reduction in convergence
performance and quality of the best individual. Increasing
it did not yield linear improvements in performance of the
algorithm, indicating that, for these problems, there was a
“knee” characteristic to the curve of performance against
rule set size. Decreasing the population size down to just
10 individuals still allowed sporadic convergence on good
performance rules sets, whilst quadrupling this parameter
value to 200 did not seem to give significantly improved
performance. The effects of changing crossover and
mutation probabilities were concomitant with what one
would expect from a GA in most circumstances. Let us
now consider changing parameters in Mich1. Reducing
the number of rules used as parents for the next
generation made convergence performance more volatile
across repeated trials, doubling this number did not give
significant improvement, and tended to increase the
likelihood of premature sub-optimal convergence.
Halving the population size was detrimental to
performance in all cases, there did not seem to be enough
coverage in the initial population under these
circumstances. Doubling this parameter did slightly
improve performance in the “initially closed in
warehouse” environment, but gave significantly less than
linear improvement. Like the other architecture, changing
crossover and mutation probabilities yielded unsurprising
results.

6 DISCUSSION
For these architectures, and in this application, Mich1
displayed a more incremental learning tendency than
Pitt1. Increasing the size of the single rule set beyond that
presented here only reduced, rather than removing, this
tendency. Where the problem suited this methodology
however, the benefits of the reduced number of time
consuming fitness evaluations was a heavy factor in
Mich1’s favour. However, Pitt1’s ability to retain the
schema required for more complex problems as the
optimisation process proceeded, gave it a distinct
advantage under more complex circumstances.

These differences were best illustrated by the seemingly
simple change of start location in the “warehouse” maze.
If the animat was started in an open space, then only
“open space obstacle avoidance” behaviour needed to be
developed to create quite high fitness rule-bases.
However, when started in a constrained space, rules for
handling obstacle avoidance under these circumstances
had to be developed simultaneously with those for open
space scenarios.

In the case of the behaviour displayed in figure 7, one
could conclude that Mich1 had successfully taken
advantage of the combined features of the robot, the
environment and fitness function, to create a fit individual
with a very small number of useful rules. Perhaps this
would be difficult to argue with under appropriate
circumstance, after all if the only aim was to create an
animat that investigates its environment, then this fuzzy
controller achieves that approximately as well as the
alternative approach illustrated in figure 6. However, it
must be said that the control effort displayed in figure 7
looks rather brittle and inelegant.

7 FURTHER WORK
This work is clearly at an early stage and their is much
more to be done. The performance of the two
architectures displays promise, but they are both simple
“vanilla” algorithms. To date, they have only been applied
to a quite simple reactive behavioural problem, as shown
by the small number of generations required for Pitt1 to
find adequate solutions.

The next step must therefore be to bring the two
architectures to a more mature state. To achieve this we
must test a wide range of parameter values in a more
rigorous fashion than has been conducted to date, and
alternative operators must be investigated. In this way a
firmer understanding may be reached of how to achieve
internal optimality and robustness of the two underlying
algorithms considered here.

In addition to these general points, there are some more
specific problems. Firstly, we must test these two new
architectures on their ability to extract other
competencies. For many competencies this will require a

solution to the problem of building internally linked
behavioural sequences; i.e. a fuzzy rule-base that is able
to encapsulate internal state, or weak internal
representations, in some form when the problem requires
it. From the evolutionary computation perspective, it is
never simple to devise robust evolutionary operators that
respect run-time created boundaries around groups of
population members. Similarly, from the reinforcement
learning perspective, Temporal Difference learning
algorithms that are capable of dealing with linked chains
of behaviour that eventually lead to positive reward, are
also far from non-trivial in complexity. For Pitt1 this will
mean that operators will have to be brought to bear that
tend not to break-up internally linked rule groups. This
could be achieved by converting the architecture into a
Delayed Action Classifier System (Carse & Fogarty,
1994). For Mich1 a Temporal Difference delayed reward
algorithm will need to be introduced (Sutton, 1984).
Secondly, the form of the rules themselves is very
restrictive to building a hierarchy of rules in a rule set. For
example, the requirement for every rule to use all five
inputs precludes the creation of a sub-group of “general”
rules that use some critical subset of the inputs to provide
powerful drive outputs; fuzzy logic, as a wider field, is
full of such practices. Thirdly, only allowing each
architecture to operate on the rules of the fuzzy logic
system could also be restrictive. Membership function
positions, and perhaps shapes, could also be part of the
process.

