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Abstract

In this paper, a continuation of a variable radius
niche technique called Dynamic Niche
Clustering developed by (Gan & Warwick,
1999) is presented. The technique employs a
separate dynamic population of overlapping
niches that coexists alongside the normal
population. An empirical analysis of the updated
methodology on a large group of standard
optimisation test-bed functions is also given. The
technique is shown to perform almost as well as
standard fitness sharing with regards to stability
and the accuracy of peak identification, but it
outperforms standard fitness sharing with
regards to time complexity. It is also shown that
the technique is capable of forming niches of
varying size depending on the characteristics of
the underlying peak that the niche is populating.

1 INTRODUCTION

Genetic Algorithms (GAs) have long been the target for
multimodal optimisation research. The problem
essentially being that a Simple Genetic Algorithm (SGA)
is too simple. To clarify; a SGA will converge to a single
peak within a fitness landscape, and depending on the
ruggedness of the landscape, that peak will be the most fit
optimum. This is not necessarily always the case as local
optima can often mislead a SGA into populating the
incorrect peak. This convergence to a single peak, even if
there are other peaks of equal fitness present in the search
space, is a result of genetic drift (DeJong, 1975). Genetic
drift can be attributed to stochastic fluctuations within the
selection process. For these reasons, it is desirable to
encourage speciation, and hence diversity within the
population. In addition to this, if multiple peaks are
populated, then the GA has potentially found multiple
solutions to the problem at hand.

Over the years there have been numerous proposals for
techniques and methodologies that promote speciation
within a GA population. The majority of these techniques
employ fitness sharing in some form or other. The basic

premise is to allocate to each peak in the fitness landscape
a number of individuals proportional to the peak’s fitness
relative to the other peaks in the landscape. This is termed
as a niche proportionate population (Miller & Shaw,
1995). In fitness sharing, this is achieved by reducing the
fitness of an individual by an amount proportional to the
number of other individuals in the immediate vicinity,
defined by some threshold distance. On the fitness
landscape, this can be seen to reduce the height of the
populated peaks so that the individuals in each of the
different peaks have the same fitness. Thus, they are all
equally likely to be selected in the next generation, and
diversity is maintained.

The vast majority of these techniques suffer from two
main restrictions; the requirement for at least some
foreknowledge of, or an accurate estimation of the
number of peaks in the fitness landscape; and that the
peaks are evenly spaced throughout the search space.
These are both artificial constraints imposed on the
inherent freedom exhibited by GAs.

This paper presents a subtly different approach to the
fitness sharing mechanism, originally developed by (Gan
& Warwick, 1999), which attempts to address the two
restrictions described earlier. The formulated mechanism
is compared to standard fitness sharing on a large group
of classical optimisation test-bed functions. We also
analyse a phenomenon that emerged in the original
methodology that was termed striation, and show how
and why it manifests itself, and how it can be eliminated.
Firstly, however, we review some of the more well known
niching methods.

1.1 NICHING METHODS

Perhaps the most well known and well quoted technique
is Fitness Sharing (Goldberg & Richardson 1987). Here, a
distance (similarity) metric between any two individuals
is defined, dij. The shared fitness of an individual, i, is
defined as the individual’s raw fitness divided by its niche
count, mi. The niche count is defined by summing the
sharing function, sh(dij), over all p members of the
population.
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To determine the value of niche radius, σsh, the following
equation (Deb, 1989 and Deb & Goldberg, 1989) based
upon the assumptions that there are m maxima in the
function, each surrounded by a hypersphere of radius σsh,
the hyperspheres do not overlap and completely fill the k-
dimensional problem space, and that each dimension is
normalised. σsh is given by:

Arguably the most notorious aspect of this particular
technique is its O(p2) complexity, but perhaps even more
significant are the requirements of a single fixed value of
σsh, knowledge of the number of maxima, and that the
maxima be equally spread throughout the search space a
minimum distance of 2σsh from one another. This is far
too restrictive for any real-world problem where irregular
peaks, high dimensionality problem spaces, and high
multimodality require large population sizes. This is
because a certain number of individuals are necessary to
accurately locate, explore and maintain each maximum.

Several improvements to the original fitness sharing
algorithm are described by (Oei et al, 1991) that reduce
the complexity to O(np) by sampling the population rather
than computing the distance to every other individual. A
niche-size parameter, n*, is also suggested that is used to
effectively limit the maximum number of individuals in
each niche.

