
Phlegmatic Mappings for Function Optimisation
with Genetic Algorithms

Steve Margetts and Antonia J Jones
Department of Computer Science, Cardiff University,
Queen’s Buildings, Newport Road, PO Box 916,

Cardiff CF24 3XF, U.K.
Email: S.Margetts@cs.cf.ac.uk
Phone: +44 (0)29 2087 4812

Abstract

The nature of the mapping between the geno-
type and the phenotype is vital to the perfor-
mance of a genetic algorithm. We develop
the notion of a phlegmatic mapping func-
tion, which encapsulates the idea that small
changes in the genotype ought to produce
small changes in the phenotype. After illus-
trating a mapping function with this prop-
erty, we validate the idea using a test suite
of function optimisation problems. We show
that using a phlegmatic mapping can greatly
improve the performance of a genetic algo-
rithm for this problem domain.

1 INTRODUCTION

Many problems can be reduced to finding the max-
imum (or equivalently, the minimum) of a function.
The multidimensional function optimisation problem
is a direct generalisation of this: given some function
f which takes as input the n-dimensional vector x,
find the values for x for which f is maximised. In
real-world problems, analytical solutions can be very
hard to find, especially if f is non-linear, highly multi-
modal or only partially known. Genetic algorithms
[Holland, 1975] are a natural solution to this type of
problem, as the function f is an excellent candidate
for a fitness function.

The use of genetic algorithms for function opti-
misation has a long and rich history. Since the
beginning of the field, function optimisation has
formed the heart of many standard test suites (e.g.
[De Jong, 1975], [Michalewicz, 1994], [Fogel, 1995],
[Foster, 1995]). More recently, the technique has
proved its worth in numerous practical applications
(eg. [Obayashi et al., 1999], [Pazos et al., 1999]).

However, given that we cannot guarantee that a ge-
netic algorithm will locate the global optimum, we
must be willing to accept solutions which are “good
enough” for the task at hand.

Naturally, we hope to find the best possible solution
in the time available. There is then a continuing re-
search effort to improve our genetic algorithms to ac-
complish this (within the bounds imposed by the “No
Free Lunch” theorem [Wolpert and MacReady, 1996]).
The aim of this paper is to investigate the importance
of the genotype to phenotype mapping when using ge-
netic algorithms for function optimisation. We will
start by looking at a theoretical approach to this prob-
lem, and then validate our ideas on a set of test func-
tions.

2 THE GENOTYPE TO
PHENOTYPE MAPPING

In general, the structures used in the internal workings
of a genetic algorithm (the genotype) are different to
those required by the fitness function (the phenotype).
This is because the genotype is usually chosen to make
the application of the genetic operators (mutation and
crossover) as simple as possible, whereas the pheno-
type is fixed by the problem. Hence when measuring
the fitness of a genotype, we must first convert it into
a phenotype. This process is shown in figure 1.

p
f

FPG
g

Population
Genotype

f = fitness(p)p = grow(g)

Figure 1: The Genotype to Phenotype Mapping

The diagram shows the relationship between the set

of genotypes comprising the population Pop ⊆ G, the
set of phenotypes P, and the set of fitness values F.
The arrows show a member of the population g ∈ Pop
being converted into a phenotype p ∈ P by the map-
ping function grow : G → P. Only once we have the
phenotype p can we apply the fitness function to get
a fitness value for g. Note that we normally take F to
be the positive real numbers (i.e. we use F = R+).

If we accept that the purpose of a genetic algorithm is
to find a genotype with the best possible fitness, then
this diagram highlights the importance of the mapping
function. In effect, we are trying to use the genetic
algorithm to find a genotype for which the composition
of grow and fitness is as large as possible. We can
therefore expect the choice of the mapping function to
have a great impact on the algorithm’s performance.

To put this in less abstract terms, let us consider us-
ing a genetic algorithm to maximise the n-argument
function f : Cn → R, where C is some closed and
bounded subset of the real numbers R. We want the
algorithm to find a vector of length n, which when ap-
plied to f gives a result which is as large as possible.
In terms of the genetic algorithm, the vector of length
n is the phenotype, and f becomes the basis of the
fitness function.

