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Abstract

Sequencing problems have to be solved very

often in VLSI CAD. To obtain results of

high quality, Evolutionary Algorithms (EAs)

have been successfully applied in many cases.

However, they often su�er from the high

CPU time which is necessary for the compu-

tation. In this paper we propose three tech-

niques to speed up EAs without loss of qual-

ity. We give a case study for the problem

of optimizing the variable ordering of Binary

Decision Diagrams (BDDs). Experimental

results are given to demonstrate the e�ciency

of the approach.

1 Introduction

Sequencing problems in general have to be solved in

many applications. They have in common that an

order of (integer) numbers has to be optimized with

respect to some application-dependent measure, as

e.g. the length of the traveling salesman's way in the

Traveling Salesman Problem (TSP). Many algorithms

have been proposed so far to solve this kind of prob-

lem. To obtain results of high quality, Evolutionary

Algorithms (EAs) have been applied in the past in

many cases and they often could improve even the best

known results signi�cantly.

In the area of VLSI CAD, runtime is often of large

importance. However, EAs tend to use much runtime.

In many cases most of the CPU time is spent for the

evaluation of orders, which often is computationally

expensive. This is the case for example in BDD mini-

mization, which is a key problem in many applications

(see next section).

Moreover, EAs cannot guarantee that each order is

considered at most once, i.e. the same order may be

evaluated many times if it is located in some promising

region of the search space. Thus it may not be desir-

able to exclude this order from the reachable search

space, like in tabu search (Glover & Laguna, 1999),

since some other good orders might not be reachable

otherwise.

In this paper we propose three methods to accelerate

standard EAs for sequencing problems.

1. We propose to use a table of computed results.

Before evaluating an order, this table is used to

determine whether the same order has already

been evaluated before. If it is contained in the

table, the computed cost can be used directly, oth-

erwise the order is evaluated and its cost is added

to the table.

2. We suggest to use di�erent representations for the

problem. To evaluate a new order, the represen-

tation that matches best is used. However, this

is only possible in applications where it is easily

possible to estimate the e�ort that is needed for

the evaluation.

3. In some cases it is possible to give upper and lower

bounds on the resulting cost if two orders are very

similar. For example, if two values in the order

are exchanged, this usually only results in a small

change of the cost. Thus it may be enough to use

the upper and lower bounds for the resulting cost

instead of evaluation of the real cost.

The paper is structured as followed: In the next sec-

tion, several applications of sequencing problems in

VLSI CAD are given. The problem of BDD minimiza-

tion is described in more detail in Section 3. In Sec-

tion 4 the application of the methods proposed above

to the problem of BDD minimization is given. Finally,

we give experimental results to discuss the e�ciency

of the approach.



2 Sequencing Problems in VLSI CAD

Sequencing problems have been intensively studied in

the past, since they are the basic optimization prob-

lem in many applications. For example, the well-

known Traveling Salesman Problem (TSP) belongs to

this class. For these problems many successful applica-

tions of EAs have been reported (see e.g. (Oliver et al.,

1987; Whitley et al., 1989; Michalewicz, 1994)). For

the TSP mainly quality was optimized and runtime

was not considered.

In the area of VLSI CAD the basic underlying problem

of many applications is to �nd an optimal sequence of

elements like low power design (Murgai et al., 1995;

Tiwari et al., 1996) and testing (Costa et al., 1998).

For an overview see (Drechsler, 1998).

In the following we consider one problem in more de-

tail: �nding the optimal variable ordering for BDDs.

This problem has been selected, due to the following

reasons:

1. Finding the optimal BDD representation is of

large practical importance, since BDDs are used

in many approaches as underlying data structure,

e.g. in areas like logic synthesis (Le et al., 1995;

Buch et al., 1997; Chaudhry et al., 1998; G�unther

& Drechsler, 1999) and veri�cation (Appenzeller

& Kuehlmann, 1995).

2. Due to its importance the problem has been inten-

sively studied from the theoretical point of view

and in the meantime is well understood (Bollig

et al., 1995; Bollig & Wegener, 1996; Sieling,

1998).

