GA Hard Problems

Bart Rylander

University of Idaho Moscow, Idaho 83844 kerryr@pacifier.com 360-887-4424

Abstract

We define GA-hardness and provide a method for analyzing the GA-complexity of the underlying problem in a way that can be related to classical complexity.

1 GA-HARDNESS

By applying the same techniques used in classical complexity theory, we develop a rigorous definition for GA-Hard *problems*.

Definition 1: Let R be a polynomial time computable, optimality-preserving transformation. A problem G is **GA-hard** for class C with respect to R if every problem A in C reduces in polynomial time to G via R, and G is in PO, and any GA for G requires more than polynomial time to converge for some instance unless PO=NPO. (In this case, PO and NPO are the optimization analogs of P and NP.)

2 MINIMUM CHROMOSOME LENGTH

We show that by using Ankenbrandt's [Ankenbrandt, 1991] convergence proofs and adding a polynomial bound for the encoding/decoding, we can define the complexity of a problem instance. By then applying our Minimum Chromosome Length (MCL) method we can describe the GA-complexity of a problem. A *desideratum* for a representation is to minimize the number of bits in a chromosome that still uniquely identifies a solution to the problem.

Definition 2: For a problem P, and D_n the set of instances of P of size n, let MCL(P,n) be the least *l* for which there is an encoding $e:S^1 \rightarrow D_n$ with a domain dependant evaluation function g, where g and e are in FP (the class of functions computable in polynomial time).

3 MCL GROWTH

Complexity is typically based on the rate of growth of a fundamental unit of measure as a function of the input

James Foster University of Idaho Moscow, Idaho 83844 foster@cs.uidaho.edu 208-885-7062

size. The MCL growth rate can be used to bound the worst case complexity of the problem for a GA.

Theorem 1: for any problem P, if $2^{MCL(P,n)} \in O(n^k)$ for some k, then $P \in PO$.

Conjecture 1: If $P \in PO$, and $2^{MCL(P,n)} \notin O(n^k)$, then $P \neq NP$.

Conjecture 2: If $P \in PO$, and $2^{MCL(P,n)} \notin O(n^k)$, then P is GA-hard for PO (using optimization preserving polynomial time reductions).

4 GA COMPLEXITY CLASSES

This discussion leads us to propose a new complexity class specifically for algorithms, such as GAs, which use a mapping from genotype to phenotype. This class represents the class of GA problems whose MCL growth rate is linear.

Definition 3: A problem P is in the class NPG if $MCL(P,n) \in O(n)$.

For example, maximum clique (MC) is in NPG. Any problem in PO is also in NPG, since one can use an *1*-bit null representation, which one then ignores while solving the problem directly.

5 CONCLUSIONS

These developments allow researchers to categorize a complexity hierarchy specifically for GAs. In addition, the development of a definition for GA-hardness should help the stalled efforts to find a GA-hard problem. This is important because we can now begin to evaluate the usefulness of GAs against other approximation methods.

References

Ankenbrandt, C.A. (1991). An Extension to the Theory of Convergence and a Proof of the Time Complexity of Genetic Algorithms, FOGA1, Morgan Kaufman.