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Abstract
In investigating the Consecutive State Problem
within XCS (Barry, 1999) it was suggested that a
possible solution lay in allowing the XCS to
persist with a single action over the aliased
states. It was shown that this technique was
sufficient to overcome the Consecutive State
Problem as long as mechanisms were also
provided which prevented the persistent
application of 'Null Actions'. An alternative
solution based on the work of Cobb and
Grefenstette (1991) was discussed which sought
to extend the action of each classifier so that
each classifier could specify the duration that the
action should be applied for. It was noted that
this was an inadequate solution for the
Consecutive State Problem because XCS would
still explore the possibility of an action which
persisted into but not beyond the aliased states.
This work now applies these ideas to a number
of non-aliased multiple step environments. It
demonstrates that, given a suitable exploration
strategy, action persistence can be utilised within
XCS to enable the selection of a pathway to a
reward state which entails the minimum number
of different actions. It is also shown that a
modification to the learning mechanism restores
the ability of XCS to select the pathway to a
reward state with the minimum number of steps
whilst minimising the number of actions used.

1 INTRODUCTION
Wilson (1995) introduced a novel form of Learning
Classifier System based upon his simple ZCS (Wilson,
1994) implementation. This new LCS, termed XCS, uses
Accuracy as its Fitness criteria, combined with a niching
mechanism derived from that of Booker (1989). In
Wilson's Generalisation Hypothesis it was suggested that
the mechanisms of XCS will introduce, identify and
proliferate general accurate classifiers within the classifier
population. Kovacs (1996) investigated this claim, and
demonstrated further that XCS will find and maintain the
sub-population of optimally general classifiers, and

hypothesised that XCS would always produce this sub-
population - the Optimisation Hypothesis. Lanzi and
Colombetti (1999) have demonstrated that XCS is even
able to satisfy this hypothesis within environments with
moderate amounts of uniform random noise in their
feedback, demonstrating a surprising degree of robustness
within XCS. Kovacs (1999) reasoned that only LCS
implementations which utilise the kind of accuracy
measure adopted by XCS will be able to overcome the
problem of correctly identifying and deleting the so-called
'strong over-general' classifiers - those classifiers which
match in too many states but nonetheless retain a high
payoff value from those states in which the actions they
propose are correct. XCS thus represents a large step
forward in the performance and reliability of Learning
Classifier Systems.

Although initial investigations into the use of XCS within
environments which required a number of steps to be
taken before a reward is delivered were fairly limited,
Lanzi (1997, 1998) has recently considerably extended
knowledge in this area. Barry (1999) continued Lanzi's
work into the problem of learning over states generating
aliased messages as part of wider research into the
emergence of hierarchical invocation of classifier
sequences. This work identified a form of the Aliasing
Problem where the aliasing states occur in consecutive
states. It was shown that, since the Consecutive State
Problem is a sub-problem of the Aliasing Problem, it is
possible to devise an alternative solution to this sub-
problem which is simpler to implement than a solution to
the Aliasing Problem as a whole. The solution involved
modifying XCS so that an action in state St-1 would persist
in St if the environmental input It in St was the same as
that in St-1 (It = It-1). The payoff and rule induction
mechanisms were therefore effectively suspended until a
future state Sn was reached in which In ≠ It-1. A
generalisation of this solution can be conceived in which
each classifier is able to specify in its action how long the
action should persist. This form of action persistence was
first demonstrated by Cobb and Grefenstette (1991) in
their SAMUEL LCS implementation in which it was
shown that the LCS was able to identify a number of time
steps over which each action should persist within a
'missile avoidance' environment. Barry (1999) presented



some initial results from the application of this technique
to XCS as a solution to the Consecutive State Problem,
but argued that this technique was not an adequate
solution to the Consecutive State Problem. However, this
does not preclude the mechanism from a more general
utilisation within XCS. In this paper the application of
action persistence identification to XCS within non-
aliased general multiple step environments will be
investigated in an attempt to establish more general
results on the use of this technique within XCS.

