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Abstract

We investigate the use of learning and evolu-

tion for digital hardware design. Using the

reactive tabu search for discrete optimiza-

tion, we show that we can learn a multiplier

circuit from a set of examples. The learned

circuit makes less than 2% error and uses

fewer chip resources than the standard digi-

tal design. We compare use of a genetic algo-

rithm and the reactive tabu search for �tness

optimization. On a 2-bit adder design prob-

lem, the reactive tabu search performs signif-

icantly better for a similar execution time.

1 Introduction

The process of designing and implementing an ASIC

is typically a long and expensive one. Field Pro-

grammable Gate Arrays (FPGAs) are available as an

alternative to reduce the concept-to-product time and

the cost of making modi�cations. Recent FPGAs have

computational resources on the order of hundreds of

thousands or millions of gate equivalents, can be re-

programmed inde�nitely and have in-circuit and par-

tial recon�guration possibilities.

The emerging �eld of Evolvable Hardware (EH) at-

tempts to automate parts of the hardware design pro-

cess through the use of evolutionary algorithms. Some

success has been shown in evolving analog and mixed-

signal circuits [13][3], digital �lters [8], control circuitry

[6] and a variety of components for practical applica-

tions [5].

FPGAs are very well suited for EH, because of their

low cost, rapid recon�gurability and near ASIC speed.

FPGAs have been used as a platform for accelerating

EH [7], and also as a raw parameterized learning model

[13]. In the second case, evolutionary techniques have

made use of unconventional properties of the physical

device, yielding designs that defy conventional analysis

[14].

It is this unrestricted model that interests us. Part

of the advantage of EH is the removal of conventional

digital design constraints. We do not wish to arbi-

trarily add new ones by imposing our own structure

on the hardware device. Unfortunately this presents

problems for a genetic representation of the model.

Without some such structure, genetic operators have

little meaning. We are therefore interested in other

optimization techniques for maximizing a �tness crite-

rion.

Taking a cue from Perkowski et al. [10], we refer to this

hardware adaptation as learning hardware, with EH as

a special case. We compare a genetic algorithm with

a non-genetic discrete optimization algorithm (the re-

active tabu search) on adaptive arithmetic circuit de-

sign. Section 2 introduces the problem and the two

optimization algorithms. The physical system imple-

mentation is described in section 3, and experimental

results are given in section 4.

2 Learning Hardware

In the machine learning paradigm, we look at the con-

�gurable hardware as a parameterized learning model.

The con�guring bit string is the vector of (binary) pa-

rameters. We have some error (or �tness) criterion

that we can evaluate for any hypothesis in the learning

model (i.e. any con�guration of the hardware device).

This model is illustrated in �gure 1.

In this model, the problem of hardware design is sim-

ply one of discrete optimization. We refer to the prob-

lem as one of error minimization rather than �tness

maximization, although the two are equivalent. For

this minimization we consider two alternative tech-

niques, the genetic algorithm [4] and the reactive tabu
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Figure 1: Comparison of a neural network learning

model with the hardware learning model. The neural

network is parameterized in terms of its weights, the

hardware in terms of its con�guring bit string. To a

learning algorithm, each is simply a `black box' that

produces an output value for a given input.
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Figure 2: The crossover operation. Two children

are produced from a pair of parents by splicing their

genomes.

search [1].

2.1 Genetic Algorithm

The genetic algorithm (GA) is meant to mimic Dar-

winian evolution. A population of candidates is main-

tained, and goes through a series of generations. For

each new generation, some of the existing candidates

survive, while others are created by a type of repro-

duction from a set of `parents.'

The con�guring bits ~g = (g1; g2; : : : ; gL) 2 f0; 1g
L act

as the genome for each candidate, and genetic vari-

ation is introduced by means of the genetic opera-

tors of mutation and crossover. In the GA used here,

crossover is e�ected by splitting the genomes of two

parents at some point and splicing the mismatched

pieces as illustrated in �gure 2. Mutations �i are

pointwise (as in equation 1), with single bits in the

genome being 
ipped with some probability pmut.

