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Abstract

The multi-parental Unimodal Normal Distributi-
on Crossover (UNDX-m) that was proposed by
Ono et al. and extended by Kita et al for real-
coded Genetic Algorithms (GA). shows an ex-
cellent performance in optimization problems of
highly epistatic fitness functions in continuous
search spaces. The UNDX-m is a crossover op-
erator that preserves the statistics such as the
mean vector and the covariance matrix of the
population well. While the crossover operator
preserves the statistics of the population, an al-
ternation model used with the crossover is need-
ed to evolve the population through the alterna-
tions of the individuals in the population to pro-
gress a search. We proposed a distance depen-
dent alternation (DDA) model, which is based on
alternations of the elite child with the nearest
parent in the family, to progress a search main-
taining a diversity of a population. In this paper
we show a real-coded GA using the UNDX-m
combined with DDA model robustly solves 30-
dimensional Fletcher-Powell  function which is
highly multi-modal and has similarity to real-
world problems, and has never been solved by
every other Evolutionary Algorithms.

1 INTRODUCTION

In solving optimization problems in continuous search
spaces by Evolutionary Computation, it is important how
to adapt to the fitness landscape of the problem to be
solved during search stage for improving performance
[Schwefel 95a] [Bäck 96]. Evolution strategies, which
utilize adaptive mutation ranges, use recombination
operators for global adaptation. Extensions of evolution
strategies to multi-parent recombination are also proposed,

however these extensions don’t show clear improvement
in performance [Schwefel  95b] [Eiben 97].

In applying genetic algorithms to optimization problems,
we have to appropriately design coding/crossover and
generation alternation scheme. It is important to preserve
characteristics of good solutions with appropriate cod-
ing/crossovers, and to maintain diversity of populations
through generation alternation [Goldberg 89]. Real-coded
GAs, which use real number vector representation, show
higher performance than those based on binary or Gray
code representations when GAs are applied to problems in
continuous search spaces [Herrera 98] [Salomon 96].
There are many recombination operators proposed for
continuous genes, for example Fuzzy recombination
[Voigt 95]. The Unimodal Normal Distribution Crossover
(UNDX), proposed by Ono et al., shows good perfor-
mance as crossover operator for the real-coded GAs, by
putting proper inheritance into practice on generating
offspring [Ono 97] [Kita98]. Kita et al. has extended the
UNDX to multi-parental one (UNDX-m) to improve
search performance on optimization problems with poorly
scaled coordinate systems [Kita 99].

As for the generation alternation models, Satoh et al.
proposed a generation alternation model called the mini-
mal generation gap (MGG) model which is more effective
than conventional ones in avoiding premature conver-
gence and evolutionary stagnation [Satoh 96] [Satoh 97].

One dimensional UNDX with the MGG alternation model
has shown good performance on several benchmark
problems. The UNDX treats mainly two parents at one set
of crossover operations, and MGG model alternates two
individuals. The elite individual in the family survives for
pushing search further, and the one more individual
selected by roulette wheel technique survives for main-
taining diversity of the population. From a viewpoint, the
MGG model is matched with the UNDX-1, because both
of them treat two individuals.



If we grasp more than three parents at multi-parental
extension of the UNDX as only samples for forming
distribution of the offspring, we should be able to treat the
two parents randomly sampled from the group of parents
as candidates of alternation in the MGG model. However,
the aforesaid extension of the UNDX to improve search
performance sometimes causes the early convergence
with the MGG model. The extension on the UNDX
changes the distribution of offspring that are created
through the crossover operation. That change ought to be
an essential adaptation to the fitness landscape where the
population resides. While the distribution of the offspring
by the extended UNDX is more suitable to yield superior
offspring, it has less diversity and tends to converge at the
center of parents group. Hence the MGG is not enough to
maintain the diversity of population, and another view-
point is required to sufficiently maintain the diversity with
the extended UNDX.

