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Abstract

This article describes a new tool for visual-
ising genetic algorithms, (GAs) which is de-
signed in order to allow the implicit mecha-
nisms of the GA — i.e. crossover and mu-
tation — to be thoroughly analysed. This
allows the user to determine whether these
mechanisms are essential to a GAs perfor-
mance, and if so, to provide a principled
means of setting the parameters associated
with them, based on a sound understanding
of their effects. The use of the tool is illus-
trated by applying to the analysis of a job-
shop scheduling problem, in order to choose
effective operators, and to determine appro-
priate settings for them. We show that by
analysing two crossover operators and a mu-
tation operator, we can refine the choice and
settings of these parameters in order to im-
prove the performance of the GA on the par-
ticular problem chosen. When the new op-
erators are applied to a wider range of prob-
lems of the same type, a similar improvement,
in performance is observed.

1 INTRODUCTION

Evolutionary computation is now widely used in a
broad range of problem solving domains. It can be ex-
tremely simple to quickly set up a very naive genetic
algorithm (GA) to tackle a problem, but analysing the
results to discover whether the process is efficient or
could be improved is extremely difficult due to the
highly multi-dimensional nature of the data, and the
quantity of it that can be generated. For this reason,
operators and their associated settings are often cho-
sen through an empirical process of trial and error,

or according to published rules of thumb, despite at-
tempts to automate the procedure (for example (Corne
et al., 1994),(Tuson and Ross, 1998)). Clearly it would
be preferable to approach the problem in a more prin-
cipled manner, using some method which allows the
GA user to analyse and understand the performance
of GA on a given problem, and then extrapolate the
findings in a scientific way to improve the results.

We propose that visualising the GA process is essential
to this task. Visualisation of evolutionary algorithms,
with a view to understanding the search-space covered
by a GA, is now an established field. For an up-to-date
flavour of the area, the reader is directed towards the
recent workshop, (GECCO-99, ). Reviewing more of
the literature reveals that the majority of proposed
techniques fall into three main categories:

1. Identifying population features
2. Visualising the space searched by the GA

3. Visualising the problem search space

Population features have been visualised using popu-
lation data matrices, for instance displayed in raster
format, (Collins, 1999), and by allele-loci frequency
histograms, (Routen and Collins, 1993), which dis-
play information about the alleles present in a gen-
eration. Schema visualisation is described in (Collins,
1998). Visualising the search space has perhaps re-
ceived most attention. This problem is amenable to
treatment by many existing standard techniques from
other fields, for example principal components anal-
ysis, (Collins, 1999), and glyphs (Spears, 1999). As
many of these techniques can only be applied to single
generations in turn, the use of Sammon Mapping, (Dy-
bowski et al., 1996), has been suggested, which main-
tains consistent spatial relationships between genera-
tions. Collins, (Collins, 1997), has recently proposed a
further method, search space matrices, which has the



advantage of only having linear complexity. Finally,
the task of visualising the whole problem search space
has been addressed by both Cartwright and Mott,
(Cartwright and Mott, 1991), with fitness landscapes,
and by Mattfeld, with Configuration Space Analysis,
(Mattfeld, 1996).

The techniques described above all facilitate the GA
user in analysing the coverage of the explored search
space, in studying the convergence behaviour of the
algorithm, and in better understanding the dynam-
ics of the evolutionary processes. However, although
they tackle the question as to which path a GA takes
through a search space, and address the question of
how much of the search space is covered, they do not
tackle the crucial question of how the GA travels along
that path; this is effected by differing extents by each
of the operators, and may alter at different points as
the evolution progresses.

Therefore, in this article we aim to present a set of
complementary visualisation techniques which do ad-
dress this point. It is hoped that the combination of
such tools will go some way to providing a GA user
with a complete analysis tool for use when designing
a genetic algorithm.

We first describe the visualisation techniques incorpo-
rated in our tool, GAVEL', and then describe how
they can be used to analyse and refine a GA for use in
job-shop scheduling.

2 GAVEL

GAVEL, is an off-line tool, which transforms textual
output from a GA into a format which allows easy
visualisation of all the important features of the evo-
lution, giving the GA user the ability to analyse the
performance of each of the operators (via a series of
‘views’ and by generating graphs) as well as grasp the
dynamics of the evolutionary process.

