
 Crossover in Probability Spaces

Siddhartha Bhattacharyya

Information and Decision Sciences Dept..
College of Business Administration

University of Illinois at Chicago
601 S. Morgan Street (MC 294)

Chicago, IL 60607-7124
sidb@uic.edu

Marvin D. Troutt

Department of Administrative Sciences
Graduate School of Management

Kent State University
P.O. Box 5190

Kent, Ohio 44242-0001
mtroutt@bsa3.kent.edu

Abstract

This paper proposes a new crossover operator for
searching over discrete probability spaces. The
design of the operator is considered in the light
of recent theoretical insights into genetic search
provided by forma analysis. A non-trivial test
problem in enforcing coherency of probability
estimates in cross-impact analysis highlights the
utility of the designed operators. The presented
operators will be useful for a variety of
probability-fitting and optimization applications.

1 INTRODUCTION
Probability estimates are essential input data for many
decision support techniques, including expert systems,
long range forecasting, data mining, decision analysis and
cross-impact analysis, among others. This paper suggests
a genetic algorithm (GA) based approach for searching
over discrete probability spaces, that will be useful for a
variety of probability fitting and optimization
applications. The focus, in particular, in on the design of
a crossover operator for effective search over a space of
probability distributions.

The design of operators is considered in the light of recent
theoretical insights into genetic search provided by forma
analyses (Radcliffe, 1994). Forma theory provides an
extension of the original schema analysis – for bit-string
representations -- of genetic algorithms to arbitrary
representations, and suggests principles for the design of
effective genetic search operators.

We consider a direct real-number encoding of discrete
probability distributions. Two crossover operators are
developed, one in explicit consideration of forma
processing principles, and the other a more “intuitive”
operator along the lines of traditional single-point

crossover. Both operators are analyzed in terms of the
formae that they process, and their performance is
evaluated on a non-trivial test problem.

The designed genetic search approach is illustrated on a
problem of enforcing coherency of probability estimates
in cross-impact analysis (see Dalkey, 1972; Duperrin and
Godet, 1975; Gordon and Hayward, 1968; Helmer, 1977;
Martino, 1983). The problem also allows solution
through mathematical programming techniques, thus
providing useful comparison for the genetic algorithm
approach.

The next section briefly introduces forma analysis and the
related design principles for genetic search operators.
The design of the crossover operator and a mutation
operator for searching over probability spaces are then
considered in the following section. The third section
then explains and develops the test problem, and is
followed by a performance evaluation of the genetic
search operators implemented

2 FORMA AND DESIGN PRINCIPLES
Schema analyses and the schema theorem (Holland, 1975)
form the basis for most traditional theoretical analyses of
genetic algorithms. In a recent generalization, Radcliffe
(1994) extends the notion of schema to general
equivalence classes, called forma. The schema theorem
and intrinsic parallelism, key to the power of genetic
search, is shown to apply to such general-purpose
equivalence classes of solutions also. Developed in a
series of papers (Radcliffe, 1991a, 1991b, 1992, 1994),
forma theory focuses on the design of representations and
search operators such that the schema (forma) theorem
makes accurate estimates of the forma fitness, and thereby
guides the search appropriately. Domain knowledge is
brought to bear on the problem through specification of
formae that group together solutions of related
performance. Forma theory then establishes certain
properties for the genetic search operators so as to foster
effective search over the given space, considering the

defined forma as building blocks in the search process.
These properties can be used to analyze “heuristic”
operators too.

Forma theory differs from traditional schema theory
where the approach taken is to define a linear string
representation of the search space so that standard
crossover and mutation operators can be applied. Forma
theory instead emphasizes an explicit characterization of
appropriate forma in consideration of problem domain
information, and considers search operators working
directly on the search space, rather than on a fixed string
encoding of it. Radcliffe (1994) explains how the two
approaches are not equivalent; the former is shown to be
more general.