2 XCS STRUCTURE AND OPERATION
The XCS Learning Classifier System (Wilson, 1995,
1998) is, on an initial inspection, similar to traditional
Learning Classifier Systems. Detectors interact with an
'environment' to produce a binary encoded message which
becomes the input to the XCS. This is matched against a
population of classifiers, each consisting of a ternary
coded condition and an encoded action, in order to
identify those classifiers which are relevant to the current
input condition. Those classifiers which match the
message are used to create the Match Set [M]. [M] is a set
of records where each record identifies a distinct action,
the set of classifiers which have been matched that
propose the action, and the predicted payoff that will be
received upon performing the action. The payoff
prediction is the weighted sum of the payoff prediction of
each classifier in the record. A record from [M] is chosen
to be the Action Set [A] that performs an action. This is
chosen arbitrarily if exploring to enhance the classifier
representation or chosen by selecting the highest
predicted payoff if seeking to exploit the learnt classifier
representation. The action advocated by [A] is performed
in the environment by decoding the action representation
through an effector interface. If a reward R is received
from the environment the goal is considered to have been
reached and R is used to update the predictions of all
classifiers in [A] using the modified Widrow-Hoff update
mechanism known as MAM (Venturini, 1994). If no
reward is received, and the environment is potentially a
multi-step environment, the action is considered to be one
action en route to the goal and payment is taken from the
maximum prediction of [M] in the next iteration
discounted by a discount factor γ (0 < γ < 1). Thus, any
accurate classifiers in an [A] which leads directly to a
reward R can be expected to converge to a prediction of
R, and those i steps before the reward will converge to
γiR. The speed of convergence is controlled by the
learning rate parameter β (0 < β ≤ 1) within the Widrow-
Hoff update equations.

Within XCS each classifier carries with it a Prediction
measure - the prediction of the average payoff it receives
when invoked. Unlike the 'Strength' measure within
traditional LCS implementations, XCS only uses this
measure for Action Selection. For selection as a partner
for breeding within the GA, XCS maintains the Error and
Accuracy measures which provide two viewpoints on the
accuracy of the prediction measure. A classifier can be

inaccurate because its prediction has not yet been updated
sufficiently to make it accurate or because it has an over-
general condition which involves the classifier in too
many [M]. Inaccurate classifiers could nonetheless have a
high prediction and therefore it is important to remove
them in favour of accurate classifiers. The classifier
Fitness, used in the GA selection for crossover, is the
accuracy of a classifier relative to other classifiers in the
[A] the classifier occurs within. Thus, the GA will favour
accurate classifiers over inaccurate and will, over time,
replace inaccurate classifiers with accurate versions.
Furthermore, the fitness is used to weight the contribution
of the classifier's prediction within [A] so that accurate
classifiers contribute more and drive the System
Prediction towards higher accuracy whilst increasing the
calculated error within the inaccurate classifiers. Since an
accurate general classifier occurs in more [A] than an
accurate but more specific classifier and because the
invocation of the GA is tied to occurrences within [A], the
more specific classifiers are also driven out of the
population. The classifier deletion mechanism, used when
the population becomes full, deletes classifiers based on
the average number of classifiers that exist within the [A]
each classifier occupies. This dynamically adjusts the
population composition to provide sufficient population
niches (Booker, 1989) for all the accurate optimally
general classifiers (given sufficient population space).
The Optimality Hypothesis (Kovacs, 1996) suggests that
XCS is thus capable of identifying and maintaining the
accurate optimally general population (termed [O]), and
this has been demonstrated for a number of small
problems (e.g. Kovacs, 1996; Saxon and Barry, 1999).

XCS identifies duplicate classifiers on creation and
increases a Numerosity count held by the classifier to
represent the number of duplicates. This facility increases
the speed of operation of the XCS without changing the
XCS execution (Kovacs, 1996). Such classifiers are
termed MacroClassifiers, in contrast to the usual
MicroClassifier representation. During insertion after the
GA a process known as Subsumption Deletion (Wilson,
1998) is used. This looks for experienced general
classifiers within [A] which will match more messages
than the new classifier. If such a classifier is found, the
new classifier is discarded and the numerosity of the
subsuming classifier is incremented instead. This process
provides a further pressure towards optimum
generalisation.

