
Introducing a Genetic Generalization Pressure to the
Anticipatory Classi�er System - Part 2: Performance Analysis

Martin V. Butz

Dep. of General Engineering

University of Illinois

Urbana-Champaign, IL 61801

butz@illigal.ge.uiuc.edu

David E. Goldberg

Dep. of General Engineering

University of Illinois

Urbana-Champaign, IL 61801

deg@illigal.ge.uiuc.edu

Wolfgang Stolzmann

Institute for Psychology III

University of Wuerzburg

Germany

stolzmann@psychologie.uni-wuerzburg.de

Abstract

The Anticipatory Classi�er System (ACS) is

able to form a complete internal representa-

tion of an environment. Unlike most other

classi�er system and reinforcement learning

approaches, it is able to learn latently (i.e. to

learn in an environment without getting any

reward) and to form an internal model of the

perceived environment. After the observa-

tion that the model is not necessarily maxi-

mally general a genetic generalization pres-

sure was introduced to the ACS. This pa-

per focuses on the di�erent mechanisms in

the anticipatory learning process, which re-

sembles the specialization pressure, and in

the genetic algorithm, which realizes the ge-

netic generalization pressure. The capabil-

ity of generating maximally general rules and

evolving a completely converged population

is investigated in detail. Furthermore, the

paper approaches a �rst comparison with the

XCS classi�er system in di�erent mazes and

the multiplexer problem.

1 INTRODUCTION

The ACS is not the �rst approach which forms a com-

plete internal model (i.e. a cognitive map) of the exter-

nal environment. Reinforcement learning approaches,

like Dyna (Sutton, 1991), form an internal model but

are not able to generalize and indeed form an identi-

cal internal representation of the outside world. Riolo

(1991) showed that classi�er systems are also able to

form a cognitive map and thus are able to learn la-

tently and do lookahead planning. However, the rep-

resentation of the resulting state in Riolo's CFSC2

is hidden in the rules and message list of the orig-

inal learning classi�er list structure (Booker, Gold-

berg, & Holland, 1989). Moreover, there was no gen-

eralization process in CFSC2, either. Drescher (1991)

published a Context/Action/Result-unit approach, he

called schemata. His approach is based on the Pi-

agetian development theory. One of his foundational

problems is how to notice the result of an action. This

problem is solved in the ACS by using the mechanism

of anticipatory behavioral control proposed by Ho�-

mann (1993). The similar mechanism in the ACS is

called the Anticipatory Learning Process (ALP). Rules

are formed by �rst considering the perceptual conse-

quences of an executed action and after that di�er-

entiating the situations in which these consequences

occur.

With the ALP, a specialization process is present in

the ACS. The ACS starts with a completely general

knowledge and incrementally specializes it as far as

necessary. Butz, Goldberg, and Stolzmann (1999) �rst

discussed the problem that the ACS is not necessarily

generating an accurate, maximally general knowledge

but it is sometimes over-specializing. This pressure to-

wards over-specialization was now overcome by using a

genetic algorithm (GA). The resulting genetic general-

ization pressure (Butz, Goldberg, & Stolzmann, 2000)

enables the ACS to converge to the accurate, max-

imally general rules. However, the convergence was

only illustrated in one simple task and the di�erent

mechanisms and constants were not investigated in de-

tail which is the aim of this paper.

First of all we will summarize the di�erent procedures

and involved parameters in the ACS. Section 3 will in-

vestigate the ALP and its enhancement to the whole

action set. After that, Section 4 discusses the useful-

ness of mutation and crossover. Section 4.3 will illus-

trate the amount of convergence on a rather untypical

problem for the ACS, the multiplexer problem. The

application in this environment will show that the ACS

is able to realize a similar convergence ratio as the XCS

classi�er system. After that, Section 4.4 compares the

reinforcement learning abilities of the ACS to the one

in XCS. Finally, a conclusion is given.

2 THE ACS WITH GA

The actual ACS still has its basic structure, which was

introduced by Stolzmann (1997). Stolzmann (1999)

published enhancements in the ALP. Finally, Butz,

Goldberg, and Stolzmann (2000) introduced the en-

hancement of the application of the ALP and a ge-

netic algorithm to the ACS. Here we revisit the current

structure, the integrated processes and the involved

constants.

