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Abstract approximation of the local optimum which will be

refined on later generation as it is depicted in Figure 1.

In this paper we present another approach based on the
fact that it is unnecessary to run twice a Local Search on

Hybrid algorithms formed by the combination of the same basin of attraction since the same local
Genetic Algorithms with Local Search methods optimum will be rediscovered (in Figure 1, we see that
provide increased performances when compared the pointsa, b andc lead to the same local optimum). In
to real coded GA or Local Search alone. our method, points belonging to a basin are detected by
However, the cost of Local Search can be rather a clustering algorithm, and only one LS is started in
high. In this paper we present a new hybrid each basin. This has the advantage of reducing the total
algorithm which reduces the total cost of local cost of Local Search while providing precise local
search by avoiding the start of the method in optima. In the Section 2, we explain the clustering
basins of attraction where a local optimum has method we take as basis for our hybrid, then in section 3
already been discovered. Additionally, the we explain a first idea on how to hybridize GA and
clustering information can be used to help the clustering. In Section 4, we describe a modification we
maintenance of diversity within the population. did to the clustering method in order to overcome a
INTRODUCTION

The main strength of Genetic Algorithm is their glob: o A

(9]

optimization capacities. They do not get easily trapp
into local optima. On the Other hand, they are ratt

slow on fine local search. This weakness can B
overcome by the combination (hybridization) of G/
with a specific Local (LS) h method [6,4] like Powell’ Figure 1: Multiple LS Steps from Generations to Generations

direction set or conjugate gradients.

In this context, each newly generated pairg replaced

by the corresponding local optimub&x) found after

the start of the search method fram

diversity maintenance problem that may appear in a
naive hybridization. In Section 5 we address the
problems that may arise due to the non-uniformity of
the sampling. The Section 6 present some simulation
results and the Section 7 concludes.

This combination proved to increase greatly the
performances compared to standard real coded GA. [4].
However, the cost of local search method can be high
especially when the derivative of the function are not
available. The usual cure for this problem is to reduce
the cost of a single search by not allowing it to run until
full convergence. This way, the local search produces an



2 CLUSTERING METHOD

Aswe said, our goal is to reduce the total cost of Local
Search by noting that there is no need to perform a
Local Search in a basin where another LS has already
been peformed since it would lead to an already
discovered Local Optimum.

A whole family of global optimization methods knows
as clustering methods do exactly this [7]. They sample
the search space, identify points belonging potentially to
the same basin of attraction and use this information to
perform only one LS in each basin of attraction.

In this paper, we use the Multi Level Single Linkage
(MLSL) clustering method, because it proved to be both
theoretically and empirically the best one [5].

The dgorithm for MLSL is shown below. It constructs a
set of local optima X*. At each iteration k, we generate
N new points X1, -, X With @ uniform distribution.
Then we search for points that do not have better
neighbor with a threshold distance r,. (we give the value
of r, below). These points are chosen as starting points
for LS.

k=1X"=0
repeat
Generate N uniformly distributed and points Tjx_iyvqi.. .- TeN
Rank the z; by increasing f{z;)
for vi|1 <: < kN do
if Ajlf(z,) < flz:) and ||lz; — z:]| < rs then
N*u=LS5(x:)
end if
end for
until k > Maz iy

These points are good candidates for LS as we see in
Figure 2, which depicts a clustering situation. The
rounded points are those upon which LS is performed:
an arrow from a to b means that LS will not be
performed upon a because f(a)>f(b) (if we minimize)
and the distance between a and b is less than r, We see
that if ry is large enough, at most one LS will be
performed in each basin; and if r¢ is smal enough
(smaller than the distance between two local optima) LS
will be performed within every basin with a sample
point.

The critical digance is computed in such a way that the
probability of not having a point within distance ry is
equal to an ak that will be controlled during the run.

If aregion is sampled uniformly, we can approximate
the probability that one point of the sample has no other
point of the sample within a distance d by

kN—1

dnﬂ,n/?
o= (1 T +n/2)m<5)>

Where /(n) is the continuous version of the factorial of
n-1This approximation comes from the fact that for a
small d, the probability that a Sngle point falls within a
distance d is the volume of the sphere of radius d
divided by m(s) (m(S is the measure of the search
space) Noting that we have kN-lother points the
probability of not having a point within distance d is this
probability exponent kN-1.

The critical digancer, must be so that the probability
of not having a point within this distance isless than ay
if theregion is sampled uniformly. If the closest point is
farther than r, we can regject the hypothesis that the
region is sampled uniformly with a confidence 1-ay

Extracting d from 1, we have

1 1/n
ry = <M(1"O‘LN\W—”)> ‘

/2

log kN <N
k= <1 - EN > ’

‘ T(L+ dnjm(S) olog(kN)) /"
Tk = /2 kN ‘

so that ask - [ ry and ai -0 and thusthe clustering
becomes more and more precise ask increases.