If we use a canonical genetic algorithm, the geno-
types will be fixed length binary strings. Therefore
we need some method of converting such strings into
real-valued vectors. Fortunately, transforming a fixed-
length binary string into a real-valued vector is only
slightly more complex than transforming a string into
a single real number. If we represent each component
of the vector using N binary digits, giving a binary
string of length N ×n, then we can construct the vec-
tor by repeatedly applying the transformation to each
block of N bits in turn. The choice of N depends on
the application, but it is easy to see that increasing N
by one doubles the number of possible real values we
can generate. For this reason, N sometimes referred
to as the precision or resolution of the binary-to-real
mapping.

We now need to choose a mapping function. A binary
string of length N can take on 2N different values,
which implies that there are (2N)2

N

different mapping
functions to choose between: a huge number even for
small values of N . As the mapping function affects the
behaviour of the genetic algorithm, we clearly need to
find some principles to help us decide which of these
to use.

3 PHLEGMATIC MAPPINGS

Experimental evidence suggests that as a canonical
genetic algorithm progresses, the population tends to
“home in” on one particular solution. As it does so, we
expect the utility of the crossover operator to decrease,
as there is less opportunity for it to combine portions
of promising individuals into something novel. When
the population reaches this stage, we would expect the
mutation operator to become more useful, as it imple-
ments a form of local search.

Once a population has reached this stage, the nature
of the mapping function from genotype to phenotype
becomes critical. We would ideally like a small change
in the genotype to cause a small change in the pheno-
type and hence a small change in fitness1.

To see why this is a useful principle, consider for a mo-
ment the two extremes. Firstly, suppose that a small
change in a genotype produces a large change in the
phenotype. Clearly any optimisation algorithm will
have a hard time locating an optimum, as there is very
little correlation between a change in the genotype and
a subsequent change in fitness. The resulting function
acted on by the algorithm is effectively random.

Conversely, suppose that all small changes to a geno-
type produce small changes to the phenotype. In
this case, the performance of the algorithm depends
only on the fitness function. The mapping function is
“transparent”: it does not add anything to the func-
tion we wish to optimise.

We are now ready to introduce a formal definition for
this idea. We will call those mappings for which a
small change in the genotype does produce a small
change in the phenotype phlegmatic, defined as follows:

Definition 1 A function m : X → Y is phlegmatic if
and only if m is onto and

∀a, b ∈ X ,∀k > 0 [d(a, b) ≤ k ⇒ d′(m(a),m(b)) ≤ c.k]

where d : X × X → R+ is a distance metric for the
finite set X , and d′ : Y ×Y → R+ is a distance metric
for the finite set Y.

As the sets we are mapping between may be very differ-
ent, we use c as a normalisation constant. It is chosen
so that the maximum distances returned by d′ and d
are equal. Note that as both X and Y are finite, the

1Disregarding for the moment the problem of defining a
“small change”, our assumption here is that most (non-
pathological) fitness functions have enough structure to
them to make this causal link possible. Again, caveats
about the “No Free Lunch” Theorem apply.

distance measured between any two points from either
of these sets must be also finite. If the maximum dis-
tances returned by d and d′ are dmax and d′max, then
we set c = d′max/dmax.

This is similar to the definition of continuity, but mod-
ified to better capture our requirements for the finite
sets X and Y. It is also similar to the idea of causality
[Sendhoff et al., 1997].

As we are interested in mapping a binary string of
length N into a real number, we have X = {0, 1}N .
However, instead of specifying Y to be some closed and
bounded subset of R, we will take Y to be the discrete
set {0, 1, . . .M}, where 0 ≤ M ≤ 2N − 1. The reason
for this is that Y is supposed finite. Also, we require
m to be onto, so we need to choose |Y| ≤ |X |. This
is a minor restriction, as it is a simple matter to scale
the outputs of m into the desired range.