In forma theory, domain knowledge is expressed through
equivalence relations defined on the search space. Any
relation between pairs of solutions that satisfy reflexivity,
symmetry and transitivity can be used. These equivalence
relations then induce a partitioning of the search space
into equivalence classes, or formae. Solutions within a
forma are thus equivalent under the equivalence relation.
Equivalence relations define the genes, with
corresponding forma defining the alleles in the string
representation. The following example, adapted from
Radcliffe, 1994) illustrates.

Example: For a space of humans, eye color could be an
equivalence relation, useful if found to be an important
determinant of some performance. Formae then specify
sets of people with the same eye-color. Assuming only
three colors, { brownξ , bgreenξ , bblueξ } defines the set of
formae induced by this equivalence relation. Here

xξ denotes the set of people satisfying x. Similarly,
considering an equivalence relation for hair-type gives
another set of forma { bcurlyξ , stringhtξ }. We can now have
some composite equivalence classes like

curlybrown,ξ defined by the equivalence relation of people
with brown eyes and curly hair. Such composite
equivalence relations do not form genes; but note that
composite equivalence relations can be formed as the
intersection of the basic equivalence relations (genes). If
these equivalence relations uniquely identify each
individual in the search space, they form a representation
of the space. Obviously, eye-color and hair-type are
inadequate for defining a representation since, in general,
two people can have same eye-color and hair-type.

Radcliffe (1994) provides a rigorous definition of forma
theory. Here we consider only those aspects necessary for
our analysis in this paper. Consider S the search space,
letξ denote some forma on S and let Ξ be the set of
formae considered. Then Ξ is a subset of the power set
of S.

A set of formae Ξ is said to cover a search space if any
solution is uniquely identified by the forma. Formally, Ξ

covers S if and only if Ξ⊆∃∈∀ xSx ξ, with xx
x

=ξI .

Coverage is an important property since it ensures that
forma analysis can distinguish between solutions.

Two formae 1ξ and 2ξ are compatible if a solution can
belong to both. Two formae will thus be compatible if
their intersection is non-empty, i.e. if ∅≠21 ξξ I . It is
desirable that compatible formae be closed under
intersection. This allows formae to specify solutions with
different degrees of accuracy and thereby gradually refine
the search.

Any genetic operator R that recombines two parents in S
to produce an offspring in S can be defined through a
function R: S X S x PR → S where PR is the control set
that determines exactly which of the various possible
offspring results from application of the operator. The
non-deterministic nature of typically used genetic
operators can be specified through some appropriate
choice of control parameters in PR. The control set for an
operator need not be explicitly defined; any
recombination operator that manipulates two parents to
produce offspring in a reasonable manner can be used.

Note that this definition of operators is representation
independent, and thus allows the formulation of operators
directly on the search space. Such operators, however,
need careful design so as to process the defined formae in
a meaningful manner – operators should be able to exploit
the domain knowledge inherent in the forma specification.
In addition to the coverage and closure properties defined
above, forma analysis provides three design principles for
the genetic recombination operators: respect, assortment,
and ergodicity. These are defined below.

Respect: A recombination operator R is said to respect a
set of formae Ξ if recombining two instance of a
particular forma produces an instance of the same forma.
Formally R respects Ξ if and only if

ξξξ ∈∈∀∈∀Ξ∈∀),,(:,,, pgfRPpgf R .

Respect seeks to preserve genes common to both parents
in their offspring as well. It is effective at reducing forma
disruption, specially towards the later stages of the search
when population diversity is low.

Assortment: A recombination operator R is said to assort
a set of formae Ξ if, given two compatible formae, it is
possible to recombine any two instances of these to
produce an offspring that is in instance of both formae.
Formally, R assorts Ξ if and only if Ξ∈∀ 21,ξξ such
that ,21 ∅≠ξξ I

2121),,(:,, ξξξξ I∈∈∃∈∀∈∀ pgfRPpgf R .

The assortment property relates to the building block
hypothesis, and seeks to ensure that good building blocks
from two parents can be effectively combined.