3. Many heuristic algorithms have been proposed in

the last few years. They are based on very di�er-

ent concepts, like e.g. greedy algorithms (Ishiura

et al., 1991; Rudell, 1993), simulated anneal-

ing (Bollig et al., 1995) and genetic algorithms

(Drechsler et al., 1996).

All in all, the best results have been obtained so far

by EAs, but the methods su�ered from high runtime.

Before describing how the three improvements of Sec-

tion 1 can be used for BDD minimization, we brie
y

review the de�nition of BDDs and de�ne the problem

that will be considered in the following.

3 Minimization of BDDs

As is well-known, each Boolean function f : Bn !
B can be represented by a Binary Decision Diagram

(BDD) (Bryant, 1986), i.e. a directed acyclic graph

where a Shannon decomposition

f = xifxi=0
+ xifxi=1

(1 � i � n)

is carried out in each node.

A BDD is called ordered if each variable is encountered

at most once on each path from the root to a termi-

nal node and if the variables are encountered in the

same order on all such paths (we refer to this order

as the variable order in the following). A variable or-

der divides the nodes of a BDD into levels of nodes

which are marked with the same variable. A BDD

is called reduced if it contains neither isomorphic sub-

BDDs nor vertices with both edges pointing to the

same node. In the following, only reduced, ordered

BDDs are considered and for briefness these graphs

are called BDDs. BDDs are a canonical representa-

tion, i.e. for each Boolean function the BDD can be

uniquely determined.

BDDs can analogously be de�ned for multi-output

functions f : Bn ! Bm by sharing sub-graphs. Note

that the same order has to be used for all outputs. For

functions represented by BDDs e�cient manipulations

are possible (Bryant, 1986; Drechsler & Becker, 1998).

It has been shown in (Bollig & Wegener, 1996) that

improving the variable order of BDDs is NP-complete.

However, the BDD's size largely depends on the vari-

able ordering, i.e. it may vary from linear to exponen-

tial (Bryant, 1986).

Example 1 Let f = x1x2+: : :+x2n�1x2n. If the vari-

able ordering is given by (x1; x2; : : : ; x2n) the size of

the resulting BDD is 2n. On the other hand if the vari-

able ordering is (x1; xn+1; x2; xn+2; : : : ; x2n) the size of

the BDD is �(2n�1). Thus, the number of nodes in

the graph varies from linear to exponential depending

on the variable ordering. In Figure 1 the BDDs of the

function f = x1x2+x3x4+x5x6 with variable orderings

(x1; x2; x3; x4; x5; x6) and (x1; x3; x5; x2; x4; x6) are il-

lustrated. The left (right) outgoing edge of each node

marked by xi denotes fxi=1
(fxi=0

). As can be seen

the choice of the variable ordering largely in
uences

the size of the BDDs.

Exchanging two neighboring variables in the variable

order of a BDD is a local operation (Ishiura et al.,

1991) and can be carried out in linear time in terms of

the two level sizes.

3.1 Evolutionary Approach

We use a simple evolutionary approach to optimize the

variable order of BDDs. It is based on the algorithm
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Figure 1: BDDs of the function f = x1x2 + x3x4 + x5x6
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Figure 2: INV operator

of (Drechsler et al., 1996). The �rst element of the

initial population uses the initial order of the BDD.

Further elements are created using the mutation oper-

ator MUT described below1.

The following three operators were used for the repro-

duction process:

MUT: Select one parent element. Exchange two ran-

domly chosen variables.

INV: Select one parent element. Invert the order of

all variables between two randomly selected cut-

points (see Figure 2).

PMX: Perform the partially matched crossover

(PMX) operator (Goldberg & Lingle, 1985) on

two selected parents.

1More sophisticated methods to generate an initial pop-
ulation are possible. However, the main focus of this paper
is to present techniques to speed up the computation time.

All operators are used with equal probabilities. Linear

ranking was used to select the parents for each opera-

tor. Evaluation of the resulting orders is basically done

by setting the new order in the BDD and counting the

number of nodes. A sketch of the algorithm is given

in Figure 3.

