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Abstract

We have developed an e�cient algorithm based on the
Genetic Algorithm(GA) for optimization of a model
of a nonlinear system. Estimation of the interac-
tion mechanisms among system components by us-
ing experimentally observed dynamic responses (time-
courses) of some of the system components is gener-
ally referred to as \inverse problem". The S-system,
which belongs to power-law formalism, is one of the
best representations to solve such an inverse problem;
the S-system is rich enough in structure to capture all
relevant dynamics. In this paper, for the purpose of
solving the inverse problem, we introduce the GA and
propose an e�cient procedure for the estimation of
large numbers of parameters in the S-system formal-
ism. We applied our method to a simple oscillatory
system and a gene expression network.

1 INTRODUCTION

Organizationally complex systems such as gene expres-

sion networks and metabolic pathways are comprised of

numerous, richly interacting components. In the case

where the details of the molecular mechanism that gov-

ern interactions among system components (state vari-

ables) are not well known, however, how do we math-

ematically model such complex processes?; most of

these processes are nonlinear. Description of these pro-

cesses requires a representation that is general enough

to capture the essence of the experimentally observed

response. One of the best approaches that satisfy this

requirement is the \S-system"(Savageau, 1976, Voit,

1991,Tominaga and Okamoto, 1998) which is a type of

power-law formalism because it is based on a particu-

lar type of ordinary di�erential equation in which the

component processes are characterized by power-law

functions;
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where n is the number of state variables or reactants

(Xi), i; j (1 � i; j � n) are su�xes of state vari-

ables. The terms gij and hij are interactive e�ectiv-

ity of Xj to Xi. The �rst term represents all inu-

ences that increase Xi, whereas the second term repre-

sents all inuences that decrease Xi. In a biochemical

engineering context, the non-negative parameters �i
and �i are called rate constants, and real-valued ex-

ponents gij and hij are referred to as kinetic orders.

The S-system is rich enough in structure to capture

all relevant dynamics; an observed response(dynamic

response) may be monotone or oscillatory, it may con-

tain limit cycles or exhibit deterministic chaos. As

long as it can be formulated as a system of ordinary

di�erential equations, the S-system can be formulated

as a canonical model. Furthermore, the simple ho-

mogeneous structure of S-system has a great advan-

tage in terms of system analysis and control design,

because the structure allows analytical and computa-

tional methods to be customized speci�cally for this

structure(Irvine and Savageau, 1990). However, the

S-system formalism has a major disadvantage in that

this formalism includes a large number of parameters

that must be estimated(�i, �i, gij and hij). The es-

timation of these parameters often causes a bottle-

neck, and matching the model to the experimentally

observed responses(time courses of relevant state vari-

ables or reactants) is almost never straightforward and

is almost always di�cult. The number of estimated

parameters in S-system formalism is 2n(n+ 1), where

n is the number of state variables(Xi). In this paper,

we should propose an algorithm and procedures for

the estimation(optimization) of large numbers of pa-

rameters (Okamoto et.al., 1997, Tominaga et al., 1996,

1999). The basic idea is as follows: the Genetic Algo-

rithm (GA)(Baker, 1985, Goldberg, 1989, Davis, 1991)

as a nonlinear numerical optimization method which is

much less likely to be stranded in local minima. Fur-

thermore, in order to �nd the skeletal structure (small-

size system) of S-system formalism that matches the

experimentally observed responses, some of the param-

eters (gij and hij), absolute values of which are less

than a given threshold value, are to be removed (reset

to 0) during optimization procedures. By introduc-

ing this algorithm re�ered to as structure skeletalizing



(Tominaga and Okamoto, 1998, Tominaga et al., 1999),
that optimized essential S-system model that matches

to the experimentally observed responses should be

possible.

2 OPTIMIZATION PROCEDURES

Since the S-system is a formalism of ordinary nonlinear

di�erential equation, the system can easily be solved

numerically by using a suitable numerical calculation

program such as Runge-Kutta-Gill method.