XCS thus introduces a swathe of new features which
together provide XCS with a unique ability in the field of
LCS research to find the optimally general accurate
classifiers that represent the complete State × Action ×
Payoff mapping of an environment.

3 ACTION PERSISTANCE
In Reinforcement Learning many test environments are
formulated using world representations which are divided
into discrete 'states'. The Finite State World (Grefenstette,
1987; Riolo, 1987) representation and Grid Worlds such



as the Woods environments (e.g. Wilson, 1995) are
examples of such discrete Markovian environments.
Bonarini, Bonacina and Matteucci (1999) provide an
excellent exposition of the benefits of such environments
and the price that must be paid in regard to the general
applicability of results from such environments.

In these environments it is common for an Animat to take
a single action in each state, which will either lead to the
Animat staying in that state or moving to a new state. The
Animat will then invoke the deliberative process of the
Learning System to decide on which action is best from
the new state. 'Time' is synonymous with this 'detect-
decide-act' process; one unit of time equivalent to one
such 'step'. Barry (1999) hypothesised that a solution to
the Consecutive State Problem existed if XCS was
allowed to continue with the same action whilst the input
to the XCS remained constant, provided that 'Null
Actions' were disallowed. This hypothesis was validated
using a suitably modified XCS. This solution is a specific
solution to the problem of consecutive aliased states, but
shows some similarities with a more general feature
proposed for LCS implementations by Cobb and
Grefenstette (1991). In their SAMUEL implementation
the action of a classifier not only specifies an action, but
also specifies the duration over which the action may
continue to operate, with the duration specified in terms
of environmental 'steps'.

This mechanism is an appropriate mechanism for
application to XCS only if it is possible for XCS to
determine the duration for the application of an action
which will produce the highest accurate payoff. Consider
a hypothetical XCS implementation that allows
persistence, termed PXCS. This implementation provides
as a payoff the value of the final state entered for a
persistent action which is a legal action (is a label of an
edge from the current node within a FSW) for all the steps
specified in the duration specification part of the action. If
the action becomes illegal (is not a valid label of an edge
from the current node) at any time during the persistence,
a payoff of 0 is given. Now consider a finite state world
consisting of a chain of sparsely connected nodes, as
shown in Figure 1a.
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Figure 1. FSW without and with consecutive actions

For a standard XCS three classifiers are required to
traverse this FSW : 0→1, 1→2, 3→4. In this FSW any
classifier within PXCS which specifies an action duration
greater than 1 cannot succeed because there are no set of
consecutive transitions which have the same action label.
Where a specification of an action persistence cannot
succeed for the duration specified by the classifier an

immediate non-environmental payoff R=0 will be given.
In this case, any classifier specifying an action duration of
greater than one step will become accurate and be
preserved within the population, but will eventually have
a prediction of 0 and thus not be selected during
exploitation cycles. Thus XCS is capable of detecting
when an action duration of greater than one step is not
required.

Now consider the environment depicted in Figure 1b. In
this environment a classifier which seeks to perform
action 1 in state s0 for one step will tend to receive a
payoff of γ3R if single step actions exist for all following
states. However, a classifier that seeks to perform the
action 1 in state s0 for two steps will tend to receive a
payoff of γ2R under the same conditions. Both classifiers
will be maintained within the XCS population as accurate
classifiers, but the classifier with an action persistence of
2 will have a higher stable prediction than that with a
persistence of 1 and therefore be selected in exploitation.
This argument can be trivially extended to any number of
consecutive states which will admit to the same action
and ultimately lead towards a fixed point reward. As in
the case of Figure 1a, classifiers which propose a duration
greater than can be usefully employed will receive a
payoff of 0 and therefore not be selected during
exploitation. Notice that 'null actions' - those actions
which lead immediately back to the same state, will
receive the discounted payoff from the state and therefore
will also not be selected during exploitation.

This argument leads to the first hypothesis:

Hypothesis 1 - PXCS is able to identify, maintain, and
optimally utilise the classifier in each state which will
allow the longest persistence in action on any action
chain which leads to a stable environment reward.