Ergodicity: Given any population, it should be possible to
access any point in the search space through a finite
sequence of applications of the genetic search operators.
The mutation operator is generally used to provide for
ergodicity.

A set of formae Ξis said to be separable if a
recombination (crossover) operator capable of respecting
and assorting it exists. i.e. if the properties of respect and
assortment are not contradictory. While desirable, the
twin properties of respect and assortment, as indicated
earlier, are incompatible in certain practical problems.
Noting that most standard crossover operators respect
schemata, Radcliffe (1994) writes:

“Thus if a respectful operator is used, the non-separability
immediately means that assortment must fail to be
achieved. The significance of this is that even when
parents are chosen that contain all the genetic material
(apparently) necessary to build some given child, it may
be impossible for a respectful operator to construct that
child. As well as being in conflict with reason, this would
seem to make navigation around the search space
unnecessarily difficult”.

Thus, where formae are non-separable, assortment would
seem to be the more desirable property sought; respect
increases in relevance towards the later stages of search,
as the population begins to converge.The forma properties
and GA design principles given above, however, should
not be considered as providing necessary or sufficient
conditions for effective genetic search (Radcliffe, 1994).
Rather, they provide a set of conditions which, if satisfied,
is expected to yield improved search capabilities.

3 CROSSOVER AND FORMA IN
PROBABILITY DISTRIBUTIONS

The operators are defined directly on the search space. A
population member thus represents a solution directly as a
string of real-numbers, each number corresponding to the
probability of a specific event. Probability distributions
impose the constraint that each value be in [0,1] and that
all values sum to one. Thus, considering a problem with
N events, a solution is represented as the string

< s1, s2, … , sN> with si ∈ [0, 1], i = 1,..,N , and 1
1

=∑
=

N

i
is .

We consider a crossover operator, obtained intuitively
along the lines of traditional GA crossover operators that
swap alleles in two parents to obtain two offspring. Here,
the offspring are formed by exchanging the “front” and
“tail” ends of the parent distributions.

A cumulative distribution function (CDF) representation
facilitates the design of this operator. Each population
member represents a CDF corresponding to the
probability distribution x = < x1, x2, … , xn>. Then from
any population member S(x), the probabilities can be
determined as

n1,...,=i ,
1

xi 




 −−





=

n
i

S
n
i

S

with S(0)=0 and S(1)=1 being fixed. Thus each
population member is represented as a n-component
vector (x1,… xn) whose coordinates are monotone
increasing to the right.

3.1 DISTRIBUTION SWAP CROSSOVER

Given two parents F(x) and G(x), the distribution-swap
crossover operator obtains two offspring P(x) and Q(x) as
follows:

1. Select a crossover site xc = U[0,1] (uniformly in [0,1]).

2.






>
−

−−+

≤
=

c
c

c
cc

c

xx if]
)G(x1

)G(xG(x)
))[F(x(1)F(x

xx if F(x)
)(xP

3.






>
−

−−+

≤
= .xx if]

)F(x1
)F(xF(x)

)[G(x(1)G(x

xx if G(x)
)(

c
c

c
cc

c
xQ

(This CDF decomposition was employed earlier, in non-
GA related work (Troutt and Paine, 1990).

Note that this operator considers distributions as
continuous, and crossover sites can fall in between two
defined positions on a string. This is easily avoided,
where desirable, by choosing xc = (r/n) where r = U[1,n];
this ensures that the crossover site corresponds to some
string position. The operator also exhibits a high
positional bias as associated with traditional single-point
crossover. This can be overcome in a uniform version of
the operator:

1. Considering probabilities (x1,… ,xn), select crossover
positions uniformly (n]1,0[). Let C be the set of
selected crossover positions.

2. Rearrange the ordering of the probabilities xi such
that {xi:i∈ C} appears to the left of {xi:i∉ C}.
Transform this rearranged probability distribution to
CDF and perform crossover with crossover site

n
C}i:max{i

xc
∈= . If xc is not required to

correspond to any defined string position, it may be
selected uniformly in [xc, xc+1].