However, when an adequate time-course of relevant

state variable is given, a set of parameter values �i,

�i, gij and hij , in many cases, will not be uniquely de-

termined, because it is highly possible that the other

sets of parameter values will also show a similar time-

course. Therefore, even if one set of parameter values

that matches the observed time-courses is obtained,

this set is still one of the best candidates that explain

the observed time-courses. Our strategy is to explore

and exploit these candidates within the immense huge

searching space of parameter values.

In this optimization problem, each set of parameter

values to be estimated is evaluated using the following

procedure: Suppose that Xi;cal;t is numerically calcu-

lated time-course at time t of state variable Xi and

Xi;exp;t represents the experimentally observed time-

course at time t of Xi. Sum the relative error between

Xi;cal;t and Xi;exp;t to get the total error f

f =

NX
i=1

TX
t=1

(�
Xi;cal;t �Xi;exp;t

Xi;exp;t

�2)
(2)

where N is the number of experimentally observable

state variables, T is the number of sampling points of

the experimental data. The problem is to �nd a set of

parameters that minimizes f .

The proposed method is based on simple GA, and the

structure of the genome(design code) of each individ-

ual(each set of parameter values) is shown in Figure 1.

A genome(corresponds to one individual) contains a

set of S-system parameters ( n �is and �is, and n� n

gijs and hijs) which forms an n � (2n + 2) matrix.

An individual represents one S-system model. Each

small square in Figure 1 corresponds to each parame-

ter that has a real value. We introduced the following

coding for representing real numbers: a 32bit unsigned

integer format within a given searching region, that is,

each dimensional region to be searched is divided into

232 discrete points and is numbered using a unsigned

.
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Figure 1: Design code of an individual; two n vectors of
�i and �i, and two n�n matrices of n�n gij and hij form
n � (2n + 2) matrix. This matrix represents one S-system
model.

integer. A real value within a searching region is rep-

resented by scaling a unsigned integer with o�set.

2.1 GENETIC ALGORITHM

The optimization procedure in GA is as follows:

(0) Prepare a set of experimentally observed time-

course data of n state variables. The number of sam-

pling point(T ) is common for each state variable. De-

termine the number of individual P , maximum limit of

generation Gmax, search regions for �i(�i) and gij(hij),

initial mutation ratem0, and the threshold of structure

skeletalizing S for gij and hij .

(1) P initial guesses(P sets of �i, �i gij and hij) are

randomly created. Each matrix element of an individ-

ual (Figure 1) has a real number and is randomly set

within a given searching region.

(2) Evaluate each individual. Solve a simultaneous

di�erential equation (Equation 1) for each individual,

and calculate total error f using Equation 2. The �t-

ness of each individual is calculated as the reciprocal

of total error f .

Within the group of P -individuals in every generation,

select the individual having the largest �tness(elite in-

dividual) and check whether the total error f of this

individual is less than a given threshold value of con-

vergence. If the largest �tness converges or the number

of generations is beyond the speci�ed count Gmax, or

if the �tness of elite individual does not change during

Gn(< Gmax) generations, exit the loop and terminate.

The elite individual is reported as the best matched

model.

(3) Otherwise continue searching by introducing ge-

netic operations (crossover and mutation), as shown in

Figure 2. Elite strategy is introduced over the genera-

tions.
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Figure 2: Crossover, mutation and structure skeletalizing.
In order to create a child individual for the next genera-
tion, select two individuals from the individual group ac-
cording to the probabilities proportional to their �tness.
Genes of a child are created from the parents' genes by
crossover. For each gene (S-system parameter), (1)Pick
the gene from either parents. (2)(3)Determine which gene
will be written into the child, by using uniform random
number. (4)Mutation is applied to the gene with a cer-
tain probability (mutation rate), using normal distributed
random number. (5)If the value of the gene is less than a
given threshold, the value is reset to zero(in every speci�ed
generation) (structure skeletalizing).

(4) With the exception of the elite individual, the de-

sign code of each child is created based on the de-

sign codes of two parents. Two parents are selected

by the roulette-wheel selection with ranking strategy.