The rationale behind Hypothesis 1, although not the
Hypothesis itself, is based on the assumption that only
single step actions exist for all following steps. This will
not be the case for any construction of the classifier
system that has more than two consecutive states, and
thus will not be the case for almost all cases of useful
persistence. Consider Figure 1b. Assume that a classifier
c3 receives a reward R from the environment for moving
from s3 into the reward state s4. In this case, a classifier c2
will receive a fixed payoff of γR for moving from s2 to s3.
Similarly a classifier c1 should receive a fixed payoff of
γ2R for moving from s1 to s2 and c0 should receive a fixed
payoff of γ3R for moving from s0 to s1. However, if a
classifier c1p exists which moves with duration 2 from s1
to s3 it will receive the payoff of γR. This will become the
highest prediction in the match set [M1] for s1 and will
therefore be the payoff value for preceding states.
Similarly if a classifier c0p exists which moves with
duration 3 from s0 to s3 it will receive the payoff of γR and
this will become the highest prediction in the match set
[M0] for s0. Since all classifiers in any action set within
any state will receive a payoff based on the highest action
set prediction within the match set for that state, all
classifiers covering states s0 to s2 will receive the payoff



γ2R apart from the classifier which moves with the
appropriate duration to s3. Thus, the property of temporal
difference is disrupted over the states in which persistence
of action can occur. This does not invalidate Hypothesis 1
since the longest duration action that remains legal
throughout its invocation will continue to hold the highest
prediction, and will therefore be selected in exploitation.
However, there will be no quantitative measure of the
utility of any other action × duration pair that does not
lead to a higher payoff value.

This problem cannot be solved by a re-definition of PXCS
in which the payoff given to an Action Set is γδP, where P
is the payoff from the Action Set in time t+1 or the
environmental reward and δ is the duration of an action
successfully performed for the whole of its duration. This
formulation would result in classifiers which specify a
duration obtaining the same stable prediction as a
classifier specifying a single step with the same action
from the chain of steps which ultimately reach the same
high payoff state. PXCS would no longer be able to select
the highest duration classifier since it would receive the
same payoff at the point of invocation as classifiers of a
lower duration. If the discount rate γ was replaced by a
lower discount rate Γ < γ for actions with a duration
higher than 1 it would be possible to favour actions with a
duration but it will still not be possible to identify the
longest correct duration action.

Ultimately the Action Set prediction score represents the
maximum payoff that can be expected when that action
set is chosen, and therefore it is appropriate that the
mechanism chosen for PXCS is not changed. In effect
PXCS chooses the highest payoff achievable in the lowest
number of different actions, and therefore represents an
alternative form of learning system than XCS, which
chooses the highest payoff achievable in the lowest
number of steps. Consider Figure 2. If the start state is s0
and R=1000 is given in the reward states s4 and s7 then
XCS would move to s5, s6, and s7 whereas PXCS would
choose s1 through to s4.  Furthermore, with γ=0.71, R from
s4 would have to be greater than 1408 in order for PXCS
to choose the route to s4.
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Figure 2. A FSW not optimally selected by PXCS

Hypothesis 2 - In exploitation PXCS will select the
highest payoff achievable with the lowest number of
separate actions.

A least impact solution to this problem exists by utilising
a [relatively small] proportion p of the discounted payoff
removed from the payoff in inverse proportion to the
duration: γδ−1P-(1.0-δ/∆)pγδ−1P (where ∆ is the maximum
possible duration). In the example FSW of Figure 2, if

R=1000.0, γ=0.71, ∆=4, and p=0.1, then in s1 the stable
prediction for a duration 3 move to s4 would be
0.712x1000.0 - (1 - 3/4)x0.1x(0.712x1000.0) = 491.49 and
thus in s0 the stable prediction for a move to s1 will be
348.96. The stable prediction for a move from s0 to s5 will
be 431.32 and thus this proposal will allow XCS to
continue to select the closest equal rewarding state. Now,
if a state s8 was imposed between s6 and s7 the stable
prediction for a move to s5 would be 283.27 and XCS
would chose the action leading to s1 in preference to the
action leading to s5. This illustrates that the addition of the
small fixed payment can ensure that the modified PXCS
chooses the path with the fewest different actions where
two equal length paths lead to the same reward, and leads
to the third hypothesis:

Hypothesis 3 - Re-instatement of step-based discounting
of the payoff with the addition of a small step based
additive component to the payoff will allow PXCS to
preserve the Temporal Difference properties of XCS
whilst selecting the path with the lowest number of
separate actions where equidistant paths to equal
rewards exist.