Another technique worthy of note is Sequential Niching
(Beasley et al, 1993). The technique works by iterating
over a SGA. On each iteration, the fitness landscape is
modified according to the location of solutions found in
previous iterations. The modified fitness function, mi(x),
at iteration i is calculated from the raw fitness function,
f(x), multiplied by a number of single-peak derating
functions. Initially, m0(x) = f(x). The best individual, si,
found in the ith GA run is used to determine the midpoint
of the single-peak derating function g(x,si). The modified
fitness function is then given by:

One of the key problems with this technique was
determining exactly when to terminate a particular GA
iteration. A halting window of h generations was utilised,
where the GA terminated if the fitness of any generation
was not greater than the population h generations earlier.
More importantly, the algorithm actually alters the fitness
landscape from GA run to GA run, so after many
iterations it is impossible to tell whether the peaks the
algorithm is finding are real peaks, or ‘phantom’ peaks
introduced by multiple applications of the derating
functions.

An interesting technique for niche formation was
described in (Yin & Germay, 1993). Here, MacQueen’s

KMEAN clustering algorithm is employed to divide the
population into k clusters of individuals, corresponding to
k niches. The shared fitness of an individual is given by
dividing the raw fitness of the individual by the niche
count, mi, of the cluster to which the individual is a
member.

Here, dic is the distance between individual i and the
cluster’s centroid. nc is the number of individuals in
cluster c. Two other parameters dmin and dmax are defined.
After determining the positions of the clusters, each of the
clusters are then compared. Two clusters are merged if the
distance between their centroids is less than dmin. If an
individual is further than dmax from all existing clusters, a
new cluster is formed on that individual. This method
allows the formation of stable subpopulations and has also
been shown to perform well on irregular fitness
landscapes, but, as with all other niche techniques that
rely on a distance metric, it requires some a priori
knowledge of the fitness function.

Two variations on a steady state evolution method called
a forking GA have been described by (Tsutsui et al,
1997). Both variations rely on the same forking technique
to subdivide the search space, but the first looks at the
salient schema within the genotypic search space, and the
second looks at neighbourhood hypercubes centred on the
current best individual in the phenotypic search space. In
both cases, the search space is divided into sub-spaces
depending upon the status of convergence of the present
population, and the solutions found so far. For a more
detailed description of this technique, the reader should
consult (Tsutsui et al, 1997).

GAS (Jelasity, 1998) is another method that explicitly
employs a variable radius niching scheme. Here, a species
(defined by its centre in phenotypic search space, and
radius) describes a non-overlapping window on the search
space. The radii of the species are determined by using a
radius function. The method employs a cooling technique
(similar to simulated annealing) which allows the search
to focus in on promising regions of space, starting off
with an initially large radius that decreases as the search
progresses. For more details the reader should consult
(Jelasity, 1998).

2 SO HOW DOES IT WORK?

Here we will provide a brief summary of the modified
Dynamic Niche Clustering (DNC) scheme (Gan &
Warwick, 1999), and highlight the alterations made in the
interim. It should be noted at this point that the technique
relies on a decoded phenotype distance metric. It should
also be noted that unlike other niche techniques, DNC
allows an individual to be a member of more than one
niche, and that the niches themselves may overlap to a
certain degree (this will be described in detail later).
Furthermore, the original DNC method was optimised for
1-dimensional problems. The technique has since been
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generalised to n-dimensions and as a result, all
calculations described subsequently are vector arithmetic.

DNC maintains an explicit population of niches,
henceforth referred to as the nicheset, that evolves
alongside the normal GA population. The niches are
persistent, that is; they are retained from generation to
generation. Each niche consists of a number of variables;
a vector describing its midpoint in the parameter space
(midi), the niche radius (σshi), the generation and location
at which the niche was spawned, and a list of references
to the individuals that are currently members of the niche.
An individual is considered to be a member of a niche if it
falls within the hypersphere described by the midpoint
and niche radius of that niche.