We proposed a distance dependent alternation (DDA)
model that utilizes distance information between indi-
viduals in the population as extension of the MGG model
[Takahashi 99a]. The MGG model only uses fitness value
for alternation, but the DDA model also uses distance
information among the parents and the offspring that is
relevant to generation alternation. The basic concept of
the DDA model is that the elite among the offspring, will
alter the nearest parent individual in multi- parental
genetic algorithm.

We have applied this scheme combined UNDX-m, to a
protein folding problem that has very complicated land-
scape [Takahashi 99b].

In this paper, we apply the real-coded GA using UNDX-m
with DDA model to complicated benchmark functions,
which are high dimensional Rosenbrock function and
Fletcher and Powell function, to confirm the superior
performance.

In the next and third section, we review the UNDX as
crossover operation, the MGG model as a generation
alternation model, and the DDA model as advanced
alternation scheme. We show the effectiveness of the
DDA model with numerical experiments in the fourth
section, and discuss the proposed methods in the fifth
section.

2 A REAL-CODED CROSSOVER

Ono et al. proposed the unimodal normal distribution
crossover (UNDX), which shows an excellent perfor-
mance in optimization problems of highly epistatic fitness
functions in continuous search spaces [Ono 97]. Further,
Kita et al. extended it multi-parental one  (UNDX-m)
[Kita 99]. Here we use the UNDX-m as a real-coded
crossover operation to solve function optimization prob-
lems.

2.1 UNDX

The UNDX proposed by Ono et al. generates children
obeying a normal distribution around the parents as

shown in Fig.1. The normal distribution is centered at the
midpoint of parents 1 and 2, and having a standard devia-
tion proportional to the distance between one of the
parents and the midpoint in the direction of the line
connecting the parents.

Further, the standard deviations in the perpendicular
directions are taken proportional to the distance of the
third parent and the lines connecting the parent 1 and 2..

y

x

Figure 1 Unimodal Normal Distribution Crossover (UNDX)

2.2 UNDX-m

We use the multi-parental version of the UNDX called
UNDX-m which was extended by Kita et al. This exten-
sion is aimed to improve search performance on optimi-
zation problems that have poorly scaled coordinate
system or have highly compliated fitness landscape. In the
UNDX-m, m+2 parents are selected from the population
and the first m+1 parents are used to span the m-
dimensional supspace where the children are mainly
distributed obeying a normal distribution. The last parent
is used to give perturbation to the children in remaining
subspace. UNDX-1 is equivalent to the original UNDX.
Please refer to Appendix A added the end of this paper for
a detailed definition .

The UNDX-m is a crossover operator that preserves the
statistics such as the mean vector and the covariance
matrix of the population well. Therefore, an alternation
model should fill the role to progress a search through the
alternations of the individuals in the population

3 ALTERNATION MODELS

Minimal Generation Gap (MGG) Model [Satoh 96]
proposed by Satoh et al. as previous alternation model
only uses objective values for alternation. We propose
utilizing distance information to enhance performance of
the alternation model particularly within real-coded GAs.

3.1 PREVIOUS MODEL : MGG

The Minimal Generation Gap (MGG) Model proposed by
Satoh et al. is an effective one of generation alternation
models [Satoh 96][Satoh 97].
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Fig. 2 Minimal Generation Gap (MGG) model

In the MGG model, a generation alternation is done
through applying a crossover operation n times to a pair
of parents randomly chosen from the population. From
the parents and their children, we select the best individu-
al and a random one using the roulette wheel technique.
With them the original parents are replaced. In this model,
original parents are two individuals, and replacing indi-
viduals are also two. Then we leave the elite individual
for progress in solving a problem, and leave a random
individual for maintaining diversity of population. It
should also be noted that this model only uses fitness
values of each individual. It makes the computational load
of the operation light.