3 CLUSTERING GA: FIRST IDEA

With GA and MLSL, we have all the needed el ements
to construct an efficient global optimization agorithm:
the GA is able to sample efficiently the search space and
the MLSL is ableto detect efficiently local optima. We
must now decide how to combine them.

The combination of GA with the MLSL clustering
algorithm is sraightforward at thelevel of MLSL. We
keep the MLSL algorithm asit iswith the only
exception that ingead of using a uniform distribution to
generation the sample, we use a GA.

At thelevd of GA, many options are available. Thefirst
naive ideaisto use the clugtering method just as away
to improve LS by avoiding unneeded computation. The
GA provides a sample of pointsxy, ... X, to MLSL which
returnsthelocal optima corresponding to each of these
points, LS(xy), ...LS(%,) and each xi isreplace by its
corresponding local optimum LS(x). Here isthe macro-
algorithm for this method.



Figure 2: Clustering in MLSL. LS will only be applied on rounded point.

E=1X"=0
repeat
Generate N uniformly distributed and points zjx_yyv4r.. - TiN
Rank the z, by increasing f(z)
for Vil <i < kN do
if Bjlftz,) < flz) and ||z, — 23] < rg then
X'U=L5x)
end if
end for
until k > Mazk

In this case, the GA replaces the sampling procedure,
but the population of GA remains independent from the
past samples used by the clustering agorithm. We thus
have two distinct populations. One of fixed size for the
GA and another one for MLSL, which containsall, the
past points generated.

Thisnaive approach isnot applicable asit is. Indeed,
during thefirst generation, the density of the sample of
the search spaceisnot very high and acluster can
encompass several basins of attraction. In this case, only
one local optimum will be detected in each group of
basins and al the pointsinside a same cluster will be
replaced by the samelocal optima creating a huge loss
of divergity asit isdepicted in Figure 3 where theplain
lines represent the clusters boundaries.

Obvioudly, something as to be done about the
maintenance of diversity. The next section addresses
this problem.

4 MAINTENANCE OF DIVERSITY

Diversity must be maintained at two different levels:
locally, at the level of the cluster, we must avoid the
concentration of all the points of a cluster toward a
single point. Globally, we must avoid the convergence
of the GA toward asingle cluster. To solve these
problems, we do not replace the points by their
corresponding local optima anymore. Instead, we apply
atwo level sdlection strategy using the information
provided by the clustering process.

At thelocal level, we apply an intra-cluster selection
step on each cluster independently. Each cluster is
treated as a separate population. Selection isapplied
inside each clugter asin anormal GA process using the
fitness of the points without local optimization. The
only exception is that the worst point of a cluster is
replaced by thelocal optima of the cluster if it isnot yet
present. After this step, the number of points belonging
to each cluster indde the GA population has not
changed.

At aglobal level, we will change this number. Selection
now acts globally, taking asfitness for a point x
belonging to a clugter C the fitness of the local optima
detected ingde C. This process can be seen as tresting
the cluster as selection unit and changing their relative
weight inside the GA population. To avoid global
premature convergence, afraction of the population is
filled we already discovered local optima.

With these modifications, we have the following
algorithm where C(x;) isthe cluster to x; is assigned and
L(C) isthelocal optimum found inside the cluster C and
P the population of the GA.

P « N Uniformly sampled points
repeat
Add the points of P to MLSL samples
Associate each individual of P to a cluster
!Intra Cluster Selection!
for all Clusters C, present in P do
Let 7 the worst individual of P belonging to C,
Replace [ by the local optima of C'

Perform local selection on the points of C, belonging to P using f(z) as fitness

end for

OldPop « P; P« 0
tCluster diversification!
tw = number of local minima detected by MLSL!
for i=1 to min(w,vN) do
Select a cluster C,
PuU « (LS(C), FILS(C))
end for
'Global Selection!
Select N — min{w.vN) points r; from OldPop using f(LS(C(x;}}) as fitness
Apply genetic operators to produce the new population P
until Stopping Criterion

With these modifications, we already have a good
algorithm, however in some case a further refinement
could be necessary as we explain in the next section.



