
Abstract
In Real coded genetic algorithms, some crossover op-
erators do not work well on functions which have their
optimum at the corner of the search space. To cope
with this problem, we have proposed boundary exten-
sion methods which allows individuals to be located
within a limited space beyond the boundary of the
search space. In this paper, we give an analysis of the
boundary extension methods from a view point of the
sampling bias and perform a comparative study on the
effect of applying boundary extension methods, namely
the BEM (boundary extension by mirroring, the BES
(boundary extension with extended selection). We were
able to confirm that to use sampling methods which
have smaller sampling bias had good performance on
both functions which have their optimum at or near the
boundaries of the search space, and functions which
have their optimum at the center of the search space.
The BES/SD/A (BES by shortest distance selection with
aging) had good performance  on functions which have
their optimum at or near the boundaries of the search
space. We also confirmed that applying the BES/SD/A
did not cause any performance degradation on func-
tions which have their optimum at the center of the
search space. This feature of the BES/SD/A is very
useful because when we solve some function optimiza-
tion problems, we do not know the position of their
optimal point.

1. INTRODUCTION

In recent years, many researchers have concentrated on
using real-valued genes in genetic algorithms (GAs). It is
reported that, for some problems, real-valued encoding and
associated techniques outperform conventional bit string
approaches [Davis, 91], [Eshelman 93], [Wright 91], [Janikow
91], [Surry 96], [Ono 97, 99].

In previous studies [Tsutsui 98, 99], we have proposed
several types of multi-parent recombination operators for
real-coded GAs. We found these operators did not work
well on functions which have their optimum at or near the
boundaries of the search space. To cope with this problem,
we proposed a method which allows individuals to be located
within a limited space beyond the boundary of the search

space [Tsutsui 98]. The functional value of individuals
located beyond the boundary of the search space was set to
be the same as those of the point they map to by mirror
reflection across the boundary. We called this method
boundary extension by mirroring (BEM). With this method,
the performance of multi-parent recombination operators
improved in the test functions which have their optimum at
or near the boundary of the search space. Further, by
applying BEM, we observed clear improvement in the
performance of two-parent recombinations in functions
which have their optimum near the boundary of the search
space.

In [Tsutsui 2000], we proposed another boundary
extension method boundary extension with extended
selection (BES) and presented a preliminary study on it. In
the BES, virtual individuals are also produced inside the
extended space. They are included in the population up to a
defined maximum number by distance measure to the elite
individual. No functional values of virtual individuals are
used in this method. In this paper, we give an analysis of
these boundary extension methods from a view point of
sampling bias and do a comparative study on the effect of
applying these methods to test functions which have their
optimum at or near the boundary of the search space using
a traditional two-parent recombination operator for real-coded
GAs.

In the remainder of this paper, first we do an analysis of
the sampling bias of crossover operators for real coded GAs
in Section 2. In Section 3, we describe previously proposed
boundary extension methods and propose an extension of
the BES and analyze these methods. Then, in Section 4,
empirical results and their analysis are given. Finally,
concluding remarks are made in Section 5.

2. SAMPLING BIAS

For functions which have their optimum at or near the
boundary of the search space, the possibility that a
recombination operator generates offspring around the
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optimum point decreases because a portion of the feasible
offspring space located beyond the boundary of the search
space is cut away.

To see this bias, we provide an analysis using BLX-α
operator [Eshelman 91]. Other recombination operators for
real coded GAs such as UNDX [Ono 97], multi-parent
recombination operators [Tsutsui  98], SPX [Tsutsui 99] also
have this kind of bias. An analysis of sampling bias was
done from a different angle in [Eshelman 97], [Kita 99].

Here, for simplicity, without loss of generality, we

consider one dimensional search space X:

};{ maxmin xxxxX ≤≤= ,                       (1)

and one-dimensional BLX-α operator as shown in Fig. 1.
BLX-α uniformly picks new individuals with values that lie
in [I-αI, I+αI] , where x

1
 and x

2
 are two parents. We must

note that e
1
 or e

2
 in Fig. 1 must be between x

min
 and x

max
.