Now that we have chosen X and Y, we can specify
the distance metrics we will use. We will take d to
be the Hamming distance, and d′ to be the absolute
difference:

d(a, b) =
∑N

i=1 |ai − bi|

d′(a, b) = |a − b|

We will now examine a few genotype to phenotype
mappings in the light of this idea.

3.1 THE TRADITIONAL MAPPING

The “traditional” method of converting a binary string
of length N into a numeric value is to use the standard
binary-to-decimal conversion:

traditional(s) =
N∑

i=1

si2N−i

where si refers to the ith component of the string. As
an example, we find that traditional(011010) = 26.
Note that any string of zeros maps to 0, and that the
largest possible result is generated by a string of ones,
which maps to 2N − 1. Using this, we find the nor-
malisation constant c in the definition above to be
(2N − 1)/N .
We can represent this mapping function by labelling
the vertices of the hypercube in the Hamming space.
An example of this is shown in figure 2, for the case
where N = 3.

We can visualise the effects of a small change in the
genotype space by looking at the labels of neighbour-
ing vertices. The diagram shows that the strings 000

0

1

6

3 7

4

5

000

010

001

011

101

111

110

100

2

Figure 2: The Traditional Mapping

and 100 are neighbours, but that their labels differ by
4, over half the possible range for the output. Our in-
formal idea of a phlegmatic mapping is one in which
all the neighbours of every vertex have labels which
are close in value. But from this viewpoint, it appears
that this mapping does not have this property.

Proposition 1 The traditional mapping is not phleg-
matic

Proof: Let a = 00...0 and b = 10...0, where
both a and b are drawn from {0, 1}N . Applying
the mapping, we find that traditional(a) = 0 and
traditional(b) = 2N−1. Now, the Hamming distance
between a and b is 1, so if the traditional mapping were
phlegmatic, we could use the fact that a and b differ
by a single place to infer that

|traditional(a)− traditional(b)| ≤ 2N − 1
N

by taking k = 1. We also know that
|traditional(a)− traditional(b)| = 2N−1, so we
can substitute this into the above to get:

2N−1 ≤ 2N−1
N , so

1 ≤ 2N − N2N−1, hence
1 ≤ 2N−1(2− N)

Hence the traditional mapping will only be phlegmatic
if N < 2. 2

Another popular choice for the mapping function is
Gray-encoding. We will define this using the tradi-
tional mapping:

gray(s) = traditional(g1(s), g2(s), . . . gN (s))
where

gi(s) =
(∑i

j=1 sj

)
mod 2

Using this definition it is a simple matter to repeat
the above argument to show that the Gray-encoded
mapping is also not phlegmatic.

3.2 THE COUNTING-ONES MAPPING

Given that neither the traditional mapping nor Gray
encoding is phlegmatic, we might wonder if any phleg-
matic functions exist at all. In fact, there are many.
Consider the following:

countingOnes(s) =
N∑

i=1

si

This function simply adds all the bits in the string
together. It is in fact the archetypal “GA-easy”
function, first described in [Ackley, 1987], and used
throughout the literature as a simple test function (e.g.
[Syswerda, 1989]). A diagram of the function when
N = 3 is shown in figure 3; this clearly shows that the
label for any vertex is simply the Hamming distance
from the all-zero vertex.

0
000

010

001

011

101

111

110

100

3

2

2

2

1

1

1

Figure 3: The Counting Ones mapping

The fact that this is a phlegmatic mapping is easily
established:

Proposition 2 The counting-ones function is phleg-
matic.

Proof: Suppose that the Hamming distance be-
tween two elements a, b ∈ {0, 1}N is k. From the defi-
nition of the Hamming distance, we know that a and
b must differ in exactly k places. Now suppose that
in each position i that they differ, ai = 0 and bi = 1,
so that a and b differ by the maximal number of ones.
Then b must have exactly k more ones than a, i.e.
|countingOnes(a)− countingOnes(b)| = k. Hence we
have shown that for any k, a and b:

hamming(a, b) ≤ k ⇒
|countingOnes(a)− countingOnes(b)| ≤ k

The only difference between this and our definition
of a phlegmatic function is the normalisation con-
stant c. However, as the maximum value returned

by countingOnes is N , we have that c = N/N = 1.
Therefore, the counting-ones mapping is indeed phleg-
matic. 2

However, this is not the end of all our problems: to
achieve the same level of precision as an N -bit string
under the traditional (or Gray-encoded) mappings, we
would need a string 2N − 1 bits long. The mapping
is also highly redundant: NCr distinct strings map to
the value r. We will see the practical implications of
these features later.