4 EXPERIMENTAL INVESTIGATION
In order to investigate the hypotheses a number of FSW
were constructed. FSW are appropriate for this
investigation because of the control they provide over the
number of actions available within any state, the number
of states which can be entered from within a state, and the
message which is produced to identify a state. The base
parameterisation of the XCS or PXCS was set as follows:
N=400, p1=10.0, ε1=0.01, f1=0.01, R=1000, γ=0.71, β=0.2,
ε0=0.01, α=0.1, θ=25, Χ=0.8, µ=0.04, P(#)=0.33, s=20
(see Kovacs (1996) for a parameter glossary), and the
maximum trial length was set to 50. These parameters
were chosen for consistency with previous work, but
appear appropriate given the level of complexity of the
tests used. Any variation in the parameterisation for
particular experiments is stated alongside the
experimental results.

4.1 PROVIDING PERSISTANCE

To investigate whether PXCS is able to find classifiers
which identify the optimal time over which an action
should persist a simple two action ten state FSW with no
null actions was created (figure 3). In order to create an
implementation of PXCS a working XCS implementation
was modified so that an action posted to the environment
with a duration greater than one would cause the
environment to continue to utilise the action,
decrementing a duration counter each time, until the
duration counter became zero or the action was
inappropriate for the environmental state. No
environmental message was sent back to the XCS during
the operation of the action. Once the action has been
performed the normal XCS cycle resumes. The
calculation of payoff was also modified so that if the



previous action operated over a duration the payoff was
only given if the full specified duration was completed
(the duration counter for that action was reduced to zero).
No other changes to the XCS implementation were
required.1
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Figure 3. An FSW to test persistence

The PXCS implementation was tested by providing the
environment shown in Figure 3, setting the action size to
4 to allow 3 bits for the specification of the duration and
one bit for the action, introducing a population of fully
specific classifiers covering all state × action × duration
combinations, and running PXCS with all the induction
algorithms turned off. The resulting population was
examined to determine whether the XCS had learnt the
optimal duration from each state.

Table 1. Selected classifiers from a pre-loaded PXCS

Classifier Pred Exp Classifier Pred Exp
00010→0000 710.0 207 00010→1000 710.0 208
00010→0001 710.0 188 00010→1001 600.0 210
00010→0010 710.0 206 00010→1010 0.0 198
00010→0011 710.0 244 00010→1011 0.0 201
00010→0100 710.0 218 00010→1100 0.0 197
00010→0101 710.0 186 00010→1101 0.0 196
00010→0110 1000.0 188 00010→1110 0.0 212
00010→0111 0.0 217 00010→1111 0.0 204

Table 1, which gives a selection of classifiers from state
s2, illustrates that the optimal duration from each state was
correctly identified by PXCS. Any duration that was too
long achieved a stable prediction of 0 and any duration
that was too short achieved a stable prediction of 710.0.
As predicted, all classifiers which do not lead directly to
the reward state indicate that they are only one step from
the reward state because there will always exist a
classifier in the resulting state which specifies the correct
duration to reach the reward state directly. Thus, as
predicted, PXCS reflects the number of different actions
required to move to the reward, not the number of steps.