3.2 PROPOSED MODEL : DDA

In this section, we propose a Distance Dependent Alter-
nation (DDA) model as an extension of the MGG model.
It is designed so as to make the model robust and applica-
ble to the case of more than two parents, utilizing distance
information among individuals for selecting a single
parent which will be altered to maintain diversity of
population.

Fig.3 Distance Dependent Alternation (DDA) Model

First, like the MGG, m+2 parents are randomly selected
from the population. Second, with the UNDX-m, the
selected parents generate several children. Then, as shown
in Fig.3, the DDA selects the elite from the children and
finds the parent nearest to it. If the elite child is superior
to the parent, the parent is replaced with the child. Other-
wise, the procedure finds another parent randomly. If the
parent is inferior to the elite child, it is replaced with that.

In the above, the first alternation is aimed to maintain the
diversity of the population, and the second alternation is
aimed to converge the population. Further, aiming to
accelerate the convergence of the population for the
exploitation, choose second parent farthest from the elite
child. Here we call the former alternation DDA-rf because
of random far alternation, and the latter alternation DDA-
df because of deterministic far alternation.

4 EXPERIMENTS AND RESULTS

In order to confirm the effectiveness of the proposed real-
coded GA combined with the DDA models, we compare
with the original MGG model using a few benchmark
problems. In the following experiments, we used the
UNDX-m as a crossover operation in the genetic algo-
rithm scheme. We didn’t use any mutation operators here.

The population size was 100 in first test problem we used.
The population size was 1500, 3000, 6000 and 12000 in
second test problem. The number of applying crossovers,
n, was 100 in both test problems we used. We performed
ten trials on each parameter set in both function problems
that were the 30-dimensional Rosenbrock function, and
the 30-dimensional Fletcher and Powell function.

4.1 ROSENBROCK FUNCTION

The Rosenbrock function is given by

This unimodal function has a parabolic valley along the
curve x1=xi

2 (i=2,...,n) with the minimum at the point
(1,...,1).

To analyze behavior of evolution using UNDX-m with
MGG or DDA alternation model, we define VD-Ratio as
follows:

v is best value in a population, vo is the optimum value of
the function. xj is vector of each individual, and xw is
vector of the weight center of the population. And N is
population size. We expect this ratio indicate a perfor-
mance maintaining the diversity of the population while
searching phase.

Fig.4.1(a) shows evolution of the best function value,
Fig.4.1(b) shows variance of spatial distribution of the
searching population, and Fig.4.1(c) shows VD-Ratio
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Fig.4.1    UNDX-1  /  MGG  /

Fig.4.2    UNDX-1  /  DDA-rf  /

Fig.4.3    UNDX-10  /  MGG /

Fig.4.4    UNDX-10  /  DDA-rf  /

Figure.4  30-dimensional Rosenbrock Function
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using UNDX-1 with MGG model. Fig.4.2 , Fig.4.3 and
Fig.4.4 show behavior using UNDX-1 with DDA-rf,
UNDX-10 with MGG, and UNDX-10 with DDA-rf
respectively.

4.2 FLETCHER AND POWELL FUNCTION

The Fletcher and Powell function is given by

aij and bij are integer random numbers in the range [-100,
100], and ai are random numbers in the range [-p,p]. The
minimum of this problem is a solution of the equivalent
system of n nonlinear (transcendental) equations:

Obviously the minimum is:

We used the same set of constant numbers a, b and a as
that are presented at page 265-267 in [Bäck 96].

The Fletcher and Powell function is periodic one, while
the UNDX-m is basically one of search around the weight
center of population. Therefore it is important where the
weight center is. We should define where it is on opti-
mizing periodic functions using the UNDX-m. Here we
pick up m+2 parents from the population. We define a
bound for each dimension by minimizing variances of
elements of each parent’s vector.

At the first, focusing a dimension, we sort m+2 parents by
the value in the dimension. Then calculate variances for
each bound between parents, and select the bound having
minimum variance on the dimension. Do it for all dimen-
sions.