For each individual, the probability to be selected(pi)

is calculated by the following equation:

pi =
1

N

�
�+ � (�+ � ��)

i� 1

N � 1

�
(1 � i � N)

(3)

where N is the number of individuals, �+ and �� are

the maximun and minimum probability of selection.

We set the �+ and �� to 1:1 and 0:9, respectively.

(5) From the two selected parents, each matrix ele-

ment of the child is alternatively chosen from the corre-

sponding elements of either parent at the same proba-

bility. Since the number of matrix elements is 2n(n+1),

where n is the number of state variables, this opera-

tion corresponds to the 2n(n+ 1)� 1 point crossover.

The value of each matrix element is not changed by

crossover.

(6) Furthermore, miss-writing (mutation) is supposed

to occurr at mutation ratem when the matrix elements

of the parents are copied to a child. We introduced

Gaussian mutation in which average and distribution

are de�ned by the original value and d, respectively.

Set d to d0 at the initial generation, and change the
value according to the following conditions: (i)When

the �tness of the elite individual does not change dur-

ing Gm generations, change to d1(< d0). (ii)After

the change, if the �tness of the elite individual does

not increase during next Gd generations, change to

qd0(q > 1). (iii)If the �tness is not improved dur-

ing next Gd generations, the value of distribution d

is returned to d0. (iv)When the �tness of the elite

individual increase due to the (i)-(iii) strategies, the

distribution d is reset to d0. The mutation rate m is

changed to k-times(k > 1) when the �tness of the elite

individual does not go up during Gm generations.

(7) By repeating the procedures(4)-(6), (P �1) chil-

dren are created for next generation. One child is the

elite individual whose design code is not submitted to

the genetic operations.

(8) Structure skeletalizing; the details are described in

the following section.

(9) Return to step (2).

2.2 STRUCTURE SKELETALIZING

In S-system formalism, the number of estimated pa-

rameters increases with the order of n2, which leads

to a considerably large computational cost and am-

biguous capture of interactive mechanism among state

variables (Xi). In order to capture optimized essential

interactions among Xi, the following structure skele-

talizing procedure is introduced: 1)The term gij (hij),

absolute value of which is less than a given threshold

value (skeletalizing value) is reset to zero. 2)This pro-

cedure is performed at every speci�ed generation and

at the termination of optimization.

3 APPLICATIONS

In order to examine the e�ectiveness of the proposed

procedures, we have applied our method to determine

a set of parameters of the S-system.

3.1 OSCILLATORY SYSTEM

Figure 3(A) shows the calculated time-courses of X1

and X2 of the S-system(N = 2 in Equation 1), pa-

rameter values of which are shown in Table 1. Given

these time-courses of X1 and X2(Figure 3(A) is pre-

sented as experimental data(Xi;exp;t, N = 2, T = 50 in

Equation 2)), we examined whether our proposed op-

timization procedures could explore and exploit a set

of parameter values which can provide the best �tted

time-course shown in Figure 3(A). The major optimiz-

ing conditions are as follows: searching ranges are [0.0,

5.0] for �i and �i, [-3.0, 3.0] for gij and hij , T = 50,
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Figure 3: Given time-courses and obtained time-courses
of X1 and X2. (A), Given time-courses(parameter value
are listed in Table 1); (B), obtained time-courses (a set of
parameters is listed in Table 2.) (C), obtained time-courses
(a set of parameters is listed in Table 4.) Initial values of
X1 and X2 is 1.0 and 1.5 respectively. In (A), the number
of sampling points of experimental data is 50 (T = 50 in
Equation (2).)

P = 10000, Gmax = 1000, Gn = Gmax=2, m0 = 0:05,
Gm = 20, d0 = 4:0(for �i and �i), 1:6(for gij and hij),

d1 = 0:5(for �i and �i), 0:2(for gij and hij), Gd = 10,

q = 5, k = 1:01, and the structure skeletalizing are

performed at every generation and the threshold value

of which is 0.5.