That is, if the euclidean distance between the individual
and the midpoint is less than the niche radius, then
individual i is a member of niche j. In order to prevent the
unlimited growth or contraction of a niche, the niche
radius is bounded by two values, σmax and σmin. The
current population size, dimensionality, and the overall
extents of the parameter space determine these bounding
values and the initial niche radius. A number of different
schemes were proposed for the initial choice of niche
radius, but for this paper only the Inverse Power Law
scheme (Gan & Warwick, 1999) will be considered. Note,
however, that the original scheme did not take into
consideration the dimensionality of the search space. We
recommend the following amendment;

Here, pop is the population size, d is the number of
dimensions, and we assume that the parameter space is
normalised. σmax  = 2*σsh, and σmin = σsh/4. Initially, in the
first generation, a niche is added to the nicheset for each
individual in the population, with its midpoint centred on
that individual and its niche radius calculated using
equation (7). In the initial and each subsequent
generation, the following process is executed, in place of
any fitness scaling procedures.

1) Determine the current members of each niche by
comparing every member of the population to each niche
in the nicheset, using equation (6). If an individual is not a
member of a niche, a new niche is spawned centred on
that individual, and it is added to the nicheset.

2) Recalculate the midpoints of each of the niches in the
current nicheset using the Fitness Distribution from
Midpoint scheme (Gan & Warwick, 1999). Here, the
midpoint of niche j is modified by using:

Where midj is the midpoint vector of niche j, vi is the
vector phenotype value of individual i, fi is the raw fitness
of individual i, and nj is the number of individuals within
niche j. Thus, the midpoint is moved to the highest

density of most fit individuals currently within the niche.

3) The niche members are recalculated. If a niche has no
members it is removed from the nicheset.

4) Each niche in the nicheset is compared to every other
niche and the euclidean distance between their midpoints
is calculated. These values are stored along with
references to the two niches that were compared in an
array of nearest niche pairs. This array is then sorted on
the distance using a quicksort algorithm.

5) The sorted nearest pair array is then cycled through
and each pair of niches is analysed in the following way.
If the midpoint of niche i is less than half the niche radius
of niche j away from the midpoint of niche j (or vice
versa), then the two niches are merged together and
replace niche i (this is described in detail in section 2.1).
The merge action may actually move the midpoint of
niche i, so part of the nearest pair array may need to be
recalculated and resorted. All references to niche j are
removed from the nearest pair list. It is not necessary to
analyse every single entry in the entire nearest pair array.
Because they are sorted on distance, once a point is
reached where the niche pairs are further than σmax apart
from each other, this subprocess can be terminated.

6) The niche members are recalculated once more and
finally the sharing function is applied to each of the
individuals within the population. See section 2.2 for
further details.

2.1 MERGING TWO NICHES

As stated previously in step 5), two niches, i and j, will be
merged into a single niche if the midpoint of niche i is
less than half the niche radius of niche j away from the
midpoint of niche j (or vice versa), i.e. if

The new midpoint is calculated using the Fitness
Distribution from Midpoint scheme (Gan & Warwick,
1999). This has the effect of moving the midpoint to the
average weighted distance of all of the individuals within
both niches, from the naïve midpoint. The naïve midpoint
is defined as:

The new midpoint is defined as:

Here, vi is the vector describing the position of individual
i in parameter space, fi is the fitness of individual i, and nj

is the niche count of niche j. The niche radius of the new
niche is determined by comparing the two original niches.
If niche i was completely encompassed by niche j, then
the new niche radius is simply the old radius of niche j.
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Conversely, if niche j was completely encompassed by
niche i, then the new niche radius is simply the old radius
of niche i. It is possible to determine if a niche completely
encompasses another niche by using the equation for a
line, and the equation for a sphere in n-dimensions.

Here, L(t) is the line that passes through the midpoints of
niche i and niche j, P is the midpoint of the niche in
question and r is its niche radius. Substituting L(t) for X
and solving the resultant quadratic equation for t yields
two possible values of t. These two values are where the
line L(t) intersects the boundaries of the niche with
midpoint P and radius r. By comparing the relevant
values of t for the intersection of L(t) with niche i, and the
intersection of L(t) with niche j, it is straightforward to
determine if one niche is completely encompassed by the
other niche.