Fig.5.1(a)  shows evolution of the best function using
UNDX-15 + MGG with population size 1500, Fig.5.1(b),
(c) and (d) shows evolution with 3000, 6000 and 12000
respectively.

Fig.5.2(a)  shows evolution of the best function using
UNDX-15 + DDA-rf with population size 1500, Fig.5.2
(b), (c) and (d) shows evolution with 3000, 6000 and
12000 respectively. We tested same conditions using
UNDX-1 or DDA-df, but leave out the results here
because the evolution behavior show same tendencies. It
should be noted that the search using UNDX-1 evolves a
few times slower than that using UNDX-15. The result
seems to indicate superior performance to adapt the
search population to the landscape.
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Figure 5. Evolution of the Best Function Value vs Population Size
on 30-dimensional Fletcher and Powell Function

Fig.5.2    UNDX-15  /  DDA-rf  /

Fig.5.1    UNDX-15  /  MGG  /
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5 DISCUSSION

For both function problems, the DDA is constantly the
more robust one in obtaining the optimum, and acceler-
ates searching by maintaining the diversity of the popula-
tion in some cases.

High dimensional Rosenbrock function has the deep
valley, where the populations gather, and therefore
diversity of the populations in tracing phase is important
to keep speed of moving population. Lack of the diversity
causes less robustness and stopping of searching. The
MGG shows less robustness with UNDX-10 because of
its random alternation. Fig.4.3(a) shows faster evolution
than the Fig.4.1(a) without robustness. But Fig.4.4(a)
using DDA shows faster than the Fig.4.1.(a) with same
robustness as that shows. The UNDX-10 can accelerate
search by adapting searching area to the fitness landscape,
but needs to maintain the population diversity adequately.

Fig.4.2(b) shows larger variance of population than the
Fig.4.1(b). That means DDA model has higher ability of
maintaining diversity of searching population. Expanded
population can move faster, as the result Fig.4.2(a) shows
faster evolution than the Fig.4.1(a). To extract this ten-
dencies, Fig.4.1(c), Fig.4.2(c), Fig.4.3(c) and Fig.4.4 (c)
show VD-Ratio. Collecting all Fig.(c), Fig.6 show four
VD-Ratio lines of mean lines of ten trials, but eight
success trial at UNDX-10 with MGG .

Fig.6(b) shows early stage of search as same Fig.6(a).
Fig.6 shows performance related with maintaining diver-
sity of the population, and higher VD-Ratio seems to
mean good searching ability. And less VD-Ratio in early
searching stage tends to lose robustness for searching.

Increasing of VD-Ratio means that progress of superior
fitness is faster than convergence of searching population.

At the first 2000 selections, searching population can find
easily superior fitness point around the origin. At the next
10000 selections, the searching population converges to
adapt to the shape of the valley. The population with
DDA can maintain the diversity more than that with
MGG. After the first 10000 selections, the searching
population with UNDX-10 increases VD-Ratio more than
that with UNDX-1. It means that multi-parental UNDX
has higher searching ability of finding out next superior
point by adapting to the landscape of the problem.

While, Fletcher and Powell function is heavily multi-
modal function having 2DIM local minima, and has com-
plicated landscape, therefore is more difficult than the
Rosenbrock function.

A larger population size is needed to solve it robustly. Of
course, convergence speed of search will be slower as the
population size is larger.

Fig.6 shows the convergence speed will be slower in
proportion to the population size. Table 1 is collected that
number of success trial times within fifty trials. We have
already found out twelve optima of this 30-dimensional
Fletcher and Powell function (see Appendix B). UNDX-
15 with MGG often finds out an optimum S1, and is easily
trapped into a local minimum L1 which function value is
approximately 137. And UNDX-15 with DDA easily
finds out an optimum S3, and is occasionally trapped into
another local minimum L2 which function value is ap-
proximately 484.