The Distribution Swap crossover preserves the probability
ratios amongst events in the front and back ends of a
distribution, i.e., on either side of the crossover site xc.
For example, given two parent probability distributions f
=<f1, f2, f3, f4> and g=<g1, g2, g3, g4>, and with the
crossover site chosen to be, say, at the second string
position, offspring p=<p1, p2, p3, p4> will maintain

p1/p2=f1/f2 and p3/p4=g3/g4, and similarly for the second
offspring. This operator may then be considered as
processing Probability-Ratio forma.

3.2 PROBABILITY-RATIO FORMA

Probability-ratio formae relate distribution strings having
the same probability-ratios for the defining events. A
probability distribution f=<f1,..,fn> can be represented
with its probability-ratio equivalent

>=<′
++

,...,..,...,
21 n

i

i

i

i

i

f
f

f
f

f
f

f . The set of probability-ratio

forma can be defined as ∏=Ξ
j

jF where

{*}}, ,{ UPrk
f
f

F
r

k
j ∈= ; here P denotes the set of events

with specified probabilities in the distribution, and * is a
don’t care symbol corresponding to events with
unspecified probabilities. Then, two strings f and g
(distributions, or their probability-ratio equivalents) are
equivalent or instances of a formaξ R according to:

Pqp
g
g

f
f

nPgf
q

p

q

pR ∈∀=⊆∃⇔∈ , },,..,1{, ξ .

For example, considering probability distributions f = <.2,
.3, .4, .1> and g = <.1, .6, .2, .1>, their probability-ratio
equivalents are

>=<′
1
4,

1
3,

4
3,

1
2,

4
2,

3
2f and >=<′

1
2,

1
6,

2
6,

1
1,

2
1,

6
1g .

Thus, both f and g are instances of the forma

>< *,*,*,*
2
1*, .

Distribution-swap crossover does not respect probability-
ratio forma, as seen in the following example: consider
parents f’:<0.1,0.3, 0.4, 0.2> and g:<0.2, 0.1, 0.3, 0.4>.
Note that f1/f4=g1/g4= 0.5, and a probability-ratio
respecting operator will preserve this ratio in offspring as
well. However, distribution swap crossover, with
crossover site at, say, the second position yields offspring
<0.1, 0.3, 0.26, 0.34> and <0.2, 0.1, 0.47, 0.23>, none of
which maintain the ratio between the first and fourth
event probabilities. Respect here, however, rises with
increasing similarity in gene values as the search
progresses towards convergence. Since respect is an
important property in the later stages of search,
distribution-swap crossover can thus still be expected to
perform well.

The uniform version of the distribution swap crossover
operator also assorts probability-ratio forma. Consider
parents f’:<0.1,0.3, 0.4, 0.2> and g:<0.2, 0.1, 0.3, 0.4>,
or their probability ratio equivalents

><′ 2,
2
3,

4
3,

2
1,

4
1,

3
1:f and ><′

4
3,

4
1,

3
1,

2
1,

3
2,2:g . Here

f is an instance of forma >< 2,*,*,
2
1,*,

3
1:1ξ and g is an

instance of the forma >< ,*
4
1,*,

2
1*,*,:2ξ . Now,

instances f and g of the above formae can be recombined
by distribution-swap crossover to give offspring that are
instances of both formae. Note that

>=< ,*,*,*
2
1*,*,21 ξξ I , i.e., having x1/x4=0.5.

Instances of this intersection forma are always obtainable
from parents f and g by considering events x1 and x4 (first
and fourth positions of the string) in the crossover set C
(see description of the uniform version of the operator
above).

3.3 MUTATION

As noted earlier, mutation plays a key role in
implementing the ergodicity property. With both the
crossover operators above, mutation is designed to
randomly change the probability of any event. The
probabilities of the other events will also then need to be
adjusted so as to satisfy the probability distribution
restriction (summation to unity). These adjustments are
made proportional to their existing values.