2.1 THE BASIC STRUCTURE

Basically, an ACS always interacts with an envi-

ronment. At each time step t it perceives a state

�(t) 2 fs1; s2; :::; smg
L, executes an action �(t) 2

fr1; r2; :::; rng and receives a reward �(t) 2 IR. m

are the number of di�erent possible detector values, si
the di�erent detector values, L the number of detec-

tors, n the number of di�erent executable actions, and

ri the di�erent actions.

The ACS presents its knowledge in rules, which are

called classi�ers. A classi�er consists out of a condi-

tion part C, an action part A, an e�ect part E and

a mark M . C;E 2 fs1; :::; sm;#g, A 2 fr1; :::; rng,

and M = (m1; :::;mL) with mi � fs1; :::; smg. A '#'-

symbol in C (i.e. a 'don't-care' symbol) means that

the ACS ignores the corresponding detector informa-

tion while a '#'-symbol in E (i.e. a 'pass-through'

symbol) means that the ACS believes that the cor-

responding detector value remains the same after the

execution of the action r. Furthermore, each classi�er

has both a quality q 2 [0; 1] (i.e. the measure for the

accuracy of the anticipations of a rule) and a reward

measure r 2 IR (i.e. the measure for the predicted

payo�).

A behavioral act forms at �rst a match set Mset out

of the current population considering the current state

�(t). Then, the ACS decides with a probability of px
whether to choose an action randomly or to choose

the best action. The best action is the action of the

classi�er with the maximum strength q �r in theMset.

Next, an action set Aset is formed out of all classi�ers

in the Mset that propose the chosen action. After the

execution of the action, �rst the ALP (with respect to

the resulting state �(t + 1)) and then the GA modify

the Aset and produce the learning set. Finally, the

reinforcement component updates the reward measure

r considering the perceived payo� �(t) and the next

match set Mset(t+1). Figure 1 visualizes the process.

Anticipatory
Learning
Process

Genetic
Algorithm

forcement
Learning

Rein-

Situation σ Payoff ρ Action
Execute

α

Match Action
Selection

ACS
update

E n v i r o n m e n t

Population Match Set Action Set

Learning Set

Figure 1: The �gure visualizes the learning cycle in

the ACS with all the involved learning procedures as

well as the interaction with the environment.

2.2 THE ALP

The ALP modi�es the action set with respect to the

resulting state �(t + 1). In the ALP new classi�ers

are formed out of inaccurate more general ones con-

sidering the mark M, the anticipation of the classi�er,

and �(t+ 1). Furthermore, the quality is updated us-

ing the Widrow-Ho� delta rule (Widrow & Ho�, 1960)

with learning rate bq (i.e. increase: q = (1�bq)�q+bq

and decrease: q = (1 � bq) � q). A more detailed de-

scription of the ALP can be found in Butz, Goldberg,

and Stolzmann (2000).

2.3 THE GA

After the ALP modi�es the learning set, the GA is ap-

plied. It is only applied if the average time since the

last GA in the set is greater than the threshold �ga.

Two classi�ers are then selected with roulette wheel

selection where the bid of each classi�er is the cube of

its quality (q3). With a probability � a specialized at-

tribute in the condition part of the selected classi�ers

is mutated (i.e. generalized to a '#'-symbol). With

a probability � the two classi�ers are crossed. The

resulting classi�ers are inserted into the population if

they are not completely general. If the produced clas-

si�er already exists, its numerosity is increased. Fi-

nally, classi�ers are deleted in the action set, if the

size of the resulting set is greater than the action set

size threshold �as.

2.4 REINFORCEMENT LEARNING

In order to realize reinforcement learning, an algorithm

similar to the bucket brigade idea (Holland, 1985) and

the Q-learning algorithm updates the r values of the

classi�ers in the resulting learning set.

r = r + br � (
 �maxcl2Mset(t+1)(qcl � rcl) + �(t)� r)

Where br is the learning rate and
 the discount factor.

3 THE ENHANCEMENT OF THE

ALP

As explained in Butz, Goldberg, and Stolzmann

(2000), originally the ALP only modi�ed the executed

classi�er in the action set. In order to balance the

specialization strength, due to the ALP, with the gen-

eralization strength, due to the GA, and in order to

learn as much as possible in one step the ALP was

enhanced to work in the whole action set.

We tested the enhancement of the ALP in two mazes

in order to show the resulting performance of the ACS.