5 THE NON UNIFORMITY OF THE
SAMPLE

During our presentation of MLSL, we saw that it relied
on auniform sampling of the search space. Our
hybridization of GA with MLSL resultsindeed in a
MLSL with the sampling distribution generation by the
GA and thus different from a uniform one. One may
wonder what is the effect of thisnon-uniformity on the
clustering process and on the remarkabl e theoretical
properties of MLSL. Intuitively, the non-uniformity of
the sample does not prevent the global minimum to be
discovered provided that the probability of generation a
point inits basin is different from zero.

What the MLSL doesto decideif LS will be applied on
apoint is detect that thereis a descending path, formed
by sample points distant of at most ry, connecting a
sample point to another one for which LS has aready
been performed (see Figure 2). If ry issmall enough, al
the pointsin the path bel ongs to the same basin. Asry
tendstoward O with increasing k, if K is large enough,
thiswill be the case.

The non-uniformity of the sample does not change
anything to this. Aslong as at least a point is generated
in the basin of local optimum, it will be discovered once
k getslarge enough. Hence, we can replace the uniform
distribution by another one biased toward regions of the
search space where we hope the global optimais more
likely to be.

On the other hand, the non-uniformity hasimplication
on the probability with which LS isapplied to agiven
sample point. With uniform digtribution, ry iscomputed
in such a way that the probability of not having a point
within distance ry is ak=(logkN)/N. With non-uniform
distribution, ther, istoo largein high density of
sampling regions and too small in low-density regions.
Sinceregions sampled with alow density can be seen as

.less promising“ in GA view, we have the paradoxical

effect of performing LS with a higher probability on

points sampled in less promising regions. Sample points

are thus wasted in high-density regions and LS are
wasted in low-density regions.

51 RE-CLUSTERING

To do this, we designed a method that we called re-
clustering. It is a two-phase process:

1) Clustering is applied to the whole sample with a
globalry

2) Local Clustering is performed on each cluster
formed after phase 1 with a critical distange
local to each clusteti , and with sample formed by
the points of this cluster.

Eachrg is a function of the densit9i of points within
the clusterCi. To estimateDi, we count the number of
points included in a sphere of radiyscentered at the
local optima of the cluster.

We then start from the expression giving the critical
distancer; as a function of the number of pointand of
the size of the search spanéS):

/2 t

7

<F(1 + tn)ym(S) alog(t))l/n
Ty = )

noting thatt/m(S) is the density of the sampling, we
obtain the critical distanag;, local to the clustet::

o 1/n
e, = 77-1/2 <F(1 + n/g)_alﬁg(_ﬁ[(;)_'l)ﬁ>

With this maodification, the hybridized algorithm
remains the same at the exception that the clustering
now includes a re-clustering phase.

6 EXPERIMENTAL RESULTS

The algorithm we described in the preceding sections is
only a framework. Many choices remain to be done
concerning the operators used inside the GA. For our
implementation, we use here the real coded GA of
Michalewicz as a basis (see [3]).

We compared our new hybrid (GA-MLSL) with its
most logical competitors: a Multi Level Single Linkage
algorithm (MLSL), a GA with LS performed by
Powell’'s method run until convergence (GA-LS), and a
GA with LS performed by a single step of the Powell’s
method (GA-LowLS). All the algorithms tested in this

A solution to this would be to estimate the density of paper rely for their local search upon Powell’s direction

points locally in a region and deduce a lagal

set, which is a derivative free method.
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Figure 6: Mean best perf for Michalewicz with N =5 and m = 10

We tested these algorithms on the function set defined
for the firg International Contest on Evolutionary
Optimization (ICEO) [1]. These are the five and ten

dimensional versions of the Griewank function (with
D=4000 ), the Michalewicz function (with m=10) and
the Langerman’s function.

These function posses a panel of characteristics
interesting in the context of global optimization: The
Griewank function posses a global quadratic structure
upon which cosinusoidal noise is added. The
Michalewicz function is a separable, which posseBes
local optima if the separability property is not exploited
and the Langerman function is formed by 5 waves
which interact with each other forming a multitude of
local optima.

We show in figure 4 trough 9 the evaluation of the best
individual averaged over 50 runs. We see that on every
function at the exception of the five dimensional version
of the Langerman, the GA-MLSL is the best performing
algorithm in the long run. However, if all that is
required is a low precision, GA-LowLS is often able to
produce faster good solutions. This is the logical
consequence of two different LS cost reduction policy.
In one case the precision is lower in the other the
density of sample of the search space exploited is lower.

7 CONCLUSION

In this paper we showed that the cost of Local Search in
a GA-LS hybrid could be reduced with a clustering
method by avoiding multiple rediscoveries of the local
optima. In addition, this clustering method supplies
informations that can be used to maintain the diversity
in the population.

Many other ways to hybridize GA with clustering
method exists. The algorithm we present here is only a
study of feasibility.
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