In addition, noting that the crossover operator carries an
inherent bias away from the end-points (0 and 1
probability values), the mutation operator is implemented
to insert a 0-value to randomly selected events. This 0-
value mutation shares equally with the regular mutation.
Since a mutation to a value of 1 would reduce the
probabilities of all the other events to 0, and is thus, in
general, not expected to yield good solutions, we do not
implement a 1-value mutation.

4 TEST PROBLEM: ENFORCING
COHERENCY OF PROBABILITY
ESTIMATES

We examine the performance of the genetic search
operator on a problem of obtaining coherent probabilities
estimates for a set of related events. Obtaining high
quality probability estimates from decision makers is a
problem that occurs with many decision support models
and methods. Such estimates, particularly those of related
probabilities, can fail to be consistent with the laws of
probability theory, a situation known as incoherency. The
desirability for coherence has been argued by many
authors (Hogarth, 1975; Martino, 1983; Spelzler and von
Holstein, 1975; Tversky and Kahneman, 1983). Here, we
first develop a search space for representing related
probabilities in such a way that coherent scenario and
event probability estimates can be obtained. Genetic

search then provides a general approach for finding
estimates which are exactly coherent while being close to
the decision maker’s estimates as well. The constructed
problem is also amenable to mathematical programming
solution approaches, and provides an means for
comparing with the designed genetic search operators.

4.1 TEST PROBLEM DESCRIPTION

The problem addressed in this paper may be described as
follows. Given data of the type shown in Table 1, find
coherent probability estimates for the various possible
scenarios and events which are as nearly consistent as
possible with the assignments of Table 1. Our starting
point is an interpretation of the constraints in Table 1 as
relationships between conditional probabilities and
marginal probabilities as follows: the first constraint is
interpreted as requiring

P(B|A) = P(B) + 0.25 (1-P(B)). (1)

Similarly the next two give rise to

P(C|A) = P(C) - 0.10, (2)

and P(C| D) = P(C) + 0.3(1-P(C)) (3)

respectively. The remaining three equations are
respectively

P(A|D) = 0.5 P(A), (4)

P(D|C) = P(D) + 0.2 (1-P(D)), (5)

and P(D|B) = 0.3 P(D) (6)

Here we use the notation P(·) to denote the probability of
event (·) and use the overbar to denote complementary
events.

To develop the representation, consider a special type of
sample space, S, whose sample points are potentially
elements of one or more of the event sets A, B, C, and D.
A particular point in S can belong to one and only one of
the 24 = 16 mutually exclusive subsets or scenarios
characterized according to whether the point is or is not
an element of each of the four sets A, B, C, and D. In fact,
we may list and number these scenarios as in Table 2.
Further, in Table 2, we associate a variable xi to represent
the relative frequency of sample points in scenario i. We
call S a flexible sample space (FSS). That is, instead of
each sample space point having equal probability, these
points are allowed to have flexible probabilties denoted
by the xi.

1

1The FSS approach appears to be a relatively straightforward
modeling tool which may have been used elsewhere. It appears
to be essentially the same as what some have called the minimal
relevant sample space.

Since x i
16

1=i
∑ must be unity, the reader may check that the

relevant marginal and joint events involved in system (1)-
(6) may be expressed as follows:

P(A) = x i
8

1=i
∑ (7)

P(C) = x+x+x+x i
14

13=i
i

10

9=i
i

6

5=i
i

2

1=i
∑∑∑∑ (8)

P(B) = x+x i
12

9=i
i

4

1=i
∑∑ (9)

P(D) = x1 + x3 + x5 +...+ x15 (10)

P(B I A) = x i
4

1=i
∑ (11)

P(C I A) = x+x i
6

5=i
i

2

1=i
∑∑ (12)

P(C I D) = x2 + x6 + x10 + x14 (13)

P(AI D) = x1 + x3 + x5 + x7 (14)