Figure 2 shows the Woods1 environment that was in-

troduced by Wilson (1994) and the Maze4 environ-

ment which was investigated by Lanzi (1997) with the

XCS classi�er system. In all the presented maze ex-

periments the ACS perceives the eight adjacent cells.

A cell is either empty (.), or contains an obstacle

(O) or food (F), thus � 2 f:; O; Fg8. For instance

the animat indicated in Woods1 as a '*' perceives

�(t) ='.....OOF'. The ACS is able to move to these

eight cells (if the cell is not blocked by an obstacle),

which are the only possible actions in the environ-

ment(i.e. � 2 fN;E; S;W;NE; SE; SW;NWg). If

the ACS reaches the food position, then the ACS re-

ceives a reward � and one trial ends (i.e. the ACS is

reset to a random empty position). However, in the

presented latent learning tests � = 0. The exploration

ratio is set to px = 0:8. The learning rate in the ALP

is bq = 0:05 All presented results are averaged over 10

experiments.

Figure 2: In the Woods1 (left hand side) and Maze4

(right hand side) environments the capabilities of the

enhanced ALP and the GA are investigated.

Figure 3 shows the speed-up in the learning process of

the ACS when enhancing the ALP application to the

whole action set. Note that the size of the population

is actually increasing when enhancing the ALP appli-

cation. However, the huge speed-up compensates the

decrease in speed due to the larger population.

0

20

40

60

80

100

0 5000 10000 15000 20000

pe
rc

en
t o

f k
no

w
le

dg
e,

 p
op

.s
iz

e
(/

10
)

number of steps

ACS - ALP - Enhancement Comparison in Woods1

ALP in action set: performance
pop.size (/10)

ALP in executed cl: performance
pop.size (/10)

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000

pe
rc

en
t o

f k
no

w
le

dg
e,

 p
op

.s
iz

e
(/

10
)

number of steps

ACS - ALP - Enhancement Comparison in Maze4

ALP in action set: performance
pop.size (/10)

ALP in executed cl: performance
pop.size (/10)

Figure 3: The enhancement of the ALP-application

results in a huge learning speed-up. Compared to that,

the population increases only slightly.

4 PERFORMANCE WITH GA

Butz, Goldberg, and Stolzmann (2000) introduced the

GA to the ACS. The approach showed the good per-

formance of the GA in a simple maze, the Woods1

environment (Figure 2). First, this section further an-

alyzes the generalization capability of the ACS with

the GA in Woods1 further. Next, it examines more

challenging environments. If not stated otherwise, the

parameters are set to bq = br = 0:05,
 = 0:95, and

px = 0:8. The GA parameters are set to �ga = 100,

� = 0:3, � = 0:0, and �as = 20. The payo� � = 1000

when the food position is reached (in the maze en-

vironments) or a correct action was executed (in the

multiplexer environment), and � = 0 otherwise. How-

ever, in the latent learning experiments � is always

0. All presented results are again averaged over ten

experiments.

4.1 GENERALIZATION IN WOODS1

To be able to analyze the generalization in the popu-

lation of the ACS we introduce the speci�city measure

spec(pop). It is equal to the sum of all specialized at-

tributes in C of all classi�ers in the population divided

by the number of classi�ers times the length of �. Fig-

ure 4 analyzes the amount of generalization for di�er-

ent mutation and crossover values after 10000 executed

steps in Woods1. The result shows that at � = 0:4

the best generalization is reached. Interesting is the

fact that the GA never causes any over-generalization.

This indicates that the ALP is strong enough to con-

quer the genetic generalization pressure and is even

adapting to di�erent amounts of pressure. When � is

greater than 0:5, mutation increasingly produces com-

pletely general classi�ers which are not inserted into

the population, and thus the genetic generalization

pressure decreases.

Crossover appears to have no positive e�ect on the

generalization capability. The mixing due to crossover

does not help to create more general classi�ers more

quickly. The performance comparison in Figure 4

shows that crossover does not help to increase the per-

formance of the ACS, either. Thus, we decided not to

use crossover in the further presented results. Runs

with crossover in the other environments (not pre-

sented) resulted in similar performances, speci�cities,

and population sizes. Sometimes it even appeared to

be disrupting. This is certainly due to the properties in

the presented maze environments. Each position has

a similar probability of importance. Interactions can

occur in neighboring attributes as well as more distant

attributes. This may result in long de�ning lengths of

building blocks (Goldberg, 1989) which explains the

disruption due to crossover.