The central feature of the method we propose is to
start from the ‘end’ of a GA run, i.e from the best
solution found, and rewind the evolution, rather than
taking the traditional approach of watching a solution
being created. Thus we note the parents of the best
solution, and then their parents, etc., all the way back
to the initial population, and so produce the complete
ancestry tree for the best solution. As well as tracing
the evolution of individuals, we also track the evolu-
tion of every individual gemne contained in the final so-
lution, tracing it back through the population to the
individual it originated in. The ancestry tree forms
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Figure 1: An Example Display from GAVEL

the central feature of our visual display tool, in which
each chromosome in the tree is displayed as a click-
able coloured icon. Clicking on an individual allows it
to be visualised in more detail, displaying the origins
and values of every gene in the individual. The shape
and colouring of the tree gives an instant picture of
the dynamics of the whole of the evolution of the best
solution. An example is shown in figure 1.

2.1 RECORDING THE GENETIC
INFORMATION

Although collecting and storing information about ev-
ery gene in every chromosome encountered by a GA
obviously results in enormous data-files, as we only
need to utilise and hence retain information which is
relevant to the formation of the best solution we can
significantly reduce this problem. For example, run-
ning a GA for 50 generations with a population size
of 50, and chromosome length 32 results in a GAVEL
datafile of only 200KB, which is extracted automati-
cally from the output of a run — this information is
referred to as the reduced population in the remainder
of this paper. Viewing only those chromosomes con-
tributing to the ancestry tree of the best chromosome
also may unmask valuable information about the dy-
namics, otherwise hidden in the information collected
when considering the complete GA run. For example,
consider figure 2 which compares the fitness vs time
graphs for the complete population to that of the re-
duced population in the ancestry tree for two different
GAs on a job-shop problem — in both cases, the GA
finds the same optimum solution, but clearly the dy-
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Figure 2: Comparison of fitness of reduced and com-
plete population

namics are significantly different in each case.

2.2 USING COLOUR TO SIMPLIFY THE
DISPLAY

Using the ancestry tree as the basic display, we use
colour to impose different views of the data on the
chromosome icons in the tree. This approach is cho-
sen in order to surmount some of the traditional diffi-
culties associated both with viewing multi-dimensional
data, and with making sense of vast amounts of text in
the form of population-data matrices. Colour coding
is applied to both categorical alleles and real/integer
valued alleles with the use of colour shading. Categori-
cal alleles are easily represented by assigning a unique
colour to each allele. For alleles in which there is a
clear ordering between possible values, then a shading
scheme is used, in which the alleles are shaded in vary-
ing degrees of a single colour. The usefulness of this
approach decreases as the number of different alleles
that need to be represented increases, as we approach
the limit of how many shades are visually distinguish-
able to the human eye. However, in many cases it is
sufficient to give a visual impression of allele distribu-
tion.

We also make extensive use of colour and highlight-
ing to distinguish salient properties of the chromosome
icons that allow the data to be viewed in several ways.
These features are described detail in the following sec-
tions. From each 'view’ of the data, we can also auto-
matically derive a series of graphs, which are plotted
using an external plotting program that give impor-
tant information about the productivity of the genetic
operators and the dynamics of the evolution.

2.2.1 Ancestry View

The complete ancestry of any individual can be traced
on the tree by clicking on that individual. This causes
lines to be drawn from each ancestor to its parents,
back to the initial generation. Alternatively, all off-
spring of any individual can be highlighted in colour.

Also, the lineage of any individual geme can also be
traced on the tree, by clicking on the relevant gene.
This causes lines to be drawn on the connecting all the
individuals the gene has appeared in, and highlighting
the generation the gene originated in.

2.2.2 Operator View

The chromosome icons can also be highlighted with a
colour scheme that indicates how the chromosome ar-
rived in the generation. Four colours are used: the
first indicates if the chromosome was a product of
crossover, the second that the chromosome was a prod-
uct of crossover followed mutation, the third if it re-
sulted from mutation only, and finally the fourth if
the chromosome was copied from the previous genera-
tion. The system also allows graphs depicting operator
productivity and operator fitness to be generated from
this view. We define the productivity of an operator o
in this case to mean the fraction of chromosomes in a
generation of ancestors that were produced as a result
of applying the operator to members of the preceding
generation. Operator fitness is defined as the average
fitness of those chromosomes in a generation of ances-
tors that were produced as result of applying operator
o to the preceding generation.