Figure 3(B) shows the obtained time-courses under the

above optimization condition. The obtained parame-

ter values are listed in Table 2. Compared the time-

courses in Figure 3(B) with those in Figure 3(A), the

overshoot peak values of X1 and X2 in 3(B) is less than

those in 3(A), and the time-courses after t = 1:0 (arbi-

trary unit) of X1 and X2 in 3(B) are more monotonous

than those in 3(A). The total dynamic patterns in 3(B)

are, however, very similar to those in 3(A); the aver-

age relative error between calculated (3(B)) and given

time-courses (3(A)) per sampling point is 3.65% (see

the column of algorithm A in Table 3).

Since this result shows that the optimization method

might be stranded in local minima, we have improved

our algorithm in order to explore and exploit the bet-

ter parameter space. In the above case, since the

number of individuals in one generation is very large

(P = 10000), most of the individuals the �tness value

of which is small might be disappeared by ranking

strategy, which leads to the survival of the large num-

bers of individuals which have very similar S-system

parameters. In order to avoid this situation, we di-

vided the individuals into many small groups. We

made 9 small groups which consists of 100 inidividu-

als. The alternative algorithm is as follows: First, each

small group independently performs optimization ac-

cording to the proposed algorithm except for P = 100,

Gmax = 10000. After the independent searching, 9

best individuals are obtained from each small group.

Prepared 91 individuals except for 9 best individuals,

we make the �nal group (the number of individuals

(P )= 91 + 9 = 100) which is allowed to the optimiza-

tion according to the proposed algorithm (P = 100,

Gmax = 10000). The total numbers of created individ-

uals is, therefore, 9�100�10000+1�100�10000 = 107,

which is the same as in the case of one large group;

P �Gmax = 10000 � 1000 = 107.

The obtained parameter set by the revised algorithm is

listed in Table 4, and the calculated time-courses are

shown in Figure 3(C). The oscillatory pro�le in Fig-

ure 3(C) is quite similar to that in 3(A); the average

of relative error between calculated (3(C)) and given

time-courses (3(A)) per sampling point is 1.39% (see

the column of algorithm B). Compared the obtained S-

system parameters (Table 4) with those in Table 1, the

structure (sign and magnitude of parameter) is very



Table 1: Given S-system parameters which provide the
dynamics shown in Figure 3(A).

i �i gi1 gi2 �i hi1 hi2
1 3.0 0.0 -2.5 3.0 -1.0 0.0

2 3.0 2.5 0.0 3.0 0.0 2.0

Table 2: Obtained S-system parameters which provide the
dynamics shown in Figure 3(B).

i �i gi1 gi2 �i hi1 hi2
1 3.17 -0.51 -2.46 3.10 1.58 0.00

2 3.81 2.17 0.83 3.60 0.00 2.88

similar.

Table 5 shows the obtained results for optimization

with the original algorithm(algorithm A) and with the

revised algorithm(algorithm B). The values in the ta-

ble show the average value of 30 trials with the cor-

responding algorithm. The values in the parentheses

represent standard deviations. These results show the

superiority of the revised algorithm(algorithm B) to

the original one(algorithm A).

3.2 GENE NETWORK

Next, the proposed method was applied to determine

a set of parameters of the S-system which represents a

typical model of a gene network.

As a case study, we created several sets of time series

data, shown in Figure 4, which were numerically cal-

culated using the scheme shown in Figure 5(Savageau,

1998). The S-system parameters in Figure 5 are shown

Table 3: Obtained results of optimization. A: One large
group, B: Nine small groups. Time-course data which are
calculated from the obtained models are shown in Figure
3. Time for optimization represents a cpu-time until the
optimization was performed, which was measured on Tem-
pest 2 (Concurrent Systems Inc., Japan (processor:Alpha
21164A, 600MHz, SPECfp95: 21.3, SPECint95: 18.6))

Algorithm A B

Average relative error(%) 3.65 1.39

Maximun �tness value 7.50 51.6

Total explored generations 1000 55186

Total created individuals 107 5:5� 106

Time for optimization(sec) 58803 31677

Table 4: Obtained S-system parameters which provide the
dynamics shown in Figure 3(C).