Here, we consider two types of sampling methods, type 1
sampling and type 2 sampling.
(1) Type 1 sampling
Type 1 sampling is very simple. An offspring y is sampled as

follows:
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Here, we assume parents are distributed uniformly in the
range of [x

min
, x

max
] and two parents x

1
 and x

2
 are randomly

picked up independently as
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Fig. 2 ( p
1
(y)) shows the probability density function

(p.d.f) of offspring  y with α value of 0.5. From this figure, we
can see that the sampling is biased toward the center of the
search space as the number offspring produced around
boundary of the search space are fewer than the number of
offspring produced around center of the search space.
(2) Type 2 sampling
Type 2 sampling is intended to reduce the sampling bias
observed in the sampling 1. Let c be the center of two parents
x

1
 and x

2
 as

c = (x
1
+x

2
)/2.                                     (5)

Then, an offspring is sampled as follows:
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where e'
1
, e'

2
, and u

1
 are obtained from Eq. (3) and (4), and u

2

is an independent uniform random number from [0.0, 1.1].
Fig. 2 ( p

2
(y)) shows the p.d.f of offspring  y. The sampling

bias of type 2 sampling is reduced compared with the
sampling bias of type 1. But an amount of bias still remains.
Thus the number of offspring produced around the boundary
of the search space are fewer than the number of offspring
produced around center of the search space.

I

minx maxx

BLX-a uniformly picks new individuals with 
values that lie in [I-α I, I+α I], where x1 and x2
are two parents.

Fig. 1  BLX-α
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Fig. 2 Sampling bias in BLX-0.5.  p
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(y) and p
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of offspring in type 1 and 2 samplings, respectively.



3 BOUNDARY EXTENSION
   METHODS

Boundary extension methods discussed in this section are
introduced to cope with this sampling bias of recombination
in real coded GAs.

3.1 Boundary extension by mirroring (BEM)
In the boundary extension by mirroring (BEM) method
proposed in [Tsutsui 98], we allow individuals to be located
within a limited space beyond the boundary of the search
space, as shown in Fig. 3. The functional values of
individuals located beyond the boundary of the search space
(virtual individuals) are calculated as if they are located inside
of the search space by setting the boundary as the mid-
point of a mirror-image reflection and calculating the reflected
point within the boundary. The functional value of offspring
with real value y is obtained as within the boundary. We
introduced an extension rate r

e
 (0<r

e
<1) to control how much

of the search space should be extended beyond the
boundary. The search space is centered in a space extended
by a factor of 1+r

e
 along each dimension. The functional

value of offspring with real value y is obtained as
       f(y) = f(y' ),                                   (7)

where








>−×
<−×

=
otherwise,:               

 if : 2

 if : 2

' maxmax

minmin

y

xyyx

xyyx

y                       (8)

and  x
min

 and x
max

 are the lower and upper limits of the search
space.

Fig. 4 shows an example of sampling bias in the BEM
using type 1 sampling. The r

e
 value of 0.5 is used and parents

are assumed to be distributed uniformly in the range of [x
min

,
x

max
].  p(y) shows the p.d.f of sampled offspring in the range

[x
e-min

, x
e-max

]. p'(y) shows the p.d.f of sampling points which
functional value values are evaluated  in the range of  [x

min
,

x
max

], i.e., the p.d.f of offspring generated in the range of
[x

min
, x

max
] +  through mirror-image reflection of the virtual

offspring. Although this is a rough estimate, we can see a
certain degree of reduction of the sampling bias.

3.2 Boundary extension with extended selection
(BES)

In the BEM in Section 3.1, a functional value of each virtual
individual is calculate according to Eqs. (7) and (8) and each
functional value is used in the selection operator. If we use
an extended selection that allow us to select a number of
virtual individuals as members of the new population without
calculating their functional values, we may expect to get a
similar effect to the BEM. We call this method boundary
extension with extended selection (BES).