2.2.3 Fitness View

Each individual icon can be colour shaded according to
its relative fitness value (i.e in relation to the worst and
best fitness in the GA run). Icons in each generation
are arranged in order of decreasing fitness. Alterna-
tively, the user can highlight all chromosomes whose
phenotypic fitness satisfies a user-supplied constraint
via a dialog window. There is also an option to high-
light all chromosomes with an equivalent genotype —
this is particularly useful for problems in which mul-
tiple genotypic representations can lead to the same
phenotypic fitness value.

2.2.4 Origin View

The icons in the ancestry tree can be coloured accord-
ing to their origin, i.e as to whether the individual
was created in the generation it appears in, whether
it was copied from a previous generation, or whether
it was created in the current generation but does not
represent a newly discovered point in the search space.
Individuals which exist in a generation due to the op-
eration of the ’elite’ mechanism can also be also high-
lighted if this mechanism was used in the GA.



2.2.5 Schema View

Finally, individuals containing any given schema can
be highlighted on the tree. Schemas are easily entered
via a clickable interface.

2.3 ADDITIONAL FEATURES

Additionally, the tool allows any population of chro-
mosomes in a single generation (or a single individual)
to be viewed as a colour matrix. Again the ’view’ of
the matrix can be changed, to either indicate allele val-
ues, gene-origins, or operator-origins. If gene-origins
is selected, then alleles are shaded according to the
generation they first appeared in, giving a view of how
mutation affects the overall performance of the GA. If
operator-origins is selected, then the colouring shows
either which parent the gene was passed from if it ap-
peared as a result of crossover, or that the gene ap-
peared as the result of a mutation. Finally, GAVEL
can automatically generate graphs from any of these
views, which can then be plotted using an external
plotting tool.

3 ENHANCING THE
PERFORMANCE OF A GA ON
THE JSSP

We consider an example of a job-shop scheduling prob-
lem, in which 15 jobs have to be assigned to each of 3
machines in some pre-determined order for processing,
with the aim of minimising the maximum tardiness of
the job completion times. The GA uses an integer rep-
resentation, (described by Fang in (Fang et al., 1993)),
in which a value of a at position i means “place the
first untackled task of the ath uncompleted job into
the earliest place where it will fit in the schedule”. The
list of jobs is considered as circular and hence all chro-
mosomes represent legal schedules. We show how the
performance of the GA originally described by Fang
can be improved by judicious selection and setting of
operators and rates. The improvements are made in a
scientific manner, rather than simply based on a trial
and error approach.

The following analysis illustrates two runs of the GA,
both of which used the same random number to gen-
erate the initial population. All parameters in the two
experiments are identical with the exception of the
choice of crossover operator — experiment (a) uses
two-point crossover, and experiment (b) uses uniform
crossover. The random number seed of the exper-
iments illustrated was selected so that both experi-
ments resulted in a solution of the same fitness. (Ex-
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Figure 3: Number of chromosomes in ancestry tree at
each generation

tensive experimentation confirmed that other seeds
gave similar results). In each experiment, a popula-
tion of size 50 was used, with a crossover rate of 0.8.
Order mutation, (which simply swaps two randomly
chosen alleles), was used in both cases, and was ap-
plied with probability 0.5 to every child chromosome
in the new population, whether produced as a result of
crossover or by simple copying from the previous gen-
eration. The results of the analysis of each experiment
are presented in the next sections.

3.1 ANALYSIS OF THE SEARCH PATH

Firstly, the ancestry trees for each case are generated.
To save space, we present a simple 2D graph derived
from each tree showing the number of chromosomes
contributing to the ancestry tree at each generation
in each case. This is illustrated in figure 3. The to-
tal population size is 50 in both experiments (a) and
(b) — in each experiment roughly 40% of the total
population is involved in generating the final solution
until around generation 26. The number of ancestors
at each generation than rapidly tails off in the case of
two-point crossover, suggesting that either the search
has found a particularly fit area of the search space, or
perhaps that population diversity has been reduced so
far that the search remains stuck in a local optimum.
In the uniform crossover case, roughly half the pop-
ulation still plays an active part in generating useful
chromosomes for another 10 generations, before again
the number of ancestors drops rapidly as the search
homes in on a solution.

Thus, despite starting from the same initial popula-
tion and discovering an identical local optimum at the
end, the two different GAs have obviously taken very
different paths through the search space. In order to
understand how each path was directed by each opera-
tor, (and thus determine which operators are likely to
be the more effective across a wide range of different



problems of the same type), we use GAV EL to explore
in depth the productivity of each operator, and to at-
tempt to confirm some of the tentative explanations
suggested in the previous paragraph.