4.2 GENERALIZATION OF IRRELEVANT

ATTRIBUTES

The speci�city ratio in the Woods1 experiment shows

that the ACS with the GA is now able to generate

much more general classi�ers than before. But, the

classi�er list actually reveals a temporary increase in

size and only later in the run convergence to a small

size. Thus, it is not clear why the GA is any good.

We want to illustrate the usefulness of the GA on the

following example.

Considering a real robot that is equipped with di�er-

ent kinds of sensors, perceptions are normally not as

clear as in the maze environments. For example, the

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.2 0.4 0.6 0.8 1

sp
ec

ifi
ci

ty
 r

at
io

mutation ratio

Specificity ratio of the population in Woods1 after 10000Steps

only mutation
with crossover, px=0.4
with crossover, px=0.8

ACS without GA
optimal generalization

0

20

40

60

80

100

0 5000 10000 15000 20000

pe
rc

en
t o

f k
no

w
le

dg
e,

 p
op

.s
iz

e
(/

10
)

number of steps

ACS - Crossover Comparison in Woods1

X=0.0: performance
pop.size (/10)

X=0.4: performance
pop.size (/10)

X=0.8: performance
pop.size (/10)

Figure 4: In Woods1, the best generalization is

achieved, when setting � to 40%. Crossover has nei-

ther a positive e�ect on the speci�city, nor on the per-

formance in Woods1.

robot could detect di�erent degrees of brightness in its

surrounding. Therefore, the trials in one experiment

can occur under di�erent light conditions. For a sys-

tem without any generalization capabilities this would

result in a new environmental perception, each time

the light condition changes. Here we show that the

ACS is able to handle such irrelevant attributes.

In order to simulate such a light scenario we introduce

three further attributes into the perception string that

can be placed at any position. These three attributes

are always randomly changed between zero and one

when a new trial starts. Figure 5 shows the perfor-

mance of the ACS without and with the GA under

such conditions in Maze4. We can now observe that

the ACS without the GA is able to handle the irrele-

vant attributes, too, but the ACS with the GA is doing

better. The complete cognitive map is learned faster

and the resulting population is smaller. This shows for

the �rst time that the ACS is capable of forming the

admirable attention spot (Butz, Goldberg, & Stolz-

mann, 2000); v.i.z. the irrelevant light source is not

considered anymore.

0

20

40

60

80

100

0 5000 10000 15000 20000

pe
rc

en
t o

f k
no

w
le

dg
e,

 p
op

.s
iz

e
(/

20
)

number of steps

ACS in Maze 4 with three Irrelevant Attributes

ACS with GA: performance
pop.size (/20)

ACS without GA: performance
pop.size (/20)

Figure 5: When adding three irrelevant attributes into

the perceptions in Maze4, the ACS with GA is beating

the ACS without GA in the performance and the size

of the population later in the run.

The presented results showed so far that the size of the

population of the ACS with GA is at �rst increasing

faster than without GA. However, the size approached

the size of the population without GA in the end of a

run. In the light example, the size even got smaller.

In the next section we investigate this property of con-

vergence further.

4.3 CONVERGENCE IN THE

MULTIPLEXER ENVIRONMENT

In order to study the convergence in the ACS further

we apply it in the Multiplexer environment. Wilson

(1995) and Wilson (1998) tested XCS in this environ-

ment in order to test the generalization capabilities.

The multiplexer environment generates a random bit

string of length l. The string is evaluated by the cor-

responding multiplexer function which is de�ned for

length l = k + 2k (k 2 IN) where the �rst k bits ad-

dress one bit in the 2k remaining bits. The function

returns the addressed bit. In order to make this envi-

ronment solvable for the ACS we need to introduce

a perceptual causality into the environment (Butz,

Goldberg, & Stolzmann, 1999). This can be done by

adding another attribute to the string (thus, L = l+1)

which is 0 in each problem instance and switches to 2

if the correct action was executed and to 1 otherwise.

If the correct action was executed, the ACS receives a

reward � = 1000. After that, one trial ends and the

environment generates another random string.

As in the XCS application, we divide the learning into

one pure exploration and one pure exploitation step.