i �i gi1 gi2 �i hi1 hi2
1 3.71 0.00 -1.91 3.74 -0.77 0.00

2 2.93 2.58 0.00 3.00 0.00 1.88

Table 5: Obtained results of optimization. A: One large
group, B: Nine small groups Shown values are the aver-
age of 30 trial runs and numeral with parentheses repre-
sents standard deviations. Time for optimization shows
a cpu-time(second) until the optimization was performed,
which was measured on Tempest2(Concurrent Systems
Inc., Japan(processor: Alpha 21164A, 600MHz, SPECfp95:
21.3, SPECint95: 18.6))

Algorithm A B

Fitness value 2.86(1.24) 17.55(12.5)

Time for optimization 58392(1061) 36459(4303)

in Table 6. The time series data in Figure 4(A) were

calculated with the condition that �1 = 15:0, �4 = 8:0

in Table 6, which corresponds to the situation in which

both gene 1 producing X1(mRNA) and gene 4 produc-

ing X4(mRNA) are active (wild-type).

In contrast, the time series data in Figures 4(B) and

4(C) were obtained under the condition that �1 = 0,

�4 = 8:0 and that �1 = 15:0, �4 = 0, respectively;

Figure 4(B) shows the case of the disruption of gene

1(corresponds to �1 = 0), and 4(C) is the case of the

disruption of gene 4(corresponds to �4 = 0). The op-

timization task is as follows: Can the proposed algo-

rithm explore and exploit the best S-system parame-

ters matching the observed time courses shown in Fig-

ure 4(A)-(C)?

We attemped to estimate part of the system parame-

ters in Table 6. The targets of optimization are twelve

parameters; �1, g11; : : : ; g15, �4, g41; : : : ; g45. These

represent the interaction coe�cients that give increas-

ing e�ects of X1 and X4(expression and regulation of

mRNA), respectively. The major optimizing condi-

tions are as follows: searching ranges are [0.0, 20.0]

for �i and �i, [-3.0, 3.0] for gij and hij , T = 50,

P = 5000, Gmax = 400, Gn = Gmax=2, m0 = 0:004,

Gm = 10, d0 = 4:0(for �i and �i), 1:2(for gij and hij),

d1 = 0:5(for �i and �i), 0:15(for gij and hij), Gd = 10,

q = 5, k = 1:01, and the structure skeletalizing were

performed at every generation and threshold value of

which is 0.05.



Table 7: Obtained results of optimization in gene net-
work. The time for optimization was measured on Tem-
pest 2 (Concurrent Systems Inc., Japan (processor:Alpha
21164A, 533MHz, SPECfp95: 20.1, SPECint95: 16.6))

Average relative error(%) 1:0� 10�3

Total explored generations 266

Time for optimization 39368sec

At the 266th generation(CPU-time is about 11 hours),

we found the parameter set (�1, g11, g12, g13, g14, g15,

�4, g41, g42, g43, g44, g45) to be completely identical

to that shown in Table 6. In an early step of total

optimization(at the 78th generation), a model which

reects the same structure as the given model was ob-

tained, as shown in Table 8. The di�erences in pa-

rameter values between Table 6 and Table 8 are not

remarkable, indicating that the structure of the sys-

tem was obtained by global searching in early stages

of the optimization, and local searching (�ne tuning of

parameters) was performed after the 78th generation.

4 DISCUSSION

Equation 2 corresponds to the cost function or ob-

jective function to be minimized during optimization.

Since this function is not explicit but functional of the

parameters to be estimited (�i, �i, gij , hij), simultane-

ous ordinary di�erential equations shown in Equation

1 must be solved numerically in order to get Xi;cal;t

in Equation 2. This suggests that because of the lack

of numerical stability, the situation where di�erential

equations with the estimated parameter set can not be

numerically solved is highly possible. Since the �tness

value can not be calculated in this case, the �tness

value was supposed to be zero in this study. The GA

escapes the parameter set which provides zero �tness,

therefore, we have to explore and exploit the param-

eter set within the searching space having many lo-

cal minima. In the application to the oscillatory sys-

tem, we have proposed two algorithms; A)one large

group (P = 10000, Gmax = 1000) B)nine small groups

(P = 100, Gmax = 10000). As shown in Tables 3 and

5, it is revealed that the algorithm B) is more e�ec-

tive than the algorithm A); both average relative error

and time for optimization in B) are superior to those

in A). This indicates that plural small groups can ex-

plore more local minima in the searching space and

have higher possibility to �nd better parameter set.