4 BUILDING BLOCKS AND
PHLEGMATIC MAPPINGS

Let us suppose that a genetic algorithm operates
by composing solutions from “building blocks” made
from short, low order schema with high fitness
[Goldberg, 1989]. We will consider the portion of a
binary string which corresponds to a single input of
the test function (i.e. a section consisting of N bits),
and examine the effect the counting ones mapping has
on building blocks within this region.

We can see that any permutation of this region will
give rise to exactly the same phenotype, so all permu-
tations of a given region must have the same fitness.
This implies that all permutations of the schema in
this region also have the same fitness. Since this re-
gion is small in relation to the length of the string, the
schemata it contains must be short i.e. they are po-
tential building blocks. So in effect, the counting ones
mapping creates classes of equivalent building blocks.
We would expect this to aid the search to find the best
building blocks within each region. It also allows the
algorithm more freedom in choosing building blocks at
higher levels, such as those which span many inputs.

5 EXPERIMENTAL COMPARISON

We will compare the properties of the traditional,
the Gray-encoded and the counting ones map-
ping functions on a set of benchmark test func-
tions. Most of these are well-known functions
which have been used widely in the literature
(eg. see [Shinn-Ying Ho et al., 1999], [Fogel, 1995],
[De Jong, 1975]). The test set is given in table 1, and
includes unimodal functions (f3, f5 and f10) as well as
more challenging multi-modal functions (f1, f2 and f4,
and f6 through f9). While easy for a genetic algorithm
to solve, the unimodal functions provide some idea of
the global convergence rate of the algorithms tested on
them. Each of the test functions is parameterised by
n, the number of inputs.

We based our genetic algorithm on the steady-state
model (as described in [Goldberg, 1989]), and used the
same settings for all experiments. Each used a popu-
lation of 100 individuals, running for a total of 1000
cycles after initialisation of the population. We used a
combined mutation and 2-point crossover operator to
create every new individual, and we took the mutation
probability per bit to be 1%. To help preserve diver-
sity, each new child generated was compared against
the current population. If not unique, the child was re-
peatedly mutated (using the mutation operator) until
it either became unique or a set number of iterations
elapsed. The algorithm uses the Mersenne Twister
[Matsumoto and Nishimura, 1998] as its random num-
ber generator.

We ran two sets of experiments, the first with n, the
number of inputs to the problem, set to 10 and the
other with n set to 100. For each set we chose the
number of binary bits per input N , to be 4 and 10
for the traditional and Gray-encoded mappings, and
10 and 16 for the counting ones mapping. This allows
us to compare the two mappings when they both use
the same number of bits per input (when N = 10) and
when the number of values mapped to are equal (when
N = 4 for the traditional or Gray-encoded mapping
and N = 16 for the counting ones mapping). Each
run was repeated 10 times, and the best values found
during the run averaged.

5.1 DISCUSSION OF RESULTS

The results for n = 10 can be found in table 2, and
those for n = 100 in table 3. Both tables are arranged
so that the the case where all the mappings have the
same number of values to map to are in the first col-
umn of results for each mapping. The second column
contains the results for the case where each mapping
uses the same number of bits. Underlined entries in-
dicate the best-performing mappings in each case.

We will start with table 2, and look at the case where
the traditional and Gray-encoded mappings use 4 bits
per number, and the counting ones mapping uses 16, so
that they all map to the same number of values. Dis-
counting functions f1 and f9 (where all mappings per-
formed equally well), we can clearly see that the count-
ing ones mapping outperforms the other two on all of
the test functions. It is also interesting to note that
the traditional mapping outperforms the the Gray-
encoded mapping on all but function f3.