4 Improving the EA

In the following, we describe how the three basic prin-

ciples can be applied to the EA of the previous section.

Notice that here we consider BDD minimization only,

but the results directly transfer to other types of or-

dering problems.

The main motivation for this approach is that setting

a new order in a BDD is an expensive operation. Al-

though the basic operations of this are level exchanges

which can be handled very e�ciently, many of these

level exchanges are necessary to set a completely dif-

ferent order. Note that the BDD can even blow up in

intermediate steps of this operation. Thus it is desir-

able to avoid as many evaluations of orders as possible.

4.1 Table of Computed Results

All orders for which the resulting BDD size has been

computed before are stored in a hash table, together

with the resulting size. Then the evaluation of a given



evolutionary algorithm(BDD f) f
P = generate initial population(f);

do f
/* generate children C */

C = ;;
while (jCj � 5) f

select operator op;

if (op == MUT) f
p1 = linear ranking selection(P);
c = MUT(p1);

g else if (op == INV) f
p1 = linear ranking selection(P);
c = INV(p1);

g else f /* op == PMX */

p1 = linear ranking selection(P);
p2 = linear ranking selection(P);
c = PMX(p1, p2);

g
C = C [ fcg;

g

/* evaluate children */

for (each c 2 C) f
set BDD f to order of c;

�tness(c) = size of BDD(f);

g

/* update population */

remove the jCj worst elements of P ;
P = P [ C;

g until (no improvement was observed
during the last 1000 iterations);

return best element;

g

Figure 3: Sketch of the basic EA

order can be sped up by �rst looking at the table of

computed results. Only if the order could not be found

in the table, the order is set on the BDD and its size is

computed. In the experiments it turned out that about

50% of the orders could be found in the table and thus

the BDD did not have to be constructed. However,

if the order was not found, the construction became

more expensive, since on average more level exchanges

were necessary. Therefore the gain in runtime was less

than 50%.

4.2 Multiple Representations

To overcome this problem, several BDDs with di�erent

orders are used and each BDD representation can be

modi�ed independent of the others2. If an order could

not be found in the computed table, then in a �rst step

the BDD having the best matching order is found out.

Then the order to evaluate is set on this BDD.

Computing the best matching BDD can be realized by

computing the number of level exchanges which are

necessary to set the order. The CPU time used for

this is much less than in case the order would really

be set.

4.3 Approximate Search

To further speed up the algorithm, also similar orders

can be considered. If two orders di�er only by one

level exchange, then the exact resulting size cannot be

determined without setting the new order. However,

it is possible to give upper and lower bounds on the

resulting size. Such bounds were �rst presented in

(Bollig et al., 1996): For example, if one variable is

moved starting from an arbitrary position to the top

of the BDD, it is known that the BDD size may double

at most by this operation. Similar bounds are known

for TSP like the triangle equation.

Instead of using these \correct" bounds which rarely

will be reached, it is also possible to use estimations for

the range of the resulting size which are very easy to

compute, i.e. in case the only di�erence is the exchange

of two values (a MUT operation), we assume that the

new size is in the range ( 1
2
� size; 3

2
� size) in most cases.

5 Experimental Results

In this section we describe experimental results that

have been carried out on a SUN Ultra 4 with a mem-

ory limit of 64 MBytes. All times are given in CPU

seconds. The algorithm has been implemented us-

ing the CUDD package (Somenzi, 1998) and GAME

(G�ockel et al., 1997). We use the BDD representa-

tion for several commonly used benchmark circuits as

starting point. (During the construction process, sift-

ing (Rudell, 1993) is used dynamically to minimize the

intermediate BDDs.) The population size is 10, 5 chil-

dren are used and the EA stops if no improvement was

observed during the last 1000 iterations.

We evaluated the in
uence of the three improvements

both on runtime and quality of the resulting BDD

sizes. The results are given in Table 1. The name

of the circuit is given in the �rst column. In columns

in and out the number of inputs and outputs are given.