If neither niche is encompassed by the other, then the new
midpoint is compared to the original midpoints of niche i
and j. If the new midpoint is closer to niche i, then the
new niche radius is calculated as being the distance from
midnaive to the furthest extent of niche i’s hypersphere,
along L(t) away from niche j. Conversely, if the new
midpoint is closer to niche j, then the new niche radius is
calculated as being the distance from midnaive to the
furthest extent of niche j’s hypersphere, along L(t) away
from niche i. If the new midpoint is equidistant from
niche i and niche j, then the new niche radius is calculated
as half the distance between the furthest extents of either
niche’s hypersphere, in both directions along L(t) from
the naïve midpoint.

2.2 THE SHARING FUNCTION

The original function employed in (Gan & Warwick,
1999) and in Dynamic Niche Sharing (Miller & Shaw,
1995) was simply the number of individuals in the niche.
A somewhat more complicated sharing function has since
been adopted, and is very similar to the function used by
(Yin & Germay, 1993), see equation (5).

Figure 1: Triangular Sharing Function (1D)

Here, mi is the niche count of individual i, nj is the
number of individuals in niche j, dij is the euclidean
distance between individual i and the midpoint of niche j,
σshj is the niche radius of niche j and α is a constant (set to
1.0 for this paper). Figure 1 shows the effects of α on the
sharing function of a niche with midpoint 0.5, niche
radius 0.15 and a niche count of 15. The shared fitness of
an individual is calculated by dividing its raw fitness by
its niche count, mi. But what happens when an individual
is a member of more than one niche? We provide an
answer to this question in the next section.

2.2.1 Striation: The Effect of Overlapping Niches

In the original DNC scheme any individuals that were
members of more than one niche would have their raw
fitness divided by two or more sharing functions. The net
result of this was to multiply all of the niche counts, mi,
together and divide the raw fitness by this value. This had
the effect of setting the individuals raw fitness to a very
low value relative to the other individuals, and hence that
individual would not be selected in the next generation.
Thus, where two niches overlap, we get the striation
phenomenon that is evident in Figure 2. Figure 2 shows
the population spread per generation of the original DNC
scheme run on Deb F1 (Deb, 1989). Individuals are
represented by the symbol �, and the niches in each
generation are displayed slightly above the generations y-
position. The niche midpoints are represented by an ‘x’
with x-errorbars to either side to show the niche radius.
Here, one of the maxima is at x=0.7 but it is quite obvious
that there are two subpopulations to either side of this
value. This is the striation effect; where two niches,
traversing up the slope on either side of the peak, start to
overlap but don’t converge due to the heavy penalisation
incurred by individuals from being a member of two
niches. The GA then forms two stable subpopulations in
each niche. This problem is further compounded as the
dimensionality of the search space is increased, as it is
more likely that an individual will be a member of at least
more than one niche because niches will be traversing up
the slopes of peaks in many different dimensions.

Figure 2: The Striation Effect

There are conceivably three possible ways of dealing with
individuals that are members of more than one niche.
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First, we can use the method employed in the original
DNC scheme as described above, whereby we divide the
raw fitness of an individual by the product of all the niche
counts, mi, of the niches to which the individual is a
member. This, however, leads to the striation effect
mentioned previously. Second, niches can be treated in
exactly the same way as individual’s niche counts are
treated in standard fitness sharing. That is, the raw fitness
of an individual is divided by the sum of all the niche
counts, mi, to which the individual is a member. Here,
there is still a heavy penalty incurred from being a
member of more than one niche, but less so than in the
first approach. Third, there is no penalty incurred for
being a member of more than one niche. An individual’s
raw fitness is only divided by the largest niche count, mi,
of all the niches to which the individual is a member.
Because DNC relies on overlapping niches converging
upon one another, the third approach was employed
throughout this paper.

3 THE ISSUE OF COMPLEXITY

Complexity is a fundamental issue to all optimisation
algorithms so we provide here a conservative estimate of
the number of evaluations required to implement DNC
per generation. The main contributor to the complexity of
this algorithm is within stage 4) of the process described
in section 2. Here, each niche in the nicheset is compared
to every other niche and the euclidean distance between
their midpoints is calculated. These values are stored
along with references to the two niches that were
compared in an array of nearest niche pairs. This array is
then sorted on the distance using a quicksort algorithm.
With a nicheset consisting of n niches, this subprocess has
a complexity of O((n2-n)/2 + (n2-n)/2 log (n2-n)/2) as it is
not necessary to compare a niche to itself, nor is it
necessary to compare niche j to niche i if niche i has
already been compared to niche j. So the overall
complexity becomes:

