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Abstract

We define GA-hardness and provide a method
for analyzing the GA-complexity of the
underlying problem in a way that can be related
to classical complexity.

1    GA-HARDNESS

By applying the same techniques used in classical
complexity theory, we develop a rigorous definition for
GA-Hard problems.

Definition 1: Let R be a polynomial time computable,
optimality-preserving transformation. A problem G is
GA-hard for class C with respect to R if every problem A
in C reduces in polynomial time to G via R, and G is in
PO, and any GA for G requires more than polynomial
time to converge for some instance unless PO=NPO. (In
this case, PO and NPO are the optimization analogs of P
and NP.)

2    MINIMUM CHROMOSOME LENGTH

We show that by using Ankenbrandt’s [Ankenbrandt,
1991] convergence proofs and adding a polynomial bound
for the encoding/decoding, we can  define the complexity
of a problem instance.  By then applying our Minimum
Chromosome Length (MCL) method we can describe the
GA-complexity of a problem.  A desideratum for a
representation is to minimize the number of bits in a
chromosome that still uniquely identifies a solution to the
problem.

Definition 2: For a problem P, and Dn the set of instances
of P of size n, let MCL(P,n) be the least l for which there
is an encoding e:Sl→Dn with a domain dependant
evaluation function g, where g and e are in FP (the class of
functions computable in polynomial time).

3    MCL GROWTH

Complexity is typically based on the rate of growth of a
fundamental unit of measure as a function of the input

size.  The MCL growth rate can be used to bound the
worst case complexity of the problem for a GA.

Theorem 1: for any problem P, if

)(2 ),( knPMCL nO∈  for some k, then P∈PO.

Conjecture 1: If P∈PO, and 2MCL(P,n) ∉O(nk), then
P≠NP.

Conjecture 2: If P∈PO, and 2 MCL(P,n) ∉O(nk), then P is
GA-hard for PO (using optimization preserving
polynomial time reductions).

4    GA COMPLEXITY CLASSES

This discussion leads us to propose a new complexity
class specifically for algorithms, such as GAs, which use a
mapping from genotype to phenotype. This class
represents the class of GA problems whose MCL growth
rate is linear.

Definition 3: A problem P is in the class NPG if
MCL(P,n)∈O(n).

For example, maximum clique (MC) is in NPG. Any
problem in PO is also in NPG, since one can use an 1-bit
null representation, which one then ignores while solving
the problem directly.

5    CONCLUSIONS

These developments allow researchers to categorize a
complexity hierarchy specifically for GAs. In addition, the
development of a definition for GA-hardness should help
the stalled efforts to find a GA-hard problem. This is
important because we can now begin to evaluate the
usefulness of GAs against other approximation methods.
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