Table 1 shows that robustness is not improve by increas-
ing population size using with MGG alternation model,
but with DDA alternation model. The search with MGG
using larger population size tends to be trapped into the L1,
while the search with DDA using larger population size
robustly finds out the S3.
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Table 1: Number of success trials within fifty trials
on 30-dimensional Fletcher and Powell function

Alt.
Model MGG DDA

Pop.
Size

1500 3000 6000 12000 1500 3000 6000 12000

S1 6 8 6 10 1 0 0 0

S3 5 7 7 1 29 40 43 48

Any
Optima 14 18 15 11 30 40 43 48

L1 29 30 35 39 0 0 0 0

L2 0 0 0 0 9 5 5 1

Any
Local 36 32 35 39 20 10 7 2

It seems to be important what kind of shape of landscape
in this function, and how to adapt to this landscape. These
two types of alternation scheme cause different type of
adaptation, even with same crossover operation.

To comprehend this phenomenon, it is needed to analyze
these behavior by theoretical analysis like [Mühlenbein
93] [Mühlenbein 94]. It is an assignment to be solved in
the near future.

6 CONCLUSION

We proposed a distance dependent alternation (DDA)
model as a generation alternation model on real-coded
genetic algorithms to improve its performance by main-
taining diversity of populations. Using the DDA with the
multi-parental unimodal normal distribution crossover
(UNDX-m) shows effectiveness of the proposed method,
and robustly obtained the optimal solutions of 30-
dimensional Fletcher and Powell function.
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Appendix A

Algorithm of UNDX-m
1. Select m+1 parents x1,...,xm+1 randomly from the

population.
2. Let the center of mass of the these parents be

p=(1/(m+1))åix
i and let the difference vector of xi

and p be di = xi – p.
3. Select another parent xm+2  randomly from the

population.
4. Let D be the length of component of dm+2 = xm+2 – p

orthogonal to d1,...,dm.
5. Let e1,...,en-m be an orthonormal bases of the sub-

space orthogonal to the subspace spanned by
d1,...,dm

6. Generate offspring xc by the following equation:

(1)

where wk and    vk are random variables that follow
normal distributions and
respectively, and sx and sh are parameters.

The following values are recommended:

(2)

Appendix B
S0 = (
   0.4359340 ,  0.5505950 , 1.2834100 , -0.0734284 , -2.6051900 ,
   2.1041000 ,  1.8675400 , -3.0127500 ,  0.8628350 ,  0.0666833 ,
   2.3361100 , -0.6581490 , -3.1124300 ,  -3.0755600 , 0.8418540 ,
  -0.6925490 ,  3.0628400 , -0.9173990 ,  0.2111350 , -1.4526100 ,
   2.4824400 ,  2.0083400 ,  0.9061900 , -0.1087510 ,  0.6348730 ,
   1.4588100 ,  1.2409200 ,  2.3031100 , -2.3116000 , -2.1476100
).
S1 = (
   0.5887962 ,  0.3939944 , -1.4647246 , -0.1486393 , -2.7690399 ,
   2.1595126 ,  1.6226731 ,  3.1010519 ,  0.7203299 ,  0.2517679 ,
   2.1874032 , -0.7638653 ,  3.1338894 , -2.8989833 ,  0.9650634 ,
  -0.6928817 ,  3.0996685 , -0.8031746 ,  0.1247986 , -1.2970015 ,
   2.3899521 ,  2.0167984 ,  0.9000619 , -0.0510353 ,  0.6856467 ,
   1.2384135 ,  1.1093453 ,  2.5651887 , -2.1219102 , -2.3890335
).
S2 = (
   0.9508094 , -1.0019224 , -0.6054171 ,  3.1031666 , -2.9036729 ,
   2.6810708 ,  0.4671725 , -3.1225633 ,  2.2760880 , -1.4185380 ,
   2.9648185 , -0.9781928 , -1.2151489 , -1.3739757 , -2.7617006 ,
  -1.3123674 ,  3.1096453 , -0.9427986 ,  0.5328489 , -0.0881907 ,
   0.7050543 ,  3.1209988 ,  0.3215678 , -0.3326112 ,  1.3996025 ,
   1.6911580 ,  0.4793400 ,  1.7431345 , -2.9413090 , -2.2910249
).
S3 = (
   1.3229105 , -0.1220803 , -0.5824470 ,  2.3357811 , -2.7470651 ,
  -3.0479469 ,  1.4447478 , -2.7852180 ,  1.7713400 , -0.2360309 ,
   2.5305723 , -0.9531785 , -2.3932366 , -1.2796731 , -1.7230129 ,
  -1.4204484 , -3.0876287 , -0.8774122 ,  0.0097913 , -2.2233063 ,
   2.8667060 ,  2.6539410 ,  0.4497844 ,  0.0644262 ,  0.3351055 ,
   2.2105073 ,  1.6245019 ,  2.6125752 ,  2.9808433 , -1.8957689
).
S4 = (
   1.3800112 ,  0.3897986 , -0.5845000 ,  2.9600050 , -3.0846836 ,
   2.7924390 ,  0.2106994 , -3.0983034 ,  2.1445059 , -0.2953477 ,