Where p is the population size of the GA, and n is the
number of niches currently in the nicheset. In the initial
generation there is an equivalent number of niches and
individuals. This actually results in a greater number of
comparisons than standard sharing alone. However, in
later generations, when both the populations of
individuals and niches have stabilised, the number of
comparisons will be at a minimum and actually several
orders of magnitude faster than standard sharing. The rate
at which DNC approaches this optimum number of
comparisons is dependent on the fitness function and the
current level of selection pressure. Higher selection
pressure causes the population to converge towards the
peaks more rapidly.

It is clear from Figure 3 that if there is a significantly low
ratio of niches to population members (approximately 200
niches in a population of 500) then the complexity of
standard sharing and DNC is the same. In the later

generations, however, this case is very unlikely because it
would require each niche to have a population of less than
three individuals. In the light of experimentation, niche
counts of 4-10 are the minimum size required for stability.
If we are to assume that a niche size of 5 is the absolute
minimum, then p/5 is the maximum number of niches that
DNC is capable of sustaining. Comparing this ratio to
Figure 3, DNC is approximately twice as fast as standard
sharing.

Figure 3: Complexity of Fitness Sharing vs DNC

4 THE FUNCTION TESTBED

The test-bed of functions used was collated from a
number of sources, (DeJong, 1975; Deb, 1989; Patil,
1995; and Beasley et al, 1993). Detailed descriptions of
all functions can be found in the relevant documentation.
The test suite described in Table 1 incorporates a variety
of functions that exhibit a number of different traits,
including continuous, discontinuous, unimodal,
multimodal, linear, non-linear, and low to mid
dimensionality properties in order to illustrate that DNC
performs consistently and reliably. In Table 1 Pop
corresponds to the population size used in each GA run,
and D is the number of dimensions in the search space.

Table 1: Test Function Suite

Fn Description Pop D
F1 Deb F1 – Equal maxima 76 1
F2 Deb F2 – Decreasing maxima 76 1
F3 Deb F3 – Uneven maxima 76 1
F4 Deb F4 – Uneven Decreasing maxima 76 1
F5 Himmelblau function 200 2
F6 DeJong F1 – Sphere model 300 5
F7 DeJong F2 – Rosenbrock’s Saddle 200 2
F8 DeJong F3 – Step function 400 5
F9 DeJong F4 – Quartic function 400 5
F10 DeJong F5 – Shekel’s Foxholes 300 2
F11 Sines function 300 2
F12 Goldstein and Price function 200 2
F13 Schwefel’s function 250 3
F14 Rastrigin’s function 200 2
F15 Ackley’s function 200 3
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5 RESULTS

The following genetic parameters were used in all test
runs. A mutation rate of pm=0.0 was employed in order to
allow analysis of DNC without the effects of noise.
Crossover rate, pc=0.66, with single point crossover.
Remainder stochastic sampling with replacement
(Goldberg, 1989) and no elitism was employed. Ggap=1.
Parameters were encoded using 15 bits. DNC was
compared to standard sharing (Goldberg & Richardson,
1987) with niche radius defined by equation (3).

Table 2: Average Performance of DNC

Fn Success
Rate

Std
Dev.

RMS
Error

Std
Dev.

Time
Taken

F1 1.0 0.0 3.7e-3 1.88e-6 3.8
F2 0.96 6.4e-3 5.2e-3 7.01e-6 3.8
F3 1.0 0.0 5.1e-3 4.38e-6 3.8
F4 0.98 3.6e-3 5.6e-3 2.21e-6 3.8
F5 1.0 0.0 0.4779 0.0107 59.7
F6 1.0 0.0 0.4489 0.0743 232.2
F7 1.0 0.0 0.9615 0.0858 70.4
F8 0.942 2.4e-3 0.843 0.091 180.0
F9 0.878 0.112 0.1523 0.04 422.3

F10 1.0 0.0 0.7144 6.1e-3 131.0
F11 0.9755 2.33e-4 0.2957 3.18e-4 198.9
F12 0.94 0.02 0.3728 0.0171 70.7
F13 0.923 8.4e-3 0.762 0.076 212.0
F14 0.942 0.051 0.0472 5.6e-3 72.1
F15 0.994 6.3e-3 0.352 0.021 174.0

Table 3: Average Performance of Standard Sharing

Fn Success
Rate

Std
Dev.