When all mappings use 10 bits per input (the second
column of results in each case), and again discounting
f1 and f9, we can see that the counting ones mapping
outperformed the other two on five of the functions (f3,

f4, f5, f8 and f10). We also find that the traditional
mapping outperforms the Gray-encoded mapping on
all but f6.

The poor performance of the counting ones mapping
on test function f6 is rather puzzling. A closer exam-
ination of the collected data reveals that with these
settings, the algorithm made no progress on the func-
tion at all. The reason for this is that with N = 10 and
a domain range of [−1, 2], the range of values produced
by the mapping is {−1,−0.7,−0.4, . . . , 1.7, 2}. When
we put these into f6, we can see that the argument to
sine will always be a whole multiple of π; i.e any binary
string will evaluate to zero. This effect also explains
the performance of the counting ones mapping on f1.
We stress that this is caused purely by our choice of N :
when N = 16 the mapping behaves quite differently.

A selection of graphs for these results can be found in
figure 4. These show the mean best value found at each
cycle of the algorithm. The vertical bars represent 95%
confidence intervals for the mean, calculated using the
Student’s T distribution. The near-invisibility of the
trace for the counting ones mapping in the graphs for
f3 and f8 shows the power of this technique. However,
the graph for f7 demonstrates its downside. Although
this mapping starts off well, its performance quickly
tails off as the mapping reaches the limit imposed by
its reduced resolution.

Moving on to table 3, we will first look at the case
where all mappings map to the same number of val-
ues. Again, the counting ones mapping comes out on
top, outperforming the others on all but three of the
functions (f1, f4 and f9). Interestingly, the trend no-
ticed with the 10-input problems is reversed: the Gray-
encoded mapping outperforms the traditional mapping
on all but f2 and f6.

When given 10 bits per number, the counting ones
mapping outperforms the rest on all but f6. However,
the poor performance on f6 is due to the choice of
N , as described above. We also find that the Gray-
encoded mapping is better than the traditional map-
ping on all but f1, f2 and f9.

Graphs showing the performance of the mappings on
some of these harder problems are shown in figure
5. The main difference between these and the graphs
shown in figure 4 is that on the whole, the algo-
rithm was still finding improvements when the run was
stopped after 1000 iterations. It is interesting to note
that the confidence intervals on the graphs for f3 and
f10 are distinct: this amounts to accepting the hypoth-
esis that the mappings are significantly different at the
5% level.

Table 1: The test functions

Test Function Domain Range Optimum

f1(x) = −
∑n

i=1

∣∣∣ sin(10πxi)
10πxi

∣∣∣ [-0.5, 0.5] 0

f2(x) = −
∑n−1

i=1

[
sin(xi + xi+1) + sin

(
2xixi+1

3

)]
[3, 13] ≈ 2n

f3(x) = −
∑n

i=1 �xi + 0.5�2 [-100, 100] 0

f4(x) = −
∑n

i=1

[
x2

i − 10 cos(2πxi) + 10
]

[-5.12, 5.12] 0

f5(x) = −
∑n

i=1 x2
i [-5.12, 5.12] 0

f6(x) =
∑n

i=1 xi (sin(10πxi)) [-1, 2] ≈ 1.85n

f7(x) = −
∑n

i=1

[
sin(xi) + sin

(
2xi

3

)]
[3, 13] ≈ 1.216n

f8(x) = −
∑n−1

i=1

[
100

(
xi+1 − x2

i

)2 − (xi − 1)2
]