   2.9597149 , -0.9003345 , -1.3265849 , -1.5493844 , -2.9450899 ,
  -1.3383398 ,  2.9987879 , -0.7069842 ,  0.9368414 , -0.4624298 ,
   0.7007844 , -2.8811925 ,  0.0624738 , -0.0498179 ,  1.6664774 ,
   0.8830288 ,  0.2943369 ,  1.9554092 , -2.5410975 , -2.9257773
).
S5 = (
   1.3831561 ,  0.1900180 , -0.2963182 , -2.7938217 ,  2.9171288 ,
   2.5357890 ,  0.3936099 , -2.7206903 ,  1.2499892 , -0.7675018 ,
   3.0450492 , -0.5394358 , -1.8001648 , -1.5119587 , -2.4880293 ,
  -0.7625356 ,  2.9803860 , -0.5062950 ,  0.0294834 , -1.4175860 ,
   2.0274788 ,  2.0745932 , -0.1984758 ,  0.2330446 , -0.3957370 ,
   1.1380580 ,  1.2761314 ,  1.7514713 ,  2.8569164 , -2.2768589 ,
).
S6 = (
   1.4278240 ,  0.0697957 ,  0.0481930 , -2.8241326 , -2.9691482 ,
   2.1309627 ,  0.4187940 , -3.0200482 ,  1.8196768 , -0.6495134 ,
  -2.8703809 , -0.6659400 , -1.2643161 , -1.3181813 , -2.9301052 ,
  -0.7248207 , -2.9650538 , -0.2057313 ,  0.5121340 , -0.1737286 ,
   0.9046374 ,  3.0892062 , -0.0314932 , -0.3794554 ,  0.0296870 ,
   1.5818876 ,  0.8908292 ,  1.4173493 , -2.8470593 , -2.3957300
).
S7 = (
   1.5011133 , -0.1529267 ,  0.5415116 , -2.5195812 ,  2.2703002 ,
   2.4241509 ,  0.5582488 , -3.0467478 ,  0.8355191 , -0.4668392 ,
   2.8231316 , -0.8507113 , -1.6788331 , -0.8841403 ,  2.0459210 ,
  -0.2852481 ,  3.0720069 , -1.2423283 , -0.2819745 , -0.2766858 ,
   2.0557351 ,  1.6810092 ,  0.4168828 , -0.1358508 ,  0.2879444 ,
   1.7147954 ,  0.9994823 ,  1.7826002 , -3.0725436 , -1.7046922 ,
).
S8 = (
   1.5691450 , -1.2673987 , -0.0163166 ,  2.7328659 , -2.8934387 ,
   2.8834479 ,  0.6940810 , -3.0454237 ,  2.0728056 , -1.0282905 ,
   3.0031600 , -1.2289199 , -1.3706436 , -1.0738561 , -3.0144802 ,
  -0.6806876 , -3.0745219 , -1.4305973 ,  0.5347918 ,  0.2794004 ,
   0.4498730 , -2.6214904 ,  0.1903925 , -0.9387272 ,  1.4220082 ,
   2.1117874 ,  0.6668268 ,  2.1466118 , -2.7166905 , -2.2556335
).
S9 = (
   1.6550296 ,  0.2562875 ,  0.6218612 , -3.0829109 ,  2.1083686 ,
   2.6342060 ,  0.9445864 , -3.0687553 ,  0.6669303 , -0.1154873 ,
   2.6911697 , -0.7847445 , -2.0528764 , -0.6794014 ,  1.9494709 ,
  -0.2835823 ,  3.1291191 , -1.5371437 , -0.1697194 , -0.2823548 ,
   2.4044153 ,  1.8996380 ,  0.5311002 , -0.2490868 ,  0.9624447 ,
   1.7997230 ,  1.1265972 ,  2.0161059 , -2.5345366 , -1.5730101
).
S10 = (
   1.7172808 , -0.6121376 ,  0.3339531 , -2.9318654 , -2.9028194 ,
   2.1871001 ,  0.6290469 , -3.0417125 ,  2.0486119 , -0.5417564 ,
  -3.0826771 , -1.2681397 , -1.0372846 , -1.0859631 ,  2.8045051 ,
  -0.4174407 , -2.6914972 , -0.8059719 ,  0.1780457 ,  0.2803567 ,
   0.7030197 , -2.6298777 ,  0.0843651 , -0.7081998 ,  0.1052507 ,
   2.0133543 ,  0.8076030 ,  1.8915427 , -2.7671989 , -1.9904227
).
S11 = (
   1.8524860 ,  0.7552170 ,  0.0406680 ,  2.7451204 ,  3.0279022 ,
   2.6471339 ,  0.3155313 , -2.7492724 ,  1.2540469 , -0.2069582 ,
  -2.6770898 , -0.3142468 , -2.2159794 , -1.3540833 , -3.0352450 ,
  -0.5287075 ,  2.8918646 , -0.4534223 ,  1.0030371 , -0.2151764 ,
   1.3276964 ,  2.2739658 , -0.3326342 , -0.0340549 ,  1.1709726 ,
   1.2607763 ,  1.1354878 ,  1.8405047 , -2.6937141 , -2.9119825
).