In the BES, virtual individuals are also produced inside
the extended space defined r

e
 in the BEM. We call virtual

individuals that are included in the population by an
extended selection helper individuals. We introduce a
control parameter rh (0<rh<1), helper individual rate, that
defines the  maximum number of virtual individuals which
are included in the population (see Fig. 5). Let N, V, and N

h

be population size, the total number of virtual individuals
generated, and the number of helper individuals, respectively.

Then, N
h
 is determined as
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Fig. 3 Boundary extension by mirroring (BEM)

w

f(x)

xmin xmax

xe-min
xe-max

w

searchspace
l

lre/2 lre/2

l(1+re)

 x
min

 x
max

 x
e-min

 x
e-max

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

-0.25 0.00 0.25 0.50 0.75 1.00 1.25

y

p(y)

p'(y)

Fig. 4 Sampling bias in BEM



If the total number of virtual individuals generated is smaller
than N× r

h
, then we select all the existing virtual individuals

as helpers. But if it is greater than N × r
h
, we select helper

individuals up to N
h
=N× r

h
. For the later case, we must define

the method to select N× r
h
 helper individuals from V virtual

individuals. In the population, feasible and helper individuals
are shuffled for recombination, and thus the helper
individuals would help to produce more offspring around
the boundary of the search space.

Now let's see the sampling bias of BES under a special
situation as follows: The feasible individuals are distributed
uniformly in the range of [x

min
+L/2, x

max
] and helpers

individuals are distributed uniformly in the range of [x
max

,
x

max
+0.25× L], where, L=x

max
-x

min
, with a helper rate of  r

h
=0.5,

and an extension rate of r
e
 = 0.5. This situation implicitly

expects more offsprings to be generated around the x
max

zone. Fig. 6 shows the sampling bias in this situation, and
we can see the sampling bias, in that many feasible offsprings

are sampled around x
max

.
We can consider several methods to select N

h
 helpers

from V virtual individuals. In this study, we propose the
following two methods. Here, note that we can use any type
of traditional selection operators to select N-N

h
 feasible (non-

virtual) individuals.

(1) BES by shortest distance selection (BES/SD)
In BES by shortest distance selection (BES/SD), N × r

h

helpers are select as follows: We first find the elite individual
(i.e. individual which has the highest functional value) from
the feasible individuals. Next, we calculate the Euclidean
distance between each virtual individual and the elite
individual. Then, we select N× r

v
 helper individuals that are

nearest to the elite individual (see Fig. 7).
(2) BES by shortest distance selection with aging
      (BES/SD/A)
In the preliminary study in (Tsutsui 2000), the BES/SD
showed relatively fair performance on the test functions
which have their optimum at or near the boundary of the
search space. But a slight  performance degradation was
observed on the test functions which have their optimum in
the center of the search. This would be because we allow
helper individuals to survive through continuous
generations if the distance condition is satisfied. In fact,
when we solve a problem, we do not know whether the
solution is around the boundary or center of the search
space.

In the BES/SD/A, we introduce the scheme of aging of
individuals similar to that proposed in [Ghosh 97]. When a

Fig. 6 An example of sampling bias in the BES
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virtual individuals is selected as a helper i, its age a
i
 is set to

zero (0). When it is mated with another and it produces
offspring, a

i
 increases by 1. If a

i
 reaches a maximum defined

age k
a
, the helper i is removed from the population. For a

problem which has its optimum around the center of the
search space, the number of helper individuals may decrease.
Thus, the number of offspring produced around the
boundary of the search space becomes small and we can
expect reduced performance degradation on the problems
which have their optimum around center of the search space.

4.  THE EXPERIMENTS

4.1 Experimental methodology
To evaluate  proposed boundary extension methods, we ran
a real coded GA. The experimental conditions were as
follows.
(1) Boundary extension methods
We test the BEM, the BES/SD, and the BES/SD/A. The effect
of these methods was evaluated for extension rate r

e
 =  0.2,

helper individual ratio r
h
 = 0.5. For the BES/SD/A, we

evaluated for maximum age k
a
=1, 2, 3, 4.