The ability of PXCS to learn optimal durations through
the induction mechanism was now investigated. To
provide baseline results, the standard XCS was applied to
this two-reward environment. It was found that the

                                                          
1 This implementation is potentially limited. It would be preferable for
XCS to be able to interrupt an action in a changing environment where a
message indicates that an alternative action is desirable.

absence of an input to XCS of a '00000' message allowed
some states to be represented by competing
generalisations (two different conditions with equal
generality). The state messages were therefore re-
organised so that sn produced a message corresponding to
the binary representation of n-1. XCS was able to learn
the 16 classifiers of the optimal population [O] for this
environment with the following averaged coverage table
(from 10 runs):

Table 2. The coverage table from an XCS in a 2 reward
state corridor environment

000 001 010 011 100 101 110 111
302 215.9 182.5 253.8 356.8 501.2 708.6 999.2

598.4 424.8 301.7 214.7 181.0 253.3 356.6 502.4

Before PXCS was introduced, the ability of XCS to learn
given the same number of action bits as would be required
by PXCS was ascertained. The actions were extended to
four bits with only bit 0 interpreted. In our experience, 10-
12 micro-classifiers are required for each member of [O]
to be established without threat from competing
generalisations. Since the predicted [O] would now
increase from 16 to 128 classifiers, the population was
increased to 2000. The number of learning episodes
[where a learning episode is a exploration episode
followed immediately by an exploitation episode] was
increased to 15000. Space precludes inclusion of the
resultant [O] or coverage table, but XCS was able to
establish [O] within 3000 exploration episodes with each
action set highly converged on the optimal classifier.
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Figure 4. Performance of PXCS within two-reward single
chain FSW

PXCS was now introduced, reducing the population to
1500 to allow for predicted generalisations and running
each of the 10 test runs for 30000 learning episodes to
allow for the increased complexity of learning these
generalisations. On examining the resultant performance



graph, the population had stabilised by 15000 episodes,
with the system relative error (Barry, 1999) reduced to
close to zero by 4000 episodes, as shown in Figure 4.
Table 3 shows the averaged coverage table for the first
three states of the environment. The rows of this table
represent the durations (1-8) for action 0, whilst the
columns reflect the averaged prediction, number of macro
classifiers in the action set for the state, total numerosity
of these classifiers, and maximum numerosity of the most
represented classifier.

Table 3. An extract from the coverage table of PXCS in a
2 reward state corridor environment

000 m N >N 001 m N >N 010 M N >N
709.0 5 64 25 709.3 5 55 28 708.9 5 41 35
709.4 5 47 24 709.4 4 54 28 710.9 5 42 35
709.2 5 44 24 711.1 5 36 26 706.3 5 41 35
712.8 6 34 20 708.5 4 31 26 708.7 4 40 35
709.3 5 46 22 712.6 5 35 25 713.3 6 27 17
709.6 5 34 21 703.4 4 31 25 998.7 6 52 43
709.7 6 34 19 999.2 6 55 45 4.1 6 33 24
999.9 6 53 42 3.2 6 30 22 5.6 6 37 24

When the population was inspected it was found that,
although [O] was fully formed, more specific classifiers
continued to exist within the population. An detailed
examination of the populations revealed that the
additional classifiers were all younger and yet more
specific than the optimally general classifier within their
action set. The PXCS was modified to examine the
operation of the LCS during induction. It was found that
on occasion the GA mutation operator will create
classifiers outside the currently selected action set due to
mutation of the action. Classifiers lying outside the
current action set will not be subsumed by the existing
optimally general classifier within the current action set,
and Wilson(1996) does not provide for population-wide
subsumption. Within XCS these are rapidly deleted due to
the wider GA opportunities of the optimal classifier if the
classifier is fit but over-specific, or due to the low fitness
if the classifier is over-general. Within PXCS it was found
that the exploration of the state × action × duration ×
payoff map was much less even than within XCS. It was
therefore hypothesised that mutation by the GA
introduced over-specific classifiers which were not
eradicated within the PXCS.

This hypothesis was tested initially by reducing the
population size from 1500 to 1000, and 800 to put more
pressure on the general classifiers to make optimal use of
the population space. Although this did eradicate the
problem by a population size of 800, it also compromised
the formation of [O]. The hypothesis was therefore further
tested by modifying XCS to provide population-wide
subsumption after a failure of normal action-set
subsumption from the GA (although in general such a
technique could delay the removal of over-general
classifiers).