 L1 = (
 0.7204213, 0.1115169, -1.8622760, -0.5643940, 3.1242375,
 1.8564961, 0.4881529, -2.9345531, 0.8483405, 0.0044127,
 2.2498797, -0.7690196, -1.7880371, -2.4260741, 1.6296683,
-0.9809676, 3.0083064, -0.9176372, 0.3199409, -1.2149525,

 1.5239780, 1.9580814,  0.4498120, 0.2206419, 0.4936575,
 0.5503629, 0.0187881, 2.7036354, -2.9470306, -2.6253119
).
L2 = (
 2.0258580,  0.2074013, -1.1351508,  1.5550806, -2.6939775,
 2.9199553,  1.0980645, -3.0049606, 2.1591860, 0.7195571,
 1.9839867, -0.9990309, -3.1184491, -1.9444017, -2.4062554,
-0.6311515,  2.7813206, -0.6257584,  0.1089228, -1.4207572,

 2.6142578, -2.9424260,  0.8015303, 0.2200731, 1.0673690,
 1.3492585,  1.2387309,  2.8709828, -2.1360623, -2.5381020
)

),0( 2
xsN),0( 2

hsN

åå
-

==

++=
mn

k

k
k

m

k

k
k

c Dvw
11

edpx

mnm -
==

35.0
,

1
hx ss