(2) Crossover and mutation operators
For crossover, we use BLX-α with type 1 and type 2
samplings in Section 2. Here note type 1 sampling has greater
sampling bias than type 2 sampling. The α value for BLX-α
is 0.5 for all functions.

We use a simple static Gaussian mutation. The i-th pa-
rameter x

i
 of an individual in I(t) is mutated by

),0('
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with a mutation rate of p
m
, where N(0,σ

i
) is an independent

random Gaussian number with a mean of zero and standard
deviation of σ

i
. In this study, σ

i
 is fixed to (max

i
 - min

i
)/2 and

p
m
 is fixed to 0.2/n for all experiments where min

i
 and max

i
 are

the lower and upper limits of the parameter range on the i-th
dimension of the search space.
(3) Basic evolutionary model
The basic evolutionary model we used in these experiments
is similar to that of the CHC [Eshelman 91] and (µ+λ)-ES
[Schewefel  95]. Let the population size be N, and let it, at
time t, be represented by P(t). The population P(t+1) is
produced as follows: A collection of N/2 pairs is randomly
composed, and crossover is then applied to each pair,
generating N offspring which are placed in a temporal pool
I(t).

For the BEM, the individuals are ranked and the best N
from the 2× N in P(t) and I(t) are selected to form P(t+1). For
the BES, the individuals are ranked and the best N - N

h
  from

the 2 × N - V of feasible individuals in P(t) and I(t) are
selected, and N

h
 of helper individuals from V of virtual

individuals in P(t) and I(t) are selected.
 In either case, the best solution obtained so far is always

included in P(t+1).
 (4) Test Functions
We selected test functions which are commonly used in the
literature and have their optimum at or near the boundaries
of the search space, which includes the De Jong F

3
, 10-

parameter Schwefel (F
Schwefel

), modified 20-parameter
Rastrigin (F

M-Rastrigin
), original 20-parameter Rastrigin (F

Rastrigin
)

, 20-parameter sphere function F
Sphere

, and modified 20-
parameter sphere function F

M-Sphere
 (Table 1). F

M-Rastrigin
 and

F
M-Sphere

 are modified so that its optimum is located just at
the corner of the search space. Original F

Rastrigin
 and 20-

parameter sphere function F
Sphere

 were used to see the side
effect of applying the boundary extension methods.

F
3
 is a discontinuous function with a global minimum in

the rage x
i∈[-5.12, -5.0) for i = 1,...,5, i.e., in one corner of the

search space. F
Schwefel

 is a multimodal function and the global
minimum is at (420.968746,...,420.968746), very close to one
corner of the search space. F

M-Rastrigin
 is also a multimodal

function and the global minimum is at (0,...,0), in just one
corner of the search space. F

M-Sphere
 is a unimodal function

and the global minimum is at (0,...,0), in just one corner of the
search space.
(4)  Performance measure
We evaluated the algorithms by measuring their #OPT
(number of runs in which the algorithm succeeded in finding
the global optimum) and MNE (mean number of function
evaluations to find the global optimum in those runs where
it did find the optimum). We used ∆x

j
 value as resolution

(borrowed from bit string based GAs, Table1) to determine
whether the optimal solution was found. We defined the
successful detection of the solution as being within ∆x

j
 range

of the actual optimum point. We represented the optimal
solution of a function by (o

1
,...,o

n
). If all parameters (x

1
,...,x

n
)

of the best individual are within the range [(o
j
-∆x

j
/2), (o

j
+∆x

j
/

2)] for all j, we assumed the real-coded GA to have found the
optimal solution.

Thirty (30) runs were performed. In each run, the initial
population P(0) was randomly initialized in the original search
space. Each run continued until the global optimum was
found or a maximum of 500,000 trials was reached. A
population size of 500 was used for all functions.

4.2  Analysis of results
The results are summarized in Table 2 for type 1 sampling
and Table 3 for type 2 sampling, respectively. Here,
"NORMAL" refers to the GA without boundary extension.