RMS
Error

Std
Dev.

Time
Taken

F1 1.0 0.0 4.1e-3 4.5e-6 18.2
F2 0.98 3.4e-3 4.7e-3 3.6e-6 17.5
F3 1.0 0.0 3.9e-3 3.1e-6 18.0
F4 1.0 0.0 4.5e-3 1.6e-6 18.0
F5 1.0 0.0 0.3605 8.3e-3 150.3
F6 1.0 0.0 0.8431 0.1187 762.1
F7 1.0 0.0 0.9794 0.0345 151.5
F8 0.988 2.8e-3 0.324 7.82e-3 1295.3
F9 1.0 0.0 0.1132 1.6e-3 1350.4

F10 1.0 0.0 0.82895 0.0216 316.2
F11 0.9959 6.7e-5 0.2638 2.48e-4 320.0
F12 0.97 2.2e-3 0.1036 1.8e-3 149.2
F13 0.96 0.089 0.921 0.054 306.0
F14 0.9 0.0159 0.153 8e-3 149.7
F15 0.94 0.016 0.623 0.021 212.3

Tables 2 and 3 show the overall performance of DNC and
standard sharing averaged over 10 GA runs. To measure
performance we considered the success rate, accuracy,
speed and consistency (Beasley et al, 1993) of the two
sharing schemes. We define success rate as the ratio of
peaks discovered to actual peaks in the fitness landscape.
Accuracy is defined as the RMS error of the distance
between the best individual in the each of the niches and
the nearest maxima. We measure speed by the length of
time (in seconds) taken to complete 50 generations.

Consistency is described by the standard deviations of the
success rate and accuracy measures defined earlier, over
the 10 runs. For standard sharing, an individual was
considered to be a member of a niche if its fitness was
within 80% of the peak fitness of the nearest peak.

5.1 ANALYSIS OF RESULTS

As can be seen from Tables 2 and 3, DNC does not quite
perform as well as standard fitness sharing with regards to
success rate and accuracy, but it outperforms standard
sharing in speed by several orders of magnitude in all
functions. It is also apparent that DNC is also able to
consistently perform well.

Figure 4: Number of Niches per Generation (F10)

Figure 5: Final Niche & Population Spread (F10)

Figure 4 shows the number of niches per generation for a
single GA run on function F10 (DeJong F5), Shekel’s
Foxholes. The diagram shows both the total number of
niches and the number of significant niches. A significant
niche is one that has a population size greater than 2. It is
clear how, initially, there are an equivalent number of
niches and individuals, but the nicheset rapidly
approaches and maintains its optimum number of 25
significant niches. When we compare this ratio of 25
niches to 300 individuals to the complexity diagram in
Figure 3, it is evident that DNC performs many orders of
magnitude faster than standard sharing.
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Figure 5 shows a plot of the niche population spread and
the population spread in the final generation for F10 using
DNC. A niche is described by a circle with midpoint at
the niche midpoint and radius equal to the niche radius of
the niche. Here, it is apparent that DNC has successfully
identified all 25 peaks, and is maintaining populations of
individuals clustered closely around the summit of each
optimum.

5.2 SO IS IT TRULY VARIABLE RADIUS?

From Figure 5 it is not immediately evident that DNC
does actually form niches of variable radius. There is little
variation in the niche radii because each of the peaks in
F10 have the same hypervolume. Figure 6 shows a simple
1-dimensional problem with two peaks of drastically
different hypervolumes. The position and size of the final
niche and population spread at generation 50 with
population size 50 using DNC on this function are also
shown in Figure 6. Individuals are shown by a ��������	
A niche is described by ‘x’ at the midpoint, with x-
errorbars to either side to describe the niche radius. The
location of the niches in the y-axis are arbitrarily chosen
to best contrast the relative positions of the niches and the
individuals. With an initially calculated niche radius of
0.021, based on equation (7), it is apparent that DNC has
successfully identified the two peaks in the fitness
landscape, but the radii of the two niches are different and
reflect the characteristics of the underlying peaks. The
niche population sizes were 24 for the niche on the peak
at 0.058, 24 for the niche on the peak at 0.159 and 2 for
the niche at 0.0095.