[-5.12, 5.12] 0

f9(x) = −6n−
∑n

i=1�xi� [-5.12, 5.12] 0

f10(x) =
∏n

i=1 cos
(

xi√
i

)
− 1

4000

∑n
i=1 x2

i [-600, 600] 0

Table 2: Test function performance for n = 10

Function Traditional Mapping Gray-encoded Mapping Counting Ones Mapping

N = 4 N = 10 N = 4 N = 10 N = 16 N = 10

f1 −3.90× 10−16 −3.90× 10−16 −3.90× 10−16 −3.90× 10−16 −3.90× 10−16 −3.90× 10−16

f2 15.073 15.919 13.905 14.827 15.127 14.512

f3 -504.000 -91.200 -339.300 -797.300 0 0

f4 -14.278 -15.311 -43.325 -20.379 -4.431 0

f5 -1.065 -0.843 -1.229 -3.194 0 0

f6 13.178 14.225 12.846 14.537 13.281 0

f7 11.811 12.033 10.952 10.516 12.068 11.494

f8 -204.705 -196.361 -271.061 -843.662 -1.664 -23.045

f9 0 0 0 0 0 0

f10 -4.535 -2.526 -5.076 -7.151 0 0

All these observations help strengthen our hypothe-
sis that phlegmatic mappings tend to perform better
than the traditional and Gray-encoded mappings on
this class of problems, particularly when the number
of inputs is large. This adds weight to our hypothesis
that mutation becomes increasingly important as the
run progresses. The cases where the other mappings
are superior are largely explained by the limited reso-
lution of the counting ones mapping: the small range
of values available to it appears to prevent it from lo-
cating the true optimum.

6 CONCLUSIONS

A phlegmatic function is one for which a small change
in the input causes a small change on the output. Us-
ing a test suite of function optimisation problems, we
have shown that the choice of mapping function does
affect the performance of the algorithm, and that us-
ing a phlegmatic mapping improves the algorithm’s
performance in almost all cases. The improvement is
particularly striking for functions with many inputs.

Table 3: Test function performance for n = 100

Function Traditional Mapping Gray-encoded Mapping Counting Ones Mapping

N = 4 N = 10 N = 4 N = 10 N = 16 N = 10

f1 −2.57× 10−3 −2.57× 10−3 −4.88× 10−12 −2.08× 10−2
-0.100 −3.90× 10−15

f2 92.472 85.288 89.706 75.930 106.969 113.111

f3 -117848 -132372 -89561.4 -89851.9 -16510 -24880

f4 -1025.600 -1058.440 -496.952 -1018.520 -520.861 -75.520

f5 -310.600 -338.156 -227.451 -231.014 -46.653 -71.198

f6 101.654 55.361 88.723 64.977 123.897 0

f7 63.807 66.006 96.077 80.674 106.338 99.582

f8 -297279 -355270 -113181 -70367 -9470.220 -21944

f9 -1.400 -3.800 -0.700 -5.600 -6.300 -3.100

f10 -1106.870 -1114.570 -803.656 -777.123 -157.094 -244.360

200 400 600 800 1000
Evals

-15000

-12500

-10000

-7500

-5000

-2500

f

(a) f3

200 400 600 800 1000
Evals

7

8

9

10

11

12

f

(b) f7

200 400 600 800 1000
Evals

-30000

-25000

-20000

-15000

-10000

-5000

f

(c) f8

Traditional Mapping Gray-encoded Mapping Counting Ones Mapping

Figure 4: Selected convergence graphs for N = 10 and n = 10

200 400 600 800 1000
Evals

-250000

-200000

-150000

-100000

f

(a) f3

200 400 600 800 1000
Evals

-50

-40

-30

-20

-10

f

(b) f9

200 400 600 800 1000
Evals

-2500

-2000

-1500

-1000

f

(c) f10

Traditional Mapping Gray-encoded Mapping Counting Ones Mapping

Figure 5: Selected convergence graphs for N = 10 and n = 100

7 FUTURE WORK

Although we have shown that phlegmatic mapping
functions can be very useful in their own right, we have
seen that their lack of resolution can cause problems.
The nature of the counting ones mapping is that the
resolution increases linearly with the number of bits
used to represent each input. Hence to gain the same
level of resolution as a 10-bit binary string under the
traditional mapping, we would need to use 1023 bits
per input. This is clearly impractical.

We are tackling this problem using “divide-and-
conquer”: we start by locating promising areas of the
search space, then refine the search by restricting the
domain range of the inputs. We will achieve this by us-
ing multiple populations, co-evolving in a cooperative
fashion in the sense of [Potter, 1997]. Each successive
population refines the domain selected by the last, and
each uses the phlegmatic mapping investigated here.
Our preliminary results are very encouraging.