In the exploration mode the action is chosen as before

and all the learning mechanisms are present. In the ex-

ploitation mode neither the ALP, nor the GA, nor the

reinforcement mechanism is active. Here, we consider

the 11-multiplexer function in which the �rst three bits

address the remaining eight bits. For example, the

correct action in the situation �(t) ='010110111110'

is 0 since the �rst three bits ('010') address the bit

number two in the eight remaining bits. If the cor-

rect action was executed, the resulting state would be

'010110111112'. Figure 6 shows the performance of the

ACS without and with GA in this environment. With-

out the GA, the ACS is not able to generalize and thus

produces much more classi�ers than with GA. The

speci�city ratio (not shown in the graph) is equal to

0.83 after 15000 exploration problems. This indicates

that the environment was mainly learned by represent-

ing the perceptions without any generalization. With

the GA the ACS is generating more general classi�ers

(spec(pop)=0.57 after 15000 explore problems) and is

thus able to reach an optimal performance faster. Fur-

thermore, the size of the population is much smaller

than the one in the ACS without GA

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000 12000 14000

pe
rf

or
m

an
ce

, p
op

.s
iz

e
(/

50
00

)

explore problems

ACS with and without GA in the 11 Multiplexer Environment

ACS with GA: performance
pop.size (/5000)

ACS without GA: performance
pop.size (/5000)

Figure 6: When adding the GA, the ACS is able to

learn the multiplexer task correctly and the population

converges to fewer classi�ers.

Figure 7 compares the performance of the ACS with

the performance of XCS. The implementation of XCS

applies subsumption deletion (Wilson, 1998) and the

constants are set equal to Wilson (1995). In this com-

parison we can observe that the ACS is reaching a

near optimal performance faster than XCS. But the

price is a much larger population. The population size

curve of the ACS is basically similar to the one of XCS

but is situated at a much higher level. The popula-

tion is converging but not yet as well as in the XCS

classi�er system. An investigation of the classi�er list

showed that one problem is classi�ers that are com-

pletely speci�c and thus only occur very seldom in an

action set. These classi�ers are di�cult to handle for

the GA as they are only very seldom part of the GA

process. Since the deletion method in the ACS works

on the action set and not on the whole population, as

does XCS, the probability of deleting such a speci�c

classi�er is very small. Despite that, the comparison

shows that the ACS { although actually invented for

other applications { is able to solve the multiplexer

problem with a performance similar to XCS.

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000 12000 14000

pe
rf

or
m

an
ce

, p
op

.s
iz

e
(/

20
00

)

explore problems

ACS and XCS in the 11 Multiplexer Environment

ACS: performance
pop.size (/2000)

XCS: performance
pop.size (/2000)

Figure 7: Comparing the ACS with GA to XCS, we

can observe that the ACS is reaching a near optimal

performance faster than XCS. However, XCS needs

fewer classi�ers to solve the task and converges to a

lower level.

4.4 REINFORCEMENT LEARNING IN

DIFFERENT MAZES

Up to now, we showed that the ACS with GA is indeed

generating more general classi�ers and the population

is converging to a smaller size. Moreover, we were able

to show the usefulness of the process in a maze with

additional irrelevant attributes and in the Multiplexer

problem. What remains is to investigate the reinforce-

ment mechanism.

Figure 8: The Maze6 is a challenging environment be-

cause of the di�erent frequencies in experiencing dif-

ferent states.

4.4.1 XCS In Di�erent Mazes

The �rst published XCS performances in environments

with deferred reward (Woods1 and Woods2) did not

reveal any problems with the reinforcement learning

mechanism. However, these environments were reg-

ular, aperiodic, and many generalizations were pos-

sible. Lanzi (1997) investigated the generalization

mechanism of XCS in a more challenging environment:

Maze4 (Figure 2). It was observed that XCS is misled

by inaccurate overly general classi�ers. The problem

got even worse in the Maze5 and Maze6 environments

(Maze6: Figure 8, Maze5 is similar) that were investi-

gated by Lanzi (1999). The introduced specify mecha-

nism in XCS was able to overcome the problem. More-

over, the introduction of a tele-transportation mecha-

nism showed that the problem occurs because of the

di�erent frequencies of experiencing the di�erent envi-

ronmental niches. Positions near to the food are ex-

perienced much more often than positions which are

more distant. Therefore, XCS was sometimes unable

to get rid of overly general classi�ers fast enough. The

question is whether the ACS also su�ers from this dif-

ference in the frequencies and if so, to what degree it

su�ers.