Figure 6: Final Niche & Population Spread

5.3 FUTURE WORK

In the original DNC scheme a separate function (Gan &
Warwick, 1999) was described that has been omitted from
this paper. The separate function was designed to reduce
the niche radii of any niches that were close enough
together so as to overlap, but not actually to be merged.
This actually prevented the algorithm from working
effectively and led to the premature contraction of niches
to the minimum size of niche radius. The merge function

can potentially increase or decrease the niche radius, but
the tendency is towards an increase. A counteracting
function is therefore required to prevent niches from
expanding excessively. Research is currently underway
into developing such a function. Either a weakened
version of the original separate function, or a function
that analyses the individuals within each niche and uses
their position and spread from the midpoint to modify the
radius could be viable solutions. This could also lead to
the generation of a split function that will split a niche in
two if there are two or more distinct populations of
individuals within a single niche.

The triangular sharing function described previously in
section 2.2 has large discontinuities at the edges of the
niche. If the niche radius does not completely encompass
a peak, then at the edges of the niche there can potentially
be areas of higher fitness relative to the individuals within
the niche. This can sometimes lead to small
subpopulations forming at the edges of such niches. This
phenomenon can be seen manifesting itself in Figure 6.
The niche with midpoint at 0.0095 has actually formed at
the edge of the niche with midpoint 0.058, on the slope of
the larger peak. Figure 7 shows a plot of the modified
fitness landscape as seen by the GA after DNC and
sharing has been applied. The modified fitness of the two
peaks is the same, as is to be expected, but the fitness
landscape now has two large peaks at the edges of the
niche at 0.058. Relative to the two actual peaks, the
fitness of the spikes is much higher, so any individuals
that land on them are very likely to form their own niche.
In order to combat this and eliminate the discontinuities at
the edges of niches, a possible solution could be to double
the radius of each niche, but modify the triangular sharing
function so that it extends from its population size down
to 1, instead of the population size divided by 2. This
would result in a much smoother modification of the
fitness landscape and reduce the problem of ‘phantom’
peaks induced by fitness sharing.

Figure 7: Modified Fitness Landscape after Sharing

A logical progression from DNC is in describing a niche
by a hyperellipse rather than by a hypersphere. This
would allow the formation of irregular shaped niches, and
is a subject of future research for the authors. By the very



nature of DNC, local elitism and niche mating restriction
schemes are very easy to implement. Initial tests show
that significant improvements in performance are
attainable.

Unfortunately, because DNC relies on a decoded
parameter space distance metric, it has not been tested on
any other kind of problem, for example the deceptive trap
unitation functions (Ackley, 1987 and Goldberg et al,
1992). Research is currently underway on adapting DNC
so that it uses a genotype hamming distance as a
similarity metric. This would then allow the technique to
be extended to problems that do not rely on euclidean
space.

6 CONCLUSION

In this paper, we have described a novel and unique
method of locating all the optima within a fitness
landscape with very little prior knowledge of that
landscape. This is achieved through use of a variable
radius niching scheme that uses the population size to
determine an initial niche radius. The principle behind
this is the more individuals in the population there are, the
more peaks we can expect to find and populate.

Implementing a non-overlapping, fixed radius niching
scheme will only allow the formation of a fixed number
of niches. In most cases, the number and size of the peaks
in the fitness landscape must be known beforehand, so we
can only ever expect to find p niches, irrespective of the
population size. Utilising a variable radius niching
scheme allows the GA to form as many niches as is
required. This removes the necessity for knowledge of the
fitness landscape, a priori. Dynamic Niche Clustering is a
first attempt at providing a robust and reliable variable
radius niching scheme for multimodal function
optimisation.

Although it does not perform quite as well as standard
fitness sharing with regards to accuracy, DNC clearly
outperforms fitness sharing in terms of speed. It is the
belief of the author that achieving good, robust, near-
optimal solutions in a reasonable time is better than
obtaining the optimal solutions (which may not even be
attainable) over a prolonged and unrealistic time-scale.

It could be argued that the method presented in this paper
is an overly complicated means of achieving multimodal
function optimisation without a priori knowledge, but
unless one is willing to submit to the unreasonable
limitations of standard fitness sharing, it is necessary to
implement a variable radius niching scheme.
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