First, we will look at the results with type 1 sampling in
Table 2. Results with both the BEM and the BES show clear



performance improvement on the test functions (F
3
, F

Schwefel
,

F
M-Rastrigin

, F
M-Sphere

) which have their optimum at or near the
boundaries of the search space. The performance with the
BES slightly outperforms the performance with the BES.
However, on the test functions (F

Rastrigin
 and F

Sphere
), which

have their optimum at the center of the search space, the
BES/SD showed poorer performance (on F

Rastrigin
: MNE for

NORMAL = 126,683.8, MNE for the BES/SD = 237,998.4, and
on F

Sphere
: MNE for NORMAL = 47,546.1, MNE for the BES/

SD = 59,028.6). This performance degradation of the BES/
SD arose because, in the BES/SD, we allowed helper
individuals to survive through continuous generations if
the distance condition is satisfied. Thus, helper individuals
tended to produce more offspring around the boundary of
the search space. The BES/SD/A prevents this because
helpers each have an age, and individuals which have an
age greater than k

a
 are deleted from the population. Thus,

the number of useful helper individuals decreased.
Fig.  8 shows the change of N

h
 (the number of helper

individuals) on function F
Rastrigin

 in a single typical run for
the BES/SD and the BES/SD/A. The value of N

h
 of the BES/

SD remained at 250 ( hrN × : upper limit). But the value of N
h

of the BES/SD/A (a
g
 = 2) decreased as the generations

increased. Thus, in the BES/SD/A the number of helper
individuals was adaptively adjusted. This is evidence of the
effectiveness of BES/SD/A. The value of a

g
 = 2 shows fairly

good performance consistently on both functions which
have their optimum at or near the boundaries of the search
space, and those which have their optimum at the center of
the search space.

Next we will look at the results with type 2 sampling in

Table 3. We can see that the NORMAL GAs with type 2
sampling showed much better performance than the
NORMAL GAs with type 1 sampling 1 on functions which
have their optimum at or near the boundaries of the search
space.  On the test functions which have their optimum at
the center of the search space, the performance is almost the
same in both the type 1 and type 2 samplings. Thus, we can
confirm that sampling methods which have a smaller sampling
bias are preferred. The performance of  the BEM is almost
the same with that of NORMAL GAs on all test functions
except F

3
.

Again, the BES/SD/A with a
g
 value of 2 shows fairly

good performance. No meaningful performance degradation

Table 1. Test Functions
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by applying BES/SD/A was observed on the test functions
which have their optimum at the center of the search space.
We can see also that the BES/SD/A with type 2 sampling
showed better performance than the BES/SD/A with type 1
sampling on the functions in general.

5.  CONCLUSIONS

In this paper, we gave an analysis of the boundary extension
methods from a view point of the sampling bias and did a
comparative study on the effect of applying three boundary
extension methods, namely the BEM, the BES/SD, and BES/
SD/A, to test functions which have their optimum at or near

the boundary of the search space and functions which have
their optimum at the center of the search space. We used
two types of BLX-α operators, i.e., type 1 sampling and type
2 sampling, where type 2 sampling has smaller sampling bias
than type 1 sampling.

First, we were able to confirm that to use sampling
methods which have smaller sampling bias had good
performance on both functions which have their optimum at
or near the boundaries of the search space, and functions
which have their optimum at the center of the search space.

Next, the BES/SD/A with maximum age a
g
 value of 2 had

good performance  on functions which have their optimum
at or near the boundaries of the search space. Since each

Table 2  Summary of results (type 1 sampling)

Table 3  Summary of results (type 2 sampling)