4.4.2 The ACS in Maze6

Figure 9 shows that the ACS is converging to an opti-

mal solution. Like XCS, the ACS alternates between

one trial of exploration and one trial of pure exploita-

tion. The performance of the trials with pure exploita-

tion are presented. Over-generalization problems sim-

ilar to XCS cannot be observed. As the learning is

based on the anticipations and not on the perceived

reward, the ACS does not experience any problems.

The same results were achieved for the Maze5 envi-

ronment, which appeared to be simpler for XCS. The

resulting size of the population is now even smaller

than the one in XCST without subsumption (Lanzi,

1999)[page 147] and only slightly larger than the size

in XCST with subsumption.

0

5

10

15

20

25

30

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

st
ep

s
to

 fo
od

, p
op

.s
iz

e
(/

50
)

number of exploration trials

ACS with GA in Maze6 - Reward Test

steps to food
pop.size (/50)

optimum (5.19)

Figure 9: The ACS does not have any problems solving

the reinforcement learning task in Maze6.

4.4.3 The ACS in Woods14

A real challenge for the reinforcement mechanism can

be observed in the Woods14 environment (Figure 10).

Cli� and Ross (1994) examined the performance of

the ZCS (Wilson, 1994) and revealed the problem of

forming long chains with the bucket brigade. The same

problem was observed in XCS and now in the ACS.

When leaving the learning parameters unchanged an

optimal performance cannot be reached.

Figure 10: Woods14 especially challenges the rein-

forcement learning algorithm as the reward needs to

be back-propagated over many steps.

Figure 11 shows that this depends mainly on the dis-

count factor
 as proposed in Cli� and Ross (1994).

Moreover, an optimal performance cannot be reached

when applying pure exploitation (i.e. px = 1:0) as ob-

served in XCS as well (Lanzi, 1999). This is mainly the

case because otherwise the ACS tends to walk into the

obstacles and the reward is not back-propagated ap-

propriately. However, a problem of over-generalization

as in XCS could not be observed in the ACS. Due to

the anticipation-learning, the dependence on the cor-

rect reward-distribution decreases and thus the correct

policy is learned more easily.

0

5

10

15

20

25

30

35

40

45

50

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

st
ep

s
to

 fo
od

number of exploration trials

ACS with GA in Woods14 - Reward Test

Gamma=0.99: Steps to Food
Gamma=0.99, Px=1.0: Steps to Food

Gamma=0.95: Steps to Food
Optimum (9.5)

Figure 11: In order to solve this task with the ACS the

parameters need to be modi�ed, so that the reward can

be back-propagated farther.

5 CONCLUSION

The study of the genetic algorithm in the ACS showed

that the ACS with GA is able to generate accurate,

maximally general rules. Once these rules are gen-

erated, the size of the population decreases and con-

verges at a low level. Moreover, an investigation of

the reinforcement learning capabilities showed that the

GA does not disrupt the reinforcement learning mech-

anism. The learning rates showed that the ACS perfor-

mance is comparable to the XCS performance in sim-

ilar environments. However, in addition to the payo�

map, the ACS generates a cognitive map of the envi-

ronment.

Up to now, the evolving cognitive map in the ACS was

not used to increase the reinforcement learning capa-

bilities. For example, the mental representation of the

environment could be used to execute hypothetical ac-

tions similar to Dyna (Sutton, 1991). This should re-

sult in far fewer necessary actual trials to reach optimal

performance as the reinforcement learning will mainly

be done mentally. Moreover, a more directed explo-

ration of environmental niches could be performed.

Due to the existing cognitive map, the ACS should be

able to observe where its knowledge is not completely

reliable and thus could actively explore such environ-

mental niches. Future research will show what kind of

cognitive processes are possible in the ACS and where

the system is limited.

Acknowledgments

The authors would like to thank Dimitri Knjazew,

Martin Pelikan, and Stewart Wilson for valuable dis-

cussions and useful comments. The work was spon-

sored by the Air Force O�ce of Scienti�c Research, Air

Force Materiel Command, USAF, under grant F49620-

97-1-0050. Research funding for this work was also

provided by the National Science Foundation under

grant DMI-9908252. Support was also provided by a

grant from the U. S. Army Research Laboratory un-

der the Federated Laboratory Program, Cooperative

Agreement DAAL01-96-2-0003. The U. S. Govern-

ment is authorized to reproduce and distribute reprints

for Government purposes notwithstanding any copy-

right notation thereon. Additionally, research fund-

ing was provided by the German Research Foundation

DFG. The views and conclusions contained herein are

those of the authors and should not be interpreted as

necessarily representing the o�cial policies or endorse-

ments, either expressed or implied, of the Air Force Of-

�ce of Scienti�c Research, the National Science Foun-

dation, the U. S. Army, or the U. S. Government.