�i(~g) = (g1; : : : ; gi�1; 1� gi; gi+1; : : : ; gL) (1)

All members of the population are subject to muta-

tions from one generation to the next.

For the experiments of section 4, we have the best one

third of the population survive and become potential

parents. Parents are selected randomly with a prob-

ability based on rank. pmut is chosen so that in any

generation 2 mutations are expected in each genome.

2.2 Reactive Tabu Search

The reactive tabu search (RTS) is a hill-climbing al-

gorithm that includes a tabu parameter that prevents

undoing recently taken steps. This is intended to allow

escape from local minima. In order to prevent cycles,

the tabu parameter is adaptive.

We have followed closely the implementation of RTS

in [2]. For a con�guration ~g, all changes are single bit

ips �i(~g) (as in equation 1). At each iteration, some

subset S of possible changes to the con�guration is

considered, and the best change � is found. The move

� is then `tabu' for some time T , that is, it cannot be
included in the subsequent S.

When we encounter short cycles, we increase the tabu

period T  �T; � > 1. Thus, if we are in a local

minimum and repeatedly undo short upward steps, T
will increase until the tabu period is long enough to

allow escape. When we encounter new con�gurations

or very long cycles, we decrease the tabu period T  
�T; � < 1. In this way we allow re�nement to a new

minimum after escaping from another basin.

For the experiments of section 4, we take jSj = L=16
(that is 1=16 of all allowable mutations are considered),
and use tabu adjustment parameters � = 1:1 and � =

0:9.

3 Experimental Setup

3.1 The XC6216

The Xilinx XC6216 FPGA is particularly desirable

for EH due to its partial recon�gurability, multiplexor

based architecture and open architecture [16]. Par-

tial recon�guration allows the incremental changes of

a learning algorithm to be made in hardware very

rapidly. The MUX based architecture ensures that

signal contention is not a problem, and thus that arbi-

trary con�guration data will not cause the chip to self

destruct.

The XC6216 has 4096 cells, each of which consists of a

function unit and nearest neighbor routing resources.

Longer connections and special connections for arith-

metic functions are available, but for regularity we

have not used them. We also disable the register so

that the circuit is purely combinational. This results

in a con�guration space that has 18-bits for each cell.
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Figure 3: XC6216 function unit (from [16]).

The function unit in each cell consists of 5 multiplex-

ors and a register and is illustrated in �gure 3. It has

three inputs and can implement any constant, one- or

two-input input logic function or 2-to-1 MUX.

3.2 System Implementation

The hardware learning task was implemented intrin-

sically, that is, with the learning taking place on ac-

tual hardware. We use the Virtual Computer Corp.

H.O.T.Works system [11], which provides a PCI inter-

face to the XC6216 chip and a C++ API. The board

is installed in a Pentium Pro 200 PC. While the search

algorithm is executed in software, each function eval-

uation is done by the FPGA device.

One quarter of the FPGA is reserved for experimen-

tation (dynamic recon�guration), a memory interface

and control circuitry are placed on the periphery,

and the remaining resources are available to facilitate

wiring. A schematic of the static layout is given in

�gure 4. The recon�gurable test area is a purely com-

binational \sea-of-gates," and its particular con�gura-

tion represents the (not necessarily deterministic) hy-

pothesis being tested.

The memory is clocked at 16MHz, and the examples

are cycled at 1/16 the memory clock speed to allow

settling of unstable or or oscillatory circuits.1 For �t-

ness evaluation, a set of input patterns is written to

the on-board RAM. Each is presented for 1�s, and the
result is stored on-board. After all patterns have been

presented, the results are read back to system mem-

ory, and compared to the targets in software. As we

1We make no e�ort to disallow unstable circuits, but
instead view the outputs as possibly noisy versions of the
desired signal. Thus a signal that oscillates between logic
1 and logic 0 may, averaged over time be taken as having
a value of 0.75. In the world of digital circuit design, this
is undesirable, but in the realm of learning and pattern
recognition we may be dealing with an ill de�ned problem
for which even human experts cannot determine the correct
output with certainty.
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Figure 4: Schematic FPGA layout.

discuss in the next section, each iteration of a learn-

ing algorithm takes tens to hundreds of milliseconds.