8 CONCLUSIONS
The objectives of the work presented in this paper were to
introduce the main aims of the wider programme of
comparative work, describe the two new architectures that
will be used in this programme, demonstrate them in
operation in their preliminary form, and give some
general indications as to their inherent strengths and
weaknesses. In these respects we believe that the paper
has served its purpose.

References

Booker L B, Goldberg D E & Holland J H (1989) Classifier
Systems and Genetic Algorithms, AI 40, pp.235-282

Brooks R A (1986) A Robust Layered Control System for a
Mobile Robot, IEEE J. of Robotics and Auto., RA-2, no. 1

Carse B & Fogarty T C (1994) A Delayed-Action Classifier
System for Learning in Temporal Environments, Procs.
IEEE Int. Symp. on Evolutionary Computation, Vol. 2 pp
670-673, Florida, USA

Carse B, Fogarty T C & Munro A (1996) Evolving fuzzy
rule based controllers using genetic algorithms, Fuzzy Sets
and Systems 80, pp.273-293

Clark A & Grush R (1999) Towards a Cognitive
Robotics, Journal of Adaptive Behavior, 7 (1),
International Society for Adaptive Behavior, pp.5-16

Clark A & Wheeler M (1998) Bringing Representation
Back to Life, From Animals to Animats 5, Proceedings of
fifth International Conference on Simulation of Adaptive
Behavior, pp.3-12

Harris C J (1992) Comparative aspects of neural networks
and fuzzy logic for real time control, in Neural Networks for
Control and Systems, IEE Control Eng. Series #46, chap. 5,
Peter Peregrinus, pp.72-93

Holland J H (1975) Adaptation in natural and artificial
systems, University of Michigan Press, Ann Arbor

Mamdani E H & Assilian S (1975) An experiment in
linguistic synthesis with a fuzzy logic controller.
International Journal of Man-Machine Studies, vol. 7, no.
1, pp.1-13

Pipe A G, Fogarty T C & Winfield A (1994A) Hybrid
Adaptive Heuristic Critic Architectures for Learning in
Mazes with Continuous Search Spaces, Lecture Notes in
Computer Science #866 Parallel Problem Solving from
Nature III, Springer-Verlag, Eds. Davidor, Schwefel,
manner, pp 482-491

Pipe A G, Fogarty T C & Winfield A (1994B) A Hybrid
Architecture for Learning in Continuous Environmental
Models in Maze Problems, From Animals to Animats 3, Ed.
Cliff, Husbands, Meyer & Wilson, MIT Press, pp. 198-205

Pipe A G & Carse B (1994) A Comparison between two
Architectures for Searching & Learning in Maze Problems,
Lecture Notes Comp. Science #865, Springer-Verlag, Ed. T
C Fogarty, pp.238-249

Pipe A G, Fogarty T C & Winfield A (1996) An Experiment
in Knowledge Abstraction - From Cognitive Maps to
Behaviours, Procs. 2nd Int. Conf. on Adaptive Computing
in Engineering Design and Control, pp.65-70

Pipe A G & Winfield A (1996) An Autonomous System
for Extracting Fuzzy Behavioural Rules in Mobile
Robotics, From Animals to Animats 4, Cape Cod, USA,
MIT Press, ISBN 0-262-63178-4, pp.233-244

Rechenberg I (1973) Evolutionsstrategie, Problemata,
Fromman-Holzboog, Stuttgart, Germany

Smith S F (1980) A learning system based on genetic
adaptive algorithms, PhD thesis, University of Pittsburgh

Sullivan J C W & Pipe A G (1996) Efficient Evolution
Strategies for Exploration in Mobile Robotics, Procs. AISB
workshop of Evolutionary Computation, Lecture Notes in
Computing #1143, Springer Verlag, pp.147-161

Sutton R S (1984) PhD thesis `Temporal Credit Assignment
in Reinforcement Learning', University of Massachusetts,
Dept. of computer and Information Science

Wilson S W (1987) Classifier Systems and the Animat
Problem. Machine Learning 2 (3), pp.199-228