The modified PXCS was re-run for 10 runs within the
same environment and it was found that the populations

were strongly converged with no over-specific classifiers.
A single factor anova test of the average number of
macro-classifiers within each action set revealed a
significant change in the number of macro-classifiers
within each action set between this run and that of the
standard PXCS (P(0.01), F=109.062, Fcrit=6.73572).
Together with the evidence that the over-specific
classifiers were not seen within the standard XCS with
four action bits, we therefore conclude that our hypothesis
was upheld.
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Figure 5. Predictions of PXCS for each action in each
state in the two reward corridor FSW.

In order to verify Hypothesis 1, each match set within the
coverage table for this PXCS was examined. Figure 5 is
the plot of predictions for actions against state, showing
that PXCS selects duration 8-n-1 for state sn predicting a
reward of 1000 for these actions. Thus, in all states the
action leading to the highest available reward regardless
of duration is selected. PXCS has also identified all action
× duration combinations which are too long (prediction 0)
and not long enough (prediction 710). Although more
difficult to identify from the plot, PXCS has also
identified that the action × duration combinations which
lead to a reward of 600.  This demonstrates that PXCS is
able to identify, maintain, and optimally utilise the
classifier in each state which will allow the longest
persistence in action on any action chain which leads to a
stable environment reward, confirming hypothesis 1.

4.2 SELECTION OF DURATION

When figure 5 is examined, it is apparent that PXCS will
always select the action that leads to state s9 even when in
s1. This is in contrast to XCS, which would trade-off the
size of reward and the distance to the reward to choose
movement to s0 from s1. Whilst this behaviour verifies
hypothesis 2, it does not verify the behaviour of PXCS in
an environment that does not provide a single [persistent]
action direct to reward route. To further test PXCS, a new
FSW based upon a Benes Switch (used in computer
network switching to create low contention switching
from simple crossbar switches). This FSW requires a



four-step solution for XCS, but the reward state can be
reached using a two step solution with PXCS, and there
are competing solutions requiring 3 or 4 steps. No single
step solution to a non-zero reward exists.
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Figure 6. A FSW derived from the Benes Switch

To help XCS utilise any potential generalisation across
columns or rows, the non-reward states were labelled for
the creation of input messages by concatenating the row
bits and column bits identified in figure 6. Initially the
start states were states s0, s5, s10 and s15. A base-line XCS
learning experiment was conducted using a population
limit of 300 micro-classifiers. The following is a typical
[O] found by one of the ten runs used:

Classifier Pred Error Fitness Acc N [A]
###00→0 357.74 0.0002 0.9745 1.00 35 36.94
###01→0 504.03 0.0003 0.9913 1.00 33 33.36
###10→0 710.00 0.0000 1.0000 1.00 35 37.15
###11→0 0.00 0.0000 1.0000 1.00 30 32.30
###00→1 357.56 0.0004 1.0000 1.00 34 37.72
###01→1 500.52 0.0024 1.0000 1.00 37 39.81
###10→1 3.86 0.0023 0.7320 1.00 25 38.53
##011→1 1000.0 0.0000 1.0000 1.00 31 34.00
##11#→1 2.06 0.0022 0.6643 1.00 22 37.49

When PXCS was run within this environment (with the
population set to 1000, and 30000 learning episodes used
in each of the 10 runs) although it was able to find an [O]
some populations were unable to sustain all members of
[O] at high numerosity and a small number of over-
general classifiers continued to exist within the
population. An examination of the relative experience of
the classifiers revealed a highly irregular exploration
pattern. Although this was also the case within XCS, the
use of persistence meant that classifiers covering states
within rows 1 and 2 were inadequately explored. The
disruptive effects of inadequate exploration had been
noticed by Lanzi (1997) in another context, but rather
than employ his 'teletransportation' mechanism, the
situation was remedied by allowing all non-reward states
to be start states. The presence of additional classifiers
generated by mutation remained a problem, and so
population subsumption for child classifiers not subsumed
by the action set was applied.