At 1�s per example presentation, the actual function
evaluation accounts for a very small fraction (< 1%)

of the total execution time. This is a contrast to tra-

ditional learning models (e.g. neural networks), where

computation of the function value may be complicated

and may take up most of the time needed for learning.

4 Arithmetic Circuit Design

We compare the GA and RTS for arithmetic circuit

design on the XC6216. We present the problem of de-

signing a digital circuit in terms of a set of examples.

Speci�cally we look at 2-bit adder and multiplier cir-

cuits, which have been considered of some interest for

evolvable hardware approaches [15][9]. While we are

concerned in the long term with designing circuits for

pattern recognition, we use these arithmetic circuits

to illustrate the e�ectiveness of automated design on

a short time scale.

4.1 2-bit Multiplier

Using the 2-bit multiplier as a target, we show that we

can learn circuits that perform nearly perfectly and use

a similar amount of hardware resources to hand-tuned

designs.

For the experiments, we used RTS for �tness optimiza-

tion and allowed 2:5 � 106 updates. No circuit per-

formed perfectly, but the best performer made only 4



00 01 10 11

00 0000 0000 0000 0000

01 0000 0001 0X10 0011

10 0000 0010 0100 0010

11 0000 0011 0110 1001

Table 1: Truth table for 2-bit multiplier solution. The

underlined 0 is incorrect. The output marked X is

unstable, but correct 97.5% of the time.

bit errors on 64 examples (1.56% error). The same per-

formance was observed on a test set, indicating that

the low error rate was not dependent on the initial

circuit state, derived memory circuits (e.g. latches)

or instabilities (e.g. oscillators). In fact, the output

truth table given in table 1 indicates that instabilities

are present in the circuit, but that their e�ects are

minor.

Figure 5 shows the resulting layout. Only 11 func-

tion units are used in a 4 � 4 cell area. For com-

parison, the Xilinx multiplier macro uses 15 function

units and wires in 16 cells (in a 4� 5 rectangular foot-

print). Although the design constraints are di�erent

(the macro is intended to scale to any size multiplier),

the learned solution demonstrates that adaptively de-

signed circuits can be competitive in terms of hardware

usage.

It should be noted that, while we would typically ex-

pect arithmetic circuits to be stable and error free, a

good solution to a pattern recognition problem may al-

low for probabilistic outputs and errors much greater

than 1.5% [12]. Thus, while we do not expect this

technique to redesign the multiplier, we have shown

that it performs quite well on learning a circuit from

a set of examples.

4.2 E�ects of Dimensionality

In section 4.1 we saw that adaptive techniques can

learn circuits from examples without a signi�cant

waste of chip resources. If we do not have a bench-

mark design available, however (as is the case in many

pattern recognition problems), we are faced with the

problem of selecting which chip resources to use. Al-

locating more cells to a problem increases the number

of correct solutions, but also increases the dimension

of the parameter space, making it more diÆcult to

search.

Figure 6 illustrates this tradeo� for the multiplier

problem, using RTS for 105 updates. In each case,

a rectangular region of the chip was used with 4 cells

in the y-dimension. The number of cells in the x-

Figure 5: Learned circuit layout for 2-bit multiplier.

Each cell is labelled with its function and solid lines in-

dicate the wiring (only paths connecting inputs to out-

puts are shown). Feedback and nonstandard boolean

functions (those cells marked *) are evident.

dimensions ranged from 1 to 10. With only 4 cells

available, there is insuÆcient hardware to implement

a solution to �t the data. As we add cells, the error

for this short training run decreases steadily until we

reach a 5�4 grid. Up to this point, the bene�t from ad-

dition of gates outweighs the diÆculty associated from

increased dimension. As we add more gates, however,

the error increases as the e�ects of dimensionality take

over.