function
1 2 3 4

#OPT 20 20 20 20 20 20 20
MNE 13,685.3 9,160.9 8,085.7 13,428.0 8,682.9 7,945.6 8,125.3
STD 823.3 923.8 935.6 934.0 700.1 1,006.0 919.6
#OPT 20 20 20 20 20 20 20
MNE 49,014.9 58,261.9 54,654.7 45,493.5 38,108.3 48,551.2 51,687.5
STD 2,965.0 4,663.7 9,904.9 6,265.1 7,623.3 14,287.1 14,935.3
#OPT 20 20 20 20 20 20 20
MNE 392,606.4 387,795.9 144,717.0 431,693.6 263,958.5 174,000.7 159,759.1
STD 8,944.9 26,214.9 14,507.9 16,332.5 12,716.2 14,679.2 16,552.5
#OPT 20 20 20 20 20 20 20
MNE 64,700.7 45,321.7 45,487.4 56,315.9 39,585.4 41,367.0 42,683.4
STD 906.5 836.5 1,272.1 949.7 602.2 823.9 725.2
#OPT 20 20 20 20 20 20 20
MNE 123,208.2 123,276.4 241,807.5 126,365.2 128,446.4 196,824.7 191,266.5
STD 13,453.5 21,559.5 69,983.8 17,873.1 19,966.0 48,794.8 57,986.9
#OPT 20 20 20 20 20 20 20
MNE 48,492.0 49,011.5 57,107.2 46,718.6 46,672.4 48,875.3 53,250.3
STD 792.9 1,127.9 2,036.9 838.2 743.5 1,406.7 1,530.5

NORMAL
boundary extension method

BES/SD/A (k a )
BES/SDBEM

3F

SchwefelF

RastriginF

Rastrigin-MF

SphereF

-SphereMF

function
1 2 3 4

#OPT 20 20 20 20 20 20 20
MNE 17,733.6 9,263.6 8,680.3 13,682.9 8,762.3 8,239.6 8,811.5
STD 1,505.9 809.2 1,435.0 1,022.6 573.6 906.1 1,024.5
#OPT 20 20 20 20 20 20 20
MNE 64,633.6 56,137.2 61,040.4 51,768.8 45,676.3 59,936.6 53,197.7
STD 8,284.6 2,995.4 14,400.5 8,228.8 8,259.1 14,382.2 12,768.0
#OPT 2 20 20 20 20 20 20
MNE 492,673.5 396,085.7 160,366.7 447,971.4 292,577.1 206,445.0 170,403.9
STD 5,411.5 17,757.8 16,794.5 22,391.4 22,299.3 20,678.8 17,541.7
#OPT 20 20 20 20 20 20 20
MNE 79,914.8 47,757.7 46,987.4 56,532.2 40,817.5 42,069.6 43,959.4
STD 1,044.0 986.8 1,198.4 1,089.5 556.1 952.7 739.3
#OPT 20 20 20 20 20 20 20
MNE 126,683.8 118,731.9 237,998.4 119,788.8 118,767.9 144,867.6 200,761.4
STD 18,824.4 17,094.5 67,558.3 22,684.2 21,749.3 24,687.4 41,644.5
#OPT 20 20 20 20 20 20 20
MNE 47,546.1 48,639.0 59,028.6 46,530.6 46,328.4 46,751.5 55,509.6
STD 759.0 703.4 1,856.7 953.3 839.4 805.4 1,341.5

NORMAL BEM BES/SD

boundary extension method
BES/SD/A (k a )

SchwefelF

RastriginF

Rastrigin-MF

SphereF

-SphereMF

3F



helper has a maximum age, applying the BES/SD/A did not
cause any performance degradation on functions which have
their optimum at the center of the search space. This feature
of the BES/SD/A is very useful because when we solve
some function optimization problems, we do not know the
position of their optimal point.

Another advantage of the BES/SD/A is that it does not
use the functional value of each virtual (helper) individual.
So, this approach may be applicable to more general function
optimization, such as constrained parameter optimization,
where the functional value in non-feasible regions are difficult
to calculate [Michalewicz 94]. Further work remains to be
done in applying BES/SD/A to such constrained parameter
optimization problems. Although we applied the shortest
distance method to select helper individuals, using other
heuristics also remains for future work.

This research is partially supported by the Ministry of
Education, Science, Sports and Culture of Japan under Grant-
in-Aid for Scientific Research number 10680396.

References

[Davis 91] Davis, L.: The Handbook of genetic algorithms,
Von Nostrand Reinhold, New York (1991).

[Eshelman 91] Eshelman, L. J.: The CHC adaptive search
algorithm: how to have safe search when engaging in
nontraditional genetic recombination, Foundations of
Genetic Algorithms, Morgan Kaufmann, pp.265-283
(1991).