3.2 INVESTIGATING THE
PRODUCTIVITY OF THE
OPERATORS

Figure 14 shows an example of the ancestry, high-
lighted using the operator view. As the detail is
difficult to understand in black-and-white, we have
again derived 2D-graphical versions of the data, us-
ing GAVEL. In the following diagrams, the percent-
age of the total number of ancestors at each genera-
tion which have been derived from each of the four
generation mechanisms is plotted for each generation.
Figures 4, 5, 6, and 7 contrast the results for the uni-
form crossover and two-point crossover cases, showing
both the productivity of each operator, i.e how many
chromosomes were generated by the operator, and the
relative fitness of those chromosomes generated by the
operator.
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Figure 5: Operator Fitness for 2pt Crossover

Two Point Crossover In this experiment, the pro-
ductivity of the mutation operator seems high, both
used on its own and combined with crossover. This is
especially apparent in the final few generations. This
evidence points to a lack of diversity in the population,
making mutation the more powerful operator. This
can be checked using the population viewing facility
of GAVEL.

Uniform Crossover In this case, mutation that is
simply applied to copies of solutions from previous
generations does not often result in ancestors of the
best solution, though mutation of chromosomes pro-
duced by crossover appears productive. In this case,
crossover appears to play the most significant part in
discovering new chromosomes, especially in the final
few generations.

3.3 COMPARISON TO THE EXPECTED
RESULTS

In each experiment, as the crossover operator is ap-
plied with probability 0.8, we expect approximately
80% of each generation to originate as a result of a
crossover operator, and similarly as mutation is ap-
plied with probability 0.5, approximately 50% of each
generation to have originated as a result of a mutation
operation (either applied to a copy or to a product of
crossover).
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Figure 7: Operator Fitness for Uniform Crossover

We can thus plot the deviation in productivity from
this expected value at each generation by subtracting
the observed operator productivity from the ezpected
productivity. Hence, a GA that adhered exactly to
the model would be expected to show a deviation of 0
at each generation x, with a maximum positive devi-
ation of (1-0.8) = 0.2 for crossover, a maximum pos-
itive deviation of (1-0.5)=0.5 for mutation, and cor-
responding maximum negative deviations of -0.8 and
-0.5 for crossover and mutation respectively. The re-



sulting graphs are shown in figures 8, 9 10, and 11.
Table 1 summarises the percentage of generations in
which the operator productivity is within 10% of the
expected value, or is greater than/less than 10% of the
expected value. In the uniform crossover experiment,
it can be seen that the crossover operator is generally
productive, i.e it is within 10% of expected or greater
than this value in more than half the generations. In
both the uniform crossover and 2pt crossover exper-
iments, mutation does not perform well, although in
the 2pt-crossover experiment it does perform signifi-
cantly better than expected in 22% of generations.

Comparison of Crossover Productivity to
Expected Value
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Figure 8: Comparing Crossover Productivity for 2pt
Crossover
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Figure 9: Comparing Mutation Productivity for 2pt
Crossover
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Figure 10: Comparing Crossover Productivity for Uni-
form Crossover

3.4 REFINING THE OPERATORS
Choice of Crossover Operator We thus conclude

that crossover appears much less useful in the 2pt-
crossover experiment, which seems to rely on mutation

Comparison of Mutation Productivity to
Expected Value
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Figure 11: Comparing Mutation Productivity for Uni-
form Crossover

to produce the final solution. This can be partly ex-
plained by comparing population diversity in the two
experiments. Consider figure 12 which compares the
population diversity at generation 26, where the rela-
tive sizes of the ancestor trees begin to diverge. Each
row represents a chromosome, and therefore each col-
umn a locus. We see that in the 2pt crossover ex-
periment, there is much less diversity at the front of
the chromosomes than when using uniform crossover,
figure 12. This is critical for this particular problem
representation, as the placement of jobs early on in the
schedule is crucial, and much more likely to have an
impact on the quality of the final schedule than jobs
placed towards the end of building the schedule. The
genes near the end of the chromosome have much less
impact as there are so few jobs to place that the ac-
tual gene value has less meaning. As uniform crossover
appears to maintain more diversity for longer, we in-
fer that using this particular representation, uniform
crossover will be a more productive operator across a
wider range of problems and initial population distri-
butions.