4.3 2-Bit Adder

We use the 2-bit adder to compare the relative perfor-

mance of the RTS and the GA. We compare the per-

formance in terms of similar execution time, since the

GA involves more overhead for population dynamics.

The population size for the GA is 100, so each gener-

ation for the involves checking 100 di�erent circuits.

Including overhead, the average execution time is ap-

proximately 111ms. For RTS, we consider 22 possible
changes, and each update takes approximately 18ms.
Thus, for a similar computation time, we run about 6

times as many updates for the RTS as generations of

the GA. In terms of �tness evaluations, this results in

a ratio of about 4:3 in favor of RTS.

We use a 5 � 4 grid of cells as the testbed for the

problem, corresponding to a 360-dimensional con�g-

uration space. The inputs are presented as eastward

inputs to the westernmost cells, and the outputs are
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Figure 6: Mean training error levels achieved after 105

RTS updates. We see the errors decrease at �rst as

we add hardware allowing more solutions. The error

increases above 20 cells as the higher dimension makes

search increasingly diÆcult.
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Figure 7: Chip resources used for 2-bit adder problem.

20 cells are used, with the inputs presented from the

west side and outputs taken from the east. The output

bits may be taken in any order.

the eastward outputs from the easternmost cells (see

�gure 7). The desired computation is presented as a

set of examples, f(ai; bi); yig
64
i=1, where ai; bi 2 f0; 1g

2

and yi = ai + bi 2 f0; 1g
4. Although the most signif-

icant bit of yi will always be 0, we include it so that

every output bit is completely speci�ed by the input.

As a type of symmetry hint, we allow permutations of

the output bits. This slows �tness evaluation, but in-

creases the space of correct designs, hopefully reducing

search times.

We compare RTS for 3�105 updates and GA for 5�104

generations. This corresponds to approximately 5500

seconds of execution time, 6.6 million circuit evalua-

tions for each RTS run and 5 million circuit evalua-

tions for each run of the GA. Comparative results are

given in table 2. Out of 25 test runs, the best GA

performance on the presented example set was 41 bit

Algorithm Training Test

Best Mean Best Mean

RTS 0 4.28 0 16.6

GA 41 49.8 57 72.6

Zero 88 88 88 88

Random 128 128 128 128

Table 2: Results for the 2-bit adder problem. For com-

parison, the results for a completely random output

and an all zero output are shown.

errors of 256 possible (16%). While this is signi�cantly

better than a trivial all zero circuit, it is nowhere near

performing the desired computation. In contrast, with

the RTS, the mean error rate is only 4.28 bits (1.7%)

on the training set, with average 16.6 average error

bits (6.5%) on the test set.2 In addition, the reactive

tabu search gave one circuit that tested perfectly.

5 Conclusion

The results of section 4 demonstrate that we can design

reasonably eÆcient and reliable circuits by hardware

learning. While hardware evolution is known to be

valuable, we have shown that, when we do not impose

semantic constraints on the hardware learning model,

use of a genetic algorithm may not be the best for

�tness optimization.

Speci�cally, the reactive tabu search performs signif-

icantly better than the genetic algorithm for a 2-bit

adder design for the same execution time. RTS also

proved e�ective in designing a multiplier circuit that

was > 98% correct and used fewer chip resources than

the corresponding design provided by the manufac-

turer.

We hope that use of alternative learning algorithms to

the genetic algorithm will result in a signi�cantly faster

adaptive hardware design process. Current work in-

volves the application of hardware learning to pattern

recognition problems for which errors are acceptable,

but hardware speeds are critical. Also under investi-

gation are hierarchical methods for combining small,

learned circuits for more complex functionality.

2Although the data sets used to train and test can be
expected to contain the same data, the register states,
evolved internal state, instabilities and particular data or-
dering (in
uencing, for example, state machine like oper-
ation) may cause the error on a particular training set to
be arti�cially low. Resetting the con�guration and testing
on a `new' data set should eliminate these artifacts.
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