[Eshelman 93] Eshelman, L. J., and Schaffer, J. D. : Real-
coded genetic algorithms and interval-schemata, Foun-
dations of Genetic Algorithms 2, Morgan Kaufman Pub-
lishers, San Mateo, pp. 187-202 (1993).

[Eshelman 97] Eshelman, L. J., Mathias, K. E., and Schaffer,
J. D.: Crossover operator biases: exploiting the popula-
tion distribution, Proceedings of the Seventh Interna-
tional Conference on Genetic Algorithms, pp. 354-361
(1997).

[Ghosh 97] A. Ghosh, S. Tsutsui and H. Tanaka: Genetic
search with aging of individuals, International Journal
of Knowldge-Based Intelligent Engineering Systems,
Vol.1, no. 2 pp. 86-103 (1997).

[Goldberg 91] Goldberg, D. E.: Real-coded genetic algorithms,
virtual alphabets, and blocking, Complex Systems, No.
5, pp. 139-167 (1991).

[Janikow 91] Janikow,  C. Z., and Michalewicz, Z.: An experi-
mental comparison of binary and floating point repre-
sentations in genetic algorithms, Proceedings of the
Fourth International Conference on Genetic Algo-
rithms, pp. 31-36 (1991).

[Kita 99] Kita, H. and Yamamura, M.: A functional specializa-
tion hypothesis for designing genetic algorithms, Proc.
IEEE International Conference on Systems, Man, and
Cybernetics (in CD-ROM) (1999).

[Michalewicz 94] Michalewicz, Z. : Genetic algorithms +
data structures = evolution program, Springer-Verlag
(1994).

[Renders 94] Renders, J-M. and Bersini, H.: Hybridizing ge-
netic algorithms with hill-climbing methods for global
optimization: two possible ways, Proc. of the First IEEE
Conference on Evolutionary Computation, pp. 312-317
(1994).

[Ono 97] Ono, I. and Kobayashi, S.: A Real-coded genetic
algorithm for function optimization using unimodal nor-
mal distribution crossover, Proc. of the Seventh Interna-
tional Conference on Genetic Algorithms, pp. 246-253
(1997).

[Ono 99] Ono, I., Kita, H., and Kobayashi, S.: A robust real-
coded genetic algorithm using unimodal normal
distribution crossover augmented by uniform crossover:
effects of self-adaptation of crossover probabilities, Proc.
of the Genetic and Evolutionary Computation
Conference (GECCO-99),  Morgan Kaufmann, pp.496-
503 (1999).

[Schewefel  95] Schewefel, H.-P.: Evolution and optimum
seeking, Sixth-Generation Computer Technology Series,
Wiley (1995).

[Surry 96] Surry, P. D. and Radcliffe, N. : Real representa-
tions, Foundations of Genetic Algorithms 4, Morgan
Kaufman Publishers, San Francisco, pp. 343-363 (1996).

[Tsutsui 2000] Tsutsui, S.: A Comparative study on search
space boundary extension methods in real coded genetic
algorithms, Proc. of The Third International Workshop
on Frontiers in Evolutionary Algorithms  (FEA 2000)
(to appear).

[Tsutsui 98] Tsutsui, S.: Multi-parent recombination in
genetic algorithms with search space boundary extension
by mirroring, Proc.  of the Fifth International Conference
on Parallel Problem Solving from Nature (PPSN V),
Springer-Verlag, pp. 428-437 (1998).

[Tsutsui 99] Tsutsui, S., Yamamura, M., and Higuchi, T:
Multi-parent recombination with simplex crossover in
real coded genetic algorithms, Proc. of the Genetic and
Evolutionary Computation Conference (GECCO-99),
Morgan Kaufmann, pp.657-664 (1999).

[Wright 91] Wright, A. H. : Genetic algorithms for real param-
eter optimization, Foundations of Genetic Algorithms,
Morgan Kaufman Publishers, San Mateo, pp. 205-218
(1991).