2This is implemented using di�erent BDD managers
which represent the same function, but use di�erent vari-
able orders (Somenzi, 1998).



Table 1: Results for benchmark functions

init. w/o speed-up computed table multi-manager approximation

circuit in out size size time size time size time size time

accpla 50 69 2031 1697 167.8 1697 160.6 1697 62.4 1970 20.9

alu2 10 6 230 153 2.0 153 0.4 153 0.4 168 0.2

alu4 14 8 1181 353 6.6 353 1.7 353 1.4 368 1.2

apex6 135 99 2759 582 118.4 582 135.9 582 99.2 794 87.0

c1908 33 25 9518 6252 2895.2 6252 2034.4 6252 737.6 7866 261.3

c432 36 7 1225 1225 429.5 1225 315.8 1225 94.9 1224 146.9

c8 28 18 135 81 3.2 81 2.0 81 1.8 88 2.8

count 35 16 233 80 8.4 80 5.7 80 4.2 102 13.5

cps 24 102 2281 973 18.3 973 9.7 973 6.9 1054 4.8

frg1 28 3 203 77 7.9 77 4.7 77 3.6 114 2.5

i1 25 13 55 35 1.6 35 1.1 35 1.1 36 1.1

i3 132 6 132 132 52.8 132 46.9 132 30.8 132 29.3

i8 133 81 1719 1352 223.1 1352 234.4 1352 142.7 1450 57.9

my adder 33 17 81 81 10.8 81 5.4 81 2.7 80 2.1

seq 41 35 1312 1299 119.6 1299 77.2 1299 36.4 1310 26.2

term1 34 10 579 101 10.4 101 8.1 101 5.4 118 4.2

too large 38 3 814 510 50.4 510 35.8 510 18.2 476 46.5

unreg 36 16 146 81 2.6 81 2.1 81 2.2 82 5.6

vg2 25 8 1043 147 13.4 147 7.6 147 5.2 148 2.5

x1 51 35 1296 450 30.0 450 23.9 450 14.4 588 25.8

x3 135 99 633 561 65.9 561 81.3 561 64.6 630 23.2

sum 27606 16222 4237.9 16222 3194.7 16222 1336.1 18798 765.5

The initial BDD size is noted in the next column. The

following columns refer to the �nal BDD size and the

CPU time using di�erent variants of the EA. In col-

umn w/o speed-up the results of the \pure" EA without

any speed-up are given. Using the table of computed

results resulted in the numbers of the next column.

In column multi-manager, 10 di�erent BDD managers

were used in parallel in addition to the use of a com-

puted table. In the last column, additionally to the

previous techniques an approximate search in the com-

puted table was allowed.

It can be seen that using the computed results has

no in
uence on the quality of the results. On average

about 50% of the orders could be found in the com-

puted table, and the amount of CPU time saved by the

approach is 25%. This can be further improved using

several BDD managers: compared to the pure EA de-

scribed in Section 3.1, a speed-up of 68.5% is observed,

without loss of quality. Using an approximate search

in the computed table, this speed-up can even be in-

creased to 81.9%, however the average resulting size is

also increasing.

All in all, it can be seen that it is possible to signif-

icantly speed up EAs using the methods proposed in

this paper.

6 Conclusions and Future Work

We presented di�erent methods to speed up EAs for

sequencing problems. First, we proposed to use a hash

table which contains already evaluated orders. Second,

di�erent representations of the problem can be used,

using the one that matches best for the next evalua-

tion. We gave experimental results that showed that

it is possible to save almost 70% of runtime without

changing the quality of the result when applied in BDD

minimization.

Finally, in some applications it is possible to give up-

per and lower bounds for the cost of an order if the

cost for a similar order is known. In these cases some

orders do not have to be evaluated at all, since the

bounds can be used instead. It turned out that in

BDD minimization, on average the resulting sizes in-

creased while the runtime was further reduced using

these approximations.

To be able to handle such �tness intervals in the se-

lection process, we used the average value in our im-

plementation. It is focus of current work to use more

sophisticated methods that can directly use the �tness

intervals.
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