P(DI C) = x1 + x5 + x9 + x13 (15)

P(D I B) = x1 + x3 + x9 + x11 (16)

The requirements of Table 1 may now be expressed as
follows after some simple algebra:

))((75.025.0
8

1

12

9

4

1

4

1

8

1
∑∑+∑∑ +∑=
==== = i

i
i

i
i

i
i i

ii xxxxx (17)

))((1.0
8

1

14

13

6

5

2

1

8

1

6

5

2

1
∑∑+∑+∑=∑+∑+∑
======= i

i
i

i
i

i
i

i
i

i
i

i
i

i xxxxxxx (18)

++++=+++)...(3.0 1642141062 xxxxxxx

))(...(7.0
14

13

10

9

6

5

2

1
1642 ∑+∑+∑+∑+++

==== i
i

i
i

i
i

i
i xxxxxxx (19)

∑ +++=+++
=

8

1
15317531)...)((5.0

i
i xxxxxxxx (20)

))...(8.02.0(153113951 xxxxxxx ++++=+++ (21)

))(...(3.0
12

9

4

1
153111931 ∑+∑+++=+++

== i
i

i
i xxxxxxxxx

∑ ∑++∑+∑
= ===

10

9

14

13

6

5

2

1
)(

i i
ii

i
i

i
i xxxx (22)

5.0
8

1
=∑

=i
ix (23)

4.0
12

9

4

1
=∑+∑

== i
i

i
i xx (24)

1.0... 1531 =+++ xxx (25)

The last three requirements, (23)-(25), are due to the
initial marginal probability estimates in the lower half of
Table 1.

Thus the FSS decomposition describes a hypothetical
sample space in terms of the possible elementary
scenarios related to the particular set of events of interest.
All possible joint, marginal and conditional probabilities
of these events can therefore be modeled in a coherent
way. It is important to emphasize here that coherency is
strictly enforced by this scheme. That is, all information
about the events A, B, C, D, their intersections,
complements, and other set operations, is contained in the
xi, i = 1, 16. The reader may check that coherency
requirements, such as P(AI B) = P(A|B) P(B), reduce to
identities in the xi. Moreover the above points remain
true even if the system (17)-(25) is solved only
approximately. Thus the FSS model used here precisely
enforces coherency but permits some possible lack of fit
with the decision maker’s data such as given by Table 1.

The equations (17)-(25) constitute a set of nine
constraints, some of which are nonlinear, in sixteen

variables. In addition, it is necessary that 0.1
16

1
=∑

=i
ix and xi

≥ 0, i=1,...,16. Hence, it is not known a priori whether an
exact solution exists. We might therefore seek scenario
probabilities xi which come as close to these conditions as
possible in the least squared error sense. Define e1 as the
difference of left and right hand sides of (17), e2 similarly
for (18) and so on to e9 for (25). This line of reasoning
would lead to the constrained programming problem (26)-
(27) as follows:

∑
=

9

1

2
ie min

i
 (26)

 s.t. ∑ =≥=
=

16

1
16,..1 ,0 ,1

i
ii ixx . (27)

This problem was coded and solved using GAMS. Table
3 shows the results for both the scenario probabilities and
the probabilities of events A, B, C and D.

Note that the objective function in (26) can not easily be
checked for convexity. The GAMS solution thus might
not guarantee a global optimum. In order to compute a
global minimum of (26), one would need a starting point
grid search procedure. However, if the grid mesh is based
on dividing the interval [0, 1] into k points, then given the
16 variable problem at hand, the number of such search
points is of the order of k15. Thus this strategy is
therefore unattractive even for the small example at hand.
A genetic algorithm approach proves much more
desirable.

4.2 SOLUTION USING GENETIC
ALGORITHMS

Since the GA seeks solutions with high fitness, the
following fitness-function, consistent with the objective

of (26) is used: 29

1

2)(−

=
∑=
i

ij ef where fj is the fitness of

the jth population member, and ei , i = 1,..,9 are the errors
as determined by (17)-(25). The second power in the
above expression provides for greater discrimination
between solutions with close values of the total sum of
squared errors (SSE).