Acknowledgements

The authors would like to thank Rupert Kapp-
Rawnsley for his insightful ideas and enlightening dis-
cussions. They would also like to thank the anonymous
reviewers for their helpful comments.

References

[Ackley, 1987] Ackley, D. (1987). A connectionist ma-
chine for genetic hillclimbing. Kluwer Academic
Publishers.

[De Jong, 1975] De Jong, K. A. (1975). An Analy-
sis of the Behaviour of a Class of Genetic Adap-
tive Systems. Doctoral dissertation, Department of
Computer and Communication Sciences, University
of Michigan. (University Microfilms No. 76-9381).

[Fogel, 1995] Fogel, D. B. (1995). Evolutionary Com-
putation: Toward a New Philosophy of Machine In-
telligence. IEEE Press.

[Foster, 1995] Foster, J. A. (1995). Lecture Notes on
Genetic Algorithms, chapter On Test Suits. IEEE
Press.

[Goldberg, 1989] Goldberg, D. E. (1989). Genetic
Algorithms in Search Optimization and Machine
Learning. Addison-Wesley Publishing Company Inc.
ISBN: 0-201-15767-5.

[Holland, 1975] Holland, J. H. (1975). Adaption in
Natural and Artificial Systems. MIT Press, 1992
edition. ISBN: 0-262-58111-6.

[Matsumoto and Nishimura, 1998] Matsumoto, M.
and Nishimura, T. (1998). Mersenne twister: A
623-dimensionally equidistributed uniform pseu-
dorandom number generator. ACM Trans. on
Modelling and Computer Simulation, 8(1):3–30.

[Michalewicz, 1994] Michalewicz, Z. (1994). Genetic
Algorithms + Data Structures = Evolution Pro-
grams. Springer-Verlag.

[Obayashi et al., 1999] Obayashi, S., Sasaki, D., and
Takeguchi, Y. (1999). Evolutionary computation of
supersonic wing shape optimization. In Banzhaf,
W., Daida, J., Eiben, A. E., Garzon, M. H.,
Honavar, V., Jakiela, M., and Smith, R. E., edi-
tors, Proceedings of the Genetic and Evolutionary
Computation Conference, volume 2, page 1791.

[Pazos et al., 1999] Pazos, A., Dorado, J., Santos, A.,
and Rabuñal, J. R. (1999). Optimization of GA
parameters to train recurrent ANN though weight
adjustment and selection of activation functions. In
Proceedings of the Genetic and Evolutionary Com-
putation Conference, volume 2, page 1793.

[Potter, 1997] Potter, M. A. (1997). The Design and
Analysis of a Computational Model of Cooperative
Coevolution. PhD thesis, George Mason University,
Fairfax, Virginia. Supervised by Kenneth A. De
Jong.

[Sendhoff et al., 1997] Sendhoff, B., Kreutz, M., and
von Seelen, W. (1997). A condition for the
genotype–phenotype mapping: Causality. In Pro-
ceedings of the Seventh International Conference on
Genetic Algorithms (ICGA ’97), pages 73–80, San
Francisco. Morgan Kaufmann.

[Shinn-Ying Ho et al., 1999] Shinn-Ying Ho, Li-Sun
Shu, and Hung-Ming Chen (1999). Intelligent ge-
netic algorithm with a new intelligent crossover us-
ing orthogonal arrays. In Proceedings of the Ge-
netic and Evolutionary Computation Conference,
volume 1, pages 289–296.

[Syswerda, 1989] Syswerda, G. (1989). Uniform
crossover in genetic algorithms. In 3rd International
Conference on Genetic Algorithms, pages 2–9.

[Wolpert and MacReady, 1996] Wolpert, D. H. and
MacReady, W. G. (1996). No free lunch theorems
for search. Technical report, Santa Fe Institute, 1399
Hyde Park Road, Santa Fe, NM, 87501. Tech Re-
port SFI-TR-95-02-010.