Selecting a Mutation Rate Table 1 showed that
mutation is not often useful when used in conjunction
with the uniform crossover operator. Possibly the de-
sign of the operator is at fault, or the mutation rate is
incorrectly set. Figure 13 depicts the origins of each
gene in the final solution. We see that 16/45 of the
genes, i.e approximately 6%, originated via a muta-
tion. Thus, although they may not be occurring very
often, the mutations appear to be useful when they
do occur. (In this diagram, the darker the colour,
the later the mutation occurred). Secondly, consider
figure 14. This shows a section of the ancestry tree,
with each chromosome coloured according to its ori-
gin, and also traces via blue lines the origin of each
gene in the final chromosome back through each gen-
eration to the chromosome and generation the gene
originated in. The left hand box of each horizontal line
which indicates the generation number is highlighted



Experiment Operator Within 10% > 10% < 10%
of Expected Value | of Expected Value | of Expected Value
2pt Crossover Crossover 30% 7% 63%
2pt Crossover Mutation 30% 22% 48%
Uniform Crossover | Crossover 51% 16% 33%
Uniform Crossover | Mutation 31% 16% 53 %

Table 1: Deviation of Actual Operator Productivity from Expected Operator Productivity
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Figure 12: Comparison of Allele Diversity at Genera-
tion 26 for Different Crossover Operators

if a gene in the final solution originated in this genera-
tion. Notice that many of the origin lines trace paths
through chromosomes that originated via mutations,
but that also, these chromosomes are seldom highly fit
compared to other members of their generation. This
analysis suggests that mutation does have an impor-
tant role to play, and that therefore better results may
be obtained by increasing the rate. Hence, the mu-
tation rate is increased to 0.7, which should tend to
encourage more diversity and hence further enhance
the effects of crossover. Table 2 gives the results of
3 experiments, each of which was repeated 50 times,
which compare the performance of the different com-
binations of operator and mutation rates for one prob-
lem. The experimental results backup the conclusions
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Fitness: 0.017857 . Chromosome Origins > Gene Origins
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Figure 13: Origins of Genes in Final Solution

Figure 14: Ancestor Origins and Gene Origins

drawn from the visual analysis of the problem, i.e that
uniform crossover is superior to two-point crossover,
and a high mutation rate is helpful. Further experi-
mental work (not shown) confirms that the results hold
over a wide range of test problems of differing lengths,
and not just the single problem shown.

4 FURTHER WORK

As well as analysing operator performance, we have
also used GAVEL to examine the phenomena of
competing-conventions using this problem. This is of-
ten cited as a problem for GAs which use indirect rep-
resentations. We used the fitness view to highlight all
chromosomes in the ancestry tree of equivalent pheno-



Crossover | Crossover | Mutation | Mean | Std. Dev
Operator Rate Rate Value

Twopoint 0.8 0.5 66.9 13.98
Uniform 0.8 0.5 62.6 13.46
Uniform 0.8 0.7 59.92 11.99

Table 2: Average Value of Objective Function (T},4.)
over 50 Experiments

type, and then also those of equivalent genotype. This
showed that many different genotypes often existed for
a given phenotypic fitness value in the ancestry tree.
However, this did not seem to be problematical for the
GA — in fact, it appears to make the problem easier,
as the GA does not have to search for a ’needle in
haystack’, but simply one of many different ways of
representing the same solution.

5 CONCLUSION

We have shown that visualisation and graphical anal-
ysis of the effects of the operators used by a GA can
provide a mechanism for understanding their perfor-
mance, and hence improving them in a principled man-
ner, rather than by trial and error. Our tool is in-
tended to complement the many other tools already
available for visualising the space searched by a GA.

There are many problems inherent to visualising a GA
due to the vast quantities of data generated and the
multi-dimensionality of the data. Our method of visu-
alising only those chromosomes relevant to the forma-
tion of the best solution addresses the quantity of data
problem to some extent, and the format of the tree,
combined with colouring highlighting, allows data to
be visualised compactly at differing levels of resolution.
However, the approach is still limited by the popula-
tion size of the GA, and the number of generations
required to find a solution, as the display becomes dif-
ficult to read if the user is required to scroll both left
and right and up and down. A partial solution to this
is to use the GAVEL display to visualise only sections
of the data, whilst relying on the derived graphs to
analyse the complete run.
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