In the application to the gene network, the �nal op-
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Figure 4: Time series data calculated from the S-system
shown in Table 6; (A), wild type(�1 = 15:0, �4 = 8:0);
(B)disruption of gene 1(�1 = 0:0, �4 = 8:0); (C)disruption
of gene 4(�1 = 15:0, �4 = 0:0); There are 51(sampling
points) times 5(components) points in these time-courses
data.
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Table 6: Given S-system parameters in Figure 5. The pool size(constant value, pool1 to pool5 in the Figure 5) correspond
to the values of �1 to �5.

i �i gi1 gi2 gi3 gi4 gi5 �i hi1 hi2 hi3 hi4 hi5
1 15.0 0.0 0.0 1.0 0.0 -0.1 10.0 2.0 0.0 0.0 0.0 0.0

2 10.0 2.0 0.0 0.0 0.0 0.0 10.0 0.0 2.0 0.0 0.0 0.0

3 10.0 0.0 -0.1 0.0 0.0 0.0 10.0 0.0 -0.1 2.0 0.0 0.0

4 8.0 0.0 0.0 2.0 0.0 -1.0 10.0 0.0 0.0 0.0 2.0 0.0

5 10.0 0.0 0.0 0.0 2.0 0.0 10.0 0.0 0.0 0.0 0.0 2.0

Table 8: Obtained S-system parameters at the 78th generation in the gene network. The �1, g11, g12, g13, g14, g15, �4, g41,
g42, g43, g44, g45, were optimized.

i �i gi1 gi2 gi3 gi4 gi5 �i hi1 hi2 hi3 hi4 hi5
1 16.28 0.0 0.0 1.07 0.0 -0.08 10.0 2.0 0.0 0.0 0.0 0.0

2 10.0 2.0 0.0 0.0 0.0 0.0 10.0 0.0 2.0 0.0 0.0 0.0

3 10.0 0.0 -0.1 0.0 0.0 0.0 10.0 0.0 -0.1 2.0 0.0 0.0

4 8.55 0.0 0.0 2.09 0.0 -1.01 10.0 0.0 0.0 0.0 2.0 0.0

5 10.0 0.0 0.0 0.0 2.0 0.0 10.0 0.0 0.0 0.0 0.0 2.0



timized structure was found at the 266th generation
and its essential structure was found at the 78th gen-

eration. The �tness value of the best model (obtained

at the 266th generation) is 133.6. The relative error of

calculated time series data to the given data (Figure

4(A)-(C)) per sampling point is about 1:0� 10�3(%).

The �tness value and relative error at the 78th gen-

eration is 3.86 and 3:45 � 10�2(%), respectively. The

�tness was remarkably improved during the 78th and

the 266th generations, however, the relative error per

sampling point decreased slightly (from 1:0� 10�3(%)

to 3:45 � 10�2(%)).

For practical use, the experimentally observed data

generally include a �10% measurement error, which

indicates that such large error range means the param-

eters obtained at the 78th generation are considered to

be the best �tted parameters. In Figure 4(A)to Fig-

ure 4(C), we supposed several experimental conditions

of gene network, such as wild-type, and disruption of

gene. Estimation of parameters in the S-system us-

ing experimentally observed time-courses is generally

referred to as inverse problem and these time-courses

correspond to the restricted conditions for an inverse

problem. Since the proposed algorithm proposes can-

didates (parameter sets) matching the restricted con-

ditions, the best candidate can most likely be found by

preparing more time-course data under the disruption

and overexpressions in the gene network.
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