In all 10 runs with PXCS, [O] was obtained. The

following is an example of an accurate sub-population:

Classifier Pred Classifier Pred
###0#→0000 503.57 ###0#→1000 503.31
###10→0000 707.84 ##0#1→1000 999.96
###11→0000 0.00 ##010→1000 6.32
###00→0001 503.67 ##011→1000 1000.0
###01→0001 708.38 ##11#→1000 0.27
###1#→0001 0.00 ####1→1001 0.17
####1→0010 0.00 ###00→1001 503.03
###00→0010 709.60 ###1#→1001 0.00
###1#→0010 0.00 #####→1010 0.12
#####→0011 0.00 #####→1011 0.00
#####→0100 0.00 #####→1100 0.00
#####→0101 0.00 #####→1101 0.00
#####→0110 0.00 #####→1110 0.00
#####→0111 0.00 #####→1111 0.00

PXCS has learnt to apply a three step duration from any
of states s0, s5, s10 and s15. Once in s3, PXCS selects a one
step action into the reward state s9. Although other
duration actions are available, in exploitation PXCS will
select the highest payoff achievable with the lowest
number of separate actions, as stated in hypothesis 2.

4.3 RE-INSTATING TEMPORAL DIFFERENCE

It has been shown that PXCS is able to identify the lowest
number of distinct actions, but at the cost of possibly
ignoring nearer low value rewards. Thus, PXCS does not
provide the Temporal Difference learning of XCS. It was
suggested that PXCS could be modified to discount the
reward or payoff received so that it was equivalent to that
received for a succession of single steps to the reward.
Although this would restore the TD properties of XCS, it
would not allow PXCS to favour a higher reward obtained
by initiating a persistent action. However, if the payoff
was then further modified by a small amount so that
longer duration actions were favoured, account for the
duration of the action could be taken.

This technique was implemented within PXCS, creating
the discounting PXCS (dPXCS). Whenever a reward was
received the reward allocated was γδ−1R (where R is the
reward and δ is the duration just applied), whilst payoffs
were discounted as γδP-(1.0-δ/∆)pγδP (where P is the
maximum prediction from the match sets in the next
PXCS iteration, p=0.2 is a constant representing the
amount of the payoff we will further adjust, and ∆ is the
maximum persistence possible). The two-reward corridor
environment was used as a test environment for dPXCS,
allowing comparison of the results gained in the previous
experiments. The experiment was run for 10 runs of
30000 learning episodes and a population size of 2000.

When the final populations were examined, it was found
that dPXCS was able to learn the separate payoffs for
each state × duration × action combination, and formed
[O] in all runs. The coverage table was examined and, as
Figure 7 illustrates, a graduation of the state × action ×
duration × payoff mapping was found. Thus, in state s4,



dPXCS will select a duration 5 forward action to s10,
whereas in state s3 it will select a duration 3 backward
action to s0, restoring the Temporal Difference property.
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Figure 7. Predictions of PXCS for each action in each
state in the two reward corridor FSW.

5 CONCLUSIONS
In Barry (1999) it was noted that the use of the
Greffenstette and Cob (1991) prediction mechanism
within XCS was inadequate for the solution of the
Consecutive State aliasing problem. It has now been
shown within two small Finite State Worlds that XCS is
able to learn the optimal duration over which to apply an
action, both when leading directly to a reward and when
choices on the pathways to an ultimate reward are made.
More importantly, it has been shown that an XCS
modified to provide duration learning is able to establish
and maintain accurate and optimally general maps of the
state × action × duration × payoff mapping of these
environments. This demonstrates that the Generalisation
Hypothesis can be extended to learning over durations.

However, it has been shown that a naïve approach to
persistence within XCS can lead to the removal of some
of the Temporal Difference properties of the XCS. This
means that rather than selecting the path to a reward based
on a function of the reward magnitude and the distance to
the reward, only the reward magnitude is taken into
account. Nevertheless, it was shown that it is possible to
restore the function so that the original operation of XCS
is preserved whilst providing selection over durations by
introducing a discounted reward and payoff mechanism.

These facilities build further the developing toolset of
techniques which can be applied to XCS. However, the
true benefit will possibly only be seen when they are
applied successfully within the domain of mobile
robotics, which remains as work to be done.
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