Table 4 presents the SSE, the scenario probabilities and
the probabilities of A, B, C, and D as obtained using
genetic search with the distribution-swap operators.
These results correspond to the following settings for the
GA parameters: a population size of 100 was maintained
for each simulated generation, and the best fitness number
retained intact in the next generation (elitist selection).
The mutation rate, was set at 0.025 per string position and
the crossover rate used was 0.7. The search was
terminated after 500 generations. Table 4 presents three
different solutions obtained with different random number
streams. All the GA solutions are found to outperform
the GAMS solution.

5 CONCLUSION
This paper considers the design of a crossover operator
for search over discrete probability spaces. A test
problem illustrates an application to the estimation of
coherent probability assignments. More generally, these
procedures apply to optimization over such spaces, or
simplexes described by barycentric coordinates. The
crossover operator is an intuitive heuristic that forms
offspring through an exchange of the front and tail ends of
distributions. This distribution swap crossover operator is
shown to process what may be called probability-ratio
forma. The operator assorts, but does not fully respect
probability-ratio forma; however, respect holds to a
degree which increases as convergence in the population
advances.

Genetic search using the designed crossover operator is
found to perform significantly better than a conventional
mathematical programming approach for the test problem.
It should be noted, however, that the forma design
principles of assortment and respect are neither necessary
nor sufficient for effective genetic search; rather, they
should be looked upon as properties expected to facilitate
successful search. The success of the distribution-swap
operator adds credence to the argument that in situations
where the twin properties of respect and assortment are in
conflict, forma assortment is more desirable, with respect
gaining in relevance as the population converges. The
distribution-swap crossover, analyzed as processing
probability-ratio forma, possesses precisely these
characteristics.

References

Dalkey, N.C., “An Elementary Cross-Impact Model”,
Technol. Forecast. Soc. Change, 3, 1972, 341-352.

Davis, L. ed., Handbook of Genetic Algorithms, 1991,
Van Nostrand Reinhold.

Duperrin, J.C. and M. Godet, “SMIC 74 - A Method for
Constructing and ranking Scenarios”, Futures, 7 (4),
1975.

Eshelman, L.J., R.A. Caruna and J.D. Schaffer, “Biases in
the Crossover Landscape”, Proc. of the Third
International Conference on Genetic Algorithms, J.
D.Schaffer (ed.), 1989, 10-19.

Gordon, T.J. and H. Hayward, “Initial Experiment with
the Cross-Impact Matrix Method of Forecasting”, Futures,
1, No. 2, Dec. 1968.

Hogarth, R.M., “Cognitive processes and the assessment
of subjective probability distributions”, Journal of the
American Statistical Association, 1975.

Helmer, O., "Problems in Futures Research", Futures, 9
(1), 1977, 2-31.

Holland, J. H., Adaptation in Natural and Artificial
Systems, University of Michigan Press, Ann Arbor, 1975.

Michalewicz, Z., Genetic Algorithms + Data Structures =
Evolutionary Programs, 2nd Edition, 1994, Springer-
Verlag.

Martino, J.P., Technological forecasting for decision
making, 2nd Edition, North-Holland, New York, NY,
1983.

Moskowitz, H., and Sarin, R.K., “Improving the
consistency of conditional probability assessments for
forecasting and decision making”, Management Science,
29, 1983, 735-749.

Radcliffe, N.J., “The Algebra of Genetic Algorithms”,
Annals of Maths and Artificial Intelligence, vol. 10, 1994,
pp.339-384.

Radcliffe, N.J., “Genetic Set Recombination”,
Foundations of Genetic Algorithms, 2, L.D. Whitley (ed.),
1992, Morgan Kaufmann.

Radcliffe, N.J. “Forma Analysis and Random Respectful
Recombination”, Proc. Fourth International Conference
on Genetic Algorithms, 1991a, pp.221-229, Morgan
Kaufmann.

Radcliffe, N.J., “Equivalence Class Analysis of Genetic
Algorithms”, Complex Systems, 5, 1991b, pp. 183-205.

Radcliffe, N.J. and P.D. Surry, “Fitness Variance of
Forma and Performance Prediction”, Foundations of
Genetic Algorithms, III, M.D. Vose and L.D. Whitley
(eds.), pp. 51-72, 1994, Morgan Kaufmann.

Spetzler, C.S., and Staël von Holstein C.A.S.,
“Probability Encoding in Decision Analysis”,
Management Science, 1975, 22, 340-58.

Surry, P.D. and N.J. Radcliffe, “Fomal Algorithms +
Formal Representations = Search Strategies”, Parallel
Problem Solving from Nature, IV, 1996, Springer Verlag.

Syswerda, G., “Uniform Crossover in Genetic
Algorithms”, Proc. of the Third International Conference
on Genetic Algorithms, 1989, Morgan Kaufmann.

Troutt, M.D., and Paine, T.B., “A monotone variational
method for optimal probability distributions”, OR
Spektrum, 12:201-206, 1990.

Tversky, A. and Kahneman, D., “Extensional versus
intuitive reasoning: The conjunction fallacy in
probability judgment”, Psychological Review, 90, 1983,
293-315.

Table 1: Data for four hypothetical interrelated events
1. If event A occurs then the probability of event B is increased by 25% of its allowable increase.

2. If event A occurs then the probability of event C is decreased 10% (or as near to 10% as possible).

3. If event D does not occur, then the probability of event C is increased by 30% of its allowable increase.

4. If event D occurs, then the probability of event A is decreased 50%.

5. If event C occurs, then the probability of event D is increased 20% of its allowable increase.

6. If event B occurs, then the probability of event D is decreased 30% of its allowable decrease.

Initial Probability Estimates: P(A) = .50, P(B) = .40, P(C) = Not Specified, P(D) = .10

Table 2: Scenarios and their relative frequency variables

Scenario
Number

Relative
Frequency

Scenario* Scenario
Number

Relative
Frequency

Scenario* Scenario
Number

Relative
Frequency

Scenario*

1 x1 A B C D 7 x7 A B C D 13 x13 A B C D

2 x2 A B C D 8 x8 A B C D 14 x14 A B C D

3 x3 A B C D 9 x9 A B C D 15 x15 A B C D

4 x4 A B C D 10 x10 A B C D 16 x16 A B C D

5 x5 A B C D 11 x11 A B C D

6 x6 A B C D 12 x12 A B C D

* For example, A B C D may be described as the scenario in which events A and C both occur, while B and D fail to
occur.

Table 3: GAMS solution

SSE P(A) P(B) P(C) P(D) xi, i=1,… 16

(by row order)

0.0347 0.498 0.402 0.873 0.118 0 .0 0.172 0.0 0.103 0.111 0.105 0.007 0.0

0.79 0.037 0.0 0.011 0.0 0.374 0.0 0.0

Table 4: Genetic Algorithm solutions (Distribution-Swap Crossover)

SSE P(A) P(B) P(C) P(D) xi, i=1,… 16

(by row order)

0.0203 0.497 0.410 0.753 0.120 0 .02 0.0 0 .19 0.087 0.039 0.086 0.0 0.095

0.0221

0.0198

0.495

0.5

0.410

0.399

0.671

0.774

0.123

0.129

0.014 0.07 0.0 0.05 0.066 0.288 0.0 0.145

0.022 0.0001 0.054 0.223 0.048 0.167 0.0 0.002

0.026 0.097 0.0002 0.009 0.019 0.26 0.0295 0.065

0.019 0.008 0.111 0.0 0.156 0.027 0.189 0.0
0.009 0.003 0.121 0.0 0.09 0.223 0.0 0.062