References

Booker, L. B., Goldberg, D. E., & Holland, J. H.

(1989). Classi�er systems and genetic algo-

rithms. Arti�cial Intelligence, 40 , 235{282.

Butz, M. V., Goldberg, D. E., & Stolzmann, W.

(1999). New challenges for an Anticipatory Clas-
si�er System: Hard problems and possible solu-
tions (IlliGAL report 99019). University of Illi-

nois at Urbana-Champaign: Illinois Genetic Al-

gorithms Laboratory.

Butz, M. V., Goldberg, D. E., & Stolzmann,

W. (2000). Introducing a genetic generalization

pressure to the anticipatory classi�er system -

Part 1: Theoretical Approach. Proceedings of the
Genetic and Evolutionary Computation Confer-
ence (GECCO-2000). In press.

Cli�, D., & Ross, S. (1994). Adding Temporary

memory to ZCS. Adaptive Behavior , 3 (2), 101{
150.

Drescher, G. L. (1991).Made-Up Minds, a construc-
tivist approach to arti�cial intelligence. Cam-

bridge, MA: MIT Press.

Goldberg, D. E. (1989). Genetic algorithms in
search, optimization and machine learning.
Reading, Massachusetts: Addison-Wesley.

Ho�mann, J. (1993). Vorhersage und Erkenntnis
[Anticipation and Cognition]. Goettingen, Ger-
many: Hogrefe.

Holland, J. H. (1985). Properties of the bucket

brigade algorithm. In Proceedings of an interna-
tional conference on genetic algorithms and their
applications (pp. 1{7). Carnegie-Mellon Univer-

sity, Pittsburgh, PA: John J. Grefenstette.

Lanzi, P. L. (1997). A study of the generalization

capabilities of XCS. In Baeck, T. (Ed.), Proceed-
ings of the Seventh International Conference on
Genetic Algorithm (pp. 418{425). San Francisco,

California: Morgan Kaufmann.

Lanzi, P. L. (1999). An analysis of generalization in

the XCS classi�er system. Evolutionary Compu-
tation, 7 (2), 125{149.

Riolo, R. L. (1991). Lookahead planning and latent

learning in a classi�er system. In Meyer, J.-A., &

Wilson, S. W. (Eds.), From Animals to Animats:
Proceedings of the First International Confer-
ence on Simulation of Adaptive Behavior (pp.

316{326). Cambridge, MA: MIT Press.

Stolzmann, W. (1997). Antizipative Classi�er Sys-
tems [Anticipatory Classi�er Systems]. Os-

nabrueck, Germany: Shaker Verlag, Aachen,

Germany.

Stolzmann, W. (1999). Latent learning in Khepera

robots with Anticipatory Classi�er Systems. In

2.International Workshop on Learning Classi�er
Systems (2.IWLCS) on the Genetic and Evolu-
tionary Computation Conference (GECCO-99)
(pp. 290{297). Orlando, Florida: Morgan Kauf-

mann.

Sutton, R. S. (1991). Reinforcement learning archi-

tectures for animats. In Meyer, J.-A. (Ed.), Pro-
ceedings of the �rst international conference on
simulation of adaptive behavior (pp. 288{296).

Widrow, B., & Ho�, M. (1960). Adaptive switching

circuits. Western Electronic Show and Conven-
tion, 4 , 96{104.

Wilson, S. W. (1994). ZCS: A zeroth level classi�er

system. Evolutionary Computation, 2 (1), 1{18.

Wilson, S. W. (1995). Classi�er �tness based on

accuracy. Evolutionary Computation, 3 (2), 149{
175.

Wilson, S. W. (1998). Generalization in the XCS

classi�er system. In Koza, J. R. e. a. (Ed.),

Genetic Programming 1998: Proceedings of the
third annual conference (pp. 665{674). San Fran-
cisco: Morgan